DLG Test Report Vredestein. Traxion Optimall. Efficiency advantages. Effizienzvorteile VF-Technologie. VF technology?

Similar documents
Agricultural tyres for tractors

Grammer seat MSG 95 EAC/741 with active seat suspension

New Holland FR 650. DLG Test Report 6283F. CNH Industrial Belgium N.V. Fuel consumption and throughput in corn.

TS 680 Twin Side-Delivery Rake

New Holland FR650 Fuel consumption and throughput in corn

Rear-mounted disc mower DISCO 3500 Contour

Guide vane for agricultural applications

CLAAS Selbstfahrende Erntemaschinen GmbH "DYNAMIC POWER" DLG Test Report 6027 F Brief description Manufacturer

Solomix VLH-B Feed-Mixer Wagon

TEST REPORT STIHL MS 441. OWNER OF THE TEST CERTIFICATE: Manufacturer and applicant: Andreas Stihl AG & Co KG Badstrasse

TEST REPORT Chain saw DOLMAR PS-420

Get more out of nature today... and tomorrow. New VT-TRACTOR. Low fuel consumption. Reduced soil compaction. Great traction

TEST REPORT HUSQVARNA 575 XPG

Get more out of nature today... and tomorrow

New Holland T Datasheet DLG PowerMix. Applicant New Holland Agricultural Equipment SpA Via Plava 80 I Torino

The Learning Outcomes are grouped into the following units:

SUMMARY OF THE IMPACT ASSESSMENT

Test Report DOLMAR PS 4600

Publishable Executive Summary (M1-M48)

TM1000 High Power. The solution for sustainable farming.

Conduct on-road training for motorcycle riders

COMMISSION REGULATION (EU) / of XXX

Gigant 10 and Gigant 12 System Tracs

Soil protection and high productivity: The MICHELIN Agriculture footprint Tyre Technical Data Book MICHELIN Agriculture and Compact Line

ExpRessBio-Methods. Ecological and economic assessment of product systems - system boundaries and calculation methods

About LMC Automotive. LMC Automotive the company. Global Car & Truck Forecast. Automotive Production Forecasts

TM900 High Power. Enrich your farming.

QUESTION / CLARIFICATION

UIC/ UNIFE Technical Recommendations (TecRec)

(Text with EEA relevance)

INTERNATIONAL SUMMER SCHOOL PEM FUEL CELLS ACCREDITED. according to the. European Credit Transfer System (ECTS) July 2012 Nevsehir, Turkey

CALL FOR APPLICATIONS FOR THE SELECTION OF MEMBERS OF THE TACHOGRAPH FORUM

MINUTES. OF THE 1st MEETING TYPE-APPROVAL AUTHORITIES EXPERT GROUP - TAAEG * * *

OPTIMISING CHASSIS ALIGNMENT USING VEHICLE SENSORS

TYRES FOR AGRICULTURE

Fast track to Sustainable Mobility. SNCF V350 CATENARY CERTIFICATION with respect to the TSI-ENE

Cirrus Activ Cirrus Cirrus Ac A tiv cti

Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU) Frequently Asked Questions

* * * Brussels, 20th October 2012

Tendering Public Charging Infrastructure for Electric Vehicles

Economic and Social Council

COMMISSION REGULATION (EU)

QCF Unit and Assessment Specification

E/ECE/324/Rev.2/Add.105/Rev.2/Amend.5 E/ECE/TRANS/505/Rev.2/Add.105/Rev.2/Amend.5

Economic and Social Council

-SQA- SCOTTISH QUALIFICATIONS AUTHORITY NATIONAL CERTIFICATE MODULE: UNIT SPECIFICATION GENERAL INFORMATION. -Module Number Session

Police Operations: Tachograph Equipment Inspection

for TECHNICAL ADVICE OF THE EUROPEAN UNION AGENCY FOR RAILWAYS THE EUROPEAN COMMISSION regarding ERA/AD V/ running gear - design of structural

COMMISSION REGULATION (EU) / of XXX

Simulation of Collective Load Data for Integrated Design and Testing of Vehicle Transmissions. Andreas Schmidt, Audi AG, May 22, 2014

European Responsible Care Award Celanese Contractor Safety Improvements. About Celanese

Mitas the leading tyre manufacturer

Commissioning chilled water TES systems

Economic and Social Council

TRINITY COLLEGE DUBLIN THE UNIVERSITY OF DUBLIN. Faculty of Engineering, Mathematics and Science. School of Computer Science and Statistics

Certified Energy Efficiency.

Notice of Proposed Amendment Regular update of CS-25

Is Low Friction Efficient?

WM Kartoffeltechnik. Innovations for your success. Two-row potato harvesters WM 6500 WM 8500

Overview IMIVF05. Inspect, repair and replace plant equipment tyres

COMMISSION REGULATION (EC)

International Palm Oil Purchasing Policy

COMPACT DISC HARROW HELIODOR 9

Effect of plus sizing on driving comfort and safety of users

PRE-RELEASE VERSION (FDIS)

EUROPEAN COMMISSION ENTERPRISE AND INDUSTRY DIRECTORATE-GENERAL

Terms of Reference (ToR) Trade & Traceability Standing Committee (T&T SC)

EU-Mexico Free Trade Agreement EU TEXTUAL PROPOSAL

RETREADING PROFESSIONALS RETREAD SOLUTIONS GET ALL THE BENEFITS OF OBO TYRES RETREADING TECHNOLOGY PART OF THE MAGNA TYRES GROUP

WLTP. The Impact on Tax and Car Design

Derivative Valuation and GASB 53 Compliance Report For the Period Ending September 30, 2015

ANNEX MOTOR VEHICLES AND MOTOR VEHICLES' PARTS. Article 1. General Provisions

GLOBAL ORGANIZATION - LOCAL SUPPORT TESTING EQUIPMENT

VDE FNN Information Solutions for the Future Power Grid

Vehicle Technical Inspections in the Slovak Republic

AVL S NEW APPROACH FOR ELECTRIFIED UTILITY VEHICLES Solution Portfolio. Public

PT Bank Bukopin Tbk - Strategy, SWOT and Corporate Finance Report

RSPO Principles and Criteria Lead Auditor Course.

Sound-absorbing spacer Sorp10

Crude & Petroleum Products Specification & Analysis

Higher National Unit Specification. General information for centres. Electrical Motors and Motor Starting. Unit code: DV9M 34

COMMISSION DELEGATED REGULATION (EU) No /.. of

Exceeding the standards with MNS

Consultation on the Maximum Weight limit of Agricultural Trailers and Combinations on Public Roads

Notification of a Proposal to issue a Certification Memorandum. Rotor Drive System Gearbox TBO Development

Lubricants for a Healthier Planet

Regulation No Uniform provisions concerning the approval of replacement pollution control devices for power-driven vehicles

OECD Standard Codes for the Official Testing of Agriculture and Forestry Tractors

CEMA Representing the European Agricultural Machinery Industry. Dr. Heribert Reiter CEMA - Technical Board Chairman

Agenda. 5:00 pm. IRGR 2010 Summary. 5:20 pm. Best Ranked Companies. Q&A and Closing Remarks. 5:50 pm

Hoof type lug cage wheel for wetland traction

MAGNA TYRES GROUP TYRE DATABOOK GET ALL THE BENEFITS OF EUROPEAN TECHNOLOGY PART OF THE MAGNA TYRES GROUP

EV ELECTRIFICATION FOR SUSTAINABLE PROFITABILITY

The fact that SkyToll is able to deliver quality results has been proven by its successful projects.

THE PRESENT EUROPEAN TYRE DESASTER Egon-Christian von Glasner 28

AIR POLLUTION AND ENERGY EFFICIENCY. Update on the proposal for "A transparent and reliable hull and propeller performance standard"

THE EFFECT OF AUTOMOTIVE VEHICLE BRAKING SYSTEM FAILURE ON DRIVING SAFETY

Cover crop disc harrow DISCOLANDER XM. be strong, be KUHN

COMMISSION RECOMMENDATION. of XXX

The EU tire label drives continuous product improvements. We ve been supporting this for over 140 years.

Transcription:

DLG-Test DLG Test Report 6800 Vredestein Optimall Efficiency advantages Effizienzvorteile durch VF-Technologie by VF technology? www.dlg-test.de

Overview A test mark DLG-APPROVED for individual criteria is awarded for agricultural products which have successfully fulfilled a scope-reduced usability testing conducted by DLG according to independent and recognized evaluation criteria. The test is intended to highlight particular innovations and key criteria of the test object. The test may contain criteria from the DLG test scope for overall tests, or focus on other value-determining characteristics and properties of the test subject. The minimum requirements, test conditions and procedures as well as the valuation bases of the test results will be specified in consultation with an expert group of DLG. They correspond to the recognized rules of technology, as well as scientific and agricultural knowledge and requirements. The successful testing is concluded with the publication of a test report, as well as the awarding of the test mark which is valid for five years from the date of awarding. The test series Efficiency advantages by VF technology includes tests on the efficiency of high-flexion tractor tyres in various application areas. By using defined constant traction force values the resulting speed as well as the fuel consumption on the field were determined. This was done under comparable ground and slip conditions and provides an indication about the specific fuel consumption related to the power supplied. The kappa/slip curve for each tyre was also determined on the field. It allows an indication of the traction force transferred with similar slip depending on the tractor s weight. The measurements were carried out with the Vredestein tyre type Optimall originating from the segment of VF tyres in comparison to an IF tyre and VF tyres of European premium competitors. The here tested sizes: 650/65 R34 respectively 600/70 R34 on the front axle and 710/75 R42 on the rear axle. Details can be found subsequently in Table 2. For the assessment of the measurement results tyre sets of similar, respectively available sizes of two additional well-known European tyre manufactures from the premium segment were tested under the same conditions. Here the tyre pressures of all test candidates were set based on the manufacturer specific tyre pressure tables and based on the actual wheel loads determined immediately before the test. Test Report 6800 Page 2 of 8

The Product Manufacturer and applicant Apollo Vredestein B.V., P.O. Box 27, 7500 AA Enschede, The Netherlands Product: Vredestein Optimall Description and Technical Data Technical instructions and data can be found on the manufacturer s website: http://www.vredestein.com Assessment Brief Summary In the kappa/slip ratio category the Optimall performed best in comparison to its competitors. This might not be surprising in the direct comparison with an IF tyre, but it also proved its better performance in comparison to another VF tyre. This effect is most noticeable in the main working range of 5-20 % slip. In the second sub-test on the specific fuel consumption under constant working conditions the test candidate demonstrates under the given conditions that it is able to use the fuel most efficiently. This results in a better area output und subsequently in a cost reduction per area worked. Table 1: Results of the Optimal, Overview Test criterion Evaluation * Fuel consumption + + Area output + + Kappa/slip behaviour + + * Evaluation range: + + / + / / / ( = standard) Figure 2: Towing tractor and braking tractor in use Test Report 6800 Page 3 of 8

The Method The sets of tyres to be tested were first mounted on the test vehicle, in this case for the field work a Claas Axion 950 C-Matic with continuously variable transmission. The load was simulated by means of a braking tractor, here a Claas Xerion 4000, also with continuously variable transmission. For the field test the two tractors were connected by a steel cable with integrated traction load cell. In addition, a Peiseler wheel was attached to the towing vehicle. This provided the actual driving speed across ground during the test. The wheel slip was determined from the measurement of the towing tractor s wheel speed and the rolling circumference of the tested tyres. The fuel consumption for the determination of the energy efficiency was recorded using a volumetric Figure 3: Ground conditions test field (winter wheat; shallow stubble cultivation with disc harrow; black earth from loess; average soil moisture 21 % in approx. 10 cm depth) measurement system on the towing tractor. The test sequence was identical for each set of tyres. In the first sub-test the fuel consumption was determined with a constant speed setting on the towing vehicle as well as a constant traction load from the braking vehicle. This was based on load data measured on a cultivator during standard stubble cultivation in the field. In the second sub-test, the aim was to calculate the kappa/slip curve under the ground conditions given at the test location. For this purpose a constant speed was set on the towing vehicle and the traction requirement was continuously increased via the braking vehicle up to a wheel slip of 40 %. With respect to moisture, the prevailing ground conditions at the time of the test were recorded by random sampling over the whole test field. Table 2: Test details Vredestein VF FA RA FA RA FA RA Test combination Optimall Optimall Dimension VF 650/65 R34 NRO VF 710/75 R42 IF 650/65 R34 IF 710/75 R42 VF 600/70 R34 VF 710/75 R42 Load index 170D 184D 161D 176D 167D 181D Average tread depth [mm] 65 71 64 72 62 73 Number of tread lugs 20 21 20 21 20 21 Tyre tread width without load [mm] 625 677 601 654 543 637 Load per axle test vehicle field [kg] 7121 10636 6981 10814 6782 10785 Max. measured load capacity test vehicle field [kg] 3560 5318 3490 5407 3391 5392 Min. test pressure field according to manufacturer 0.65 0.65 1.00 1.10 0.80 0.85 Test Report 6800 Page 4 of 8

The Test Results in Detail In the first sub-test the specific fuel consumptions shown in Figure 4 were measured with an approximately constant traction requirement of 70 kn. This implies that according to the work done under the test conditions the fuel requirement of the Vredestein tyre was clearly better in comparison with the reference products. Compared with the IF technology this is certainly not surprising. However, the measurements showed that even with similar ones, namely in comparison with another VF tyre an additional improvement was achieved. Based on the boundary conditions of the reference attachments, which were taken as a basis for the tractor settings, in this case a cultivator with known work width and depth, the area in hectares worked per hour was calculated. The results are shown in Figure 5. The differences in the specific fuel consumption also become clear here. The work output of the Optimall on a similar area is approximately 7 % faster than of the third placed. The advantage to the second placed VF candidate still is 1.5 %. The resulting work speeds influenced this result as a consequence of the varying slip conditions. Based on the area efficiency, as shown in Figure 6, a comparison of the absolute fuel consumption/fuel consumption related to land usage can be performed. The total result also reflects the advantage for the Vredestein tyre. Specific fuel consumption [g/kwh] Area output [ha/h] Fuel consumption [l/100 ha] 380 370 360 350 340 7,0 6,5 6,0 5,5 5,0 4,5 4,0 1250 1200 1150 1100 Optimall VF Figure 4: Specific fuel consumption 346 6,06 Optimall VF Figure 5: Result for the resulting area treated Optimall VF 1144 372 5,68 1229 Ø in the test: 357 353 Ø in the test: 5,9 5,97 Ø in the test: 1180 1167 The economic added value becomes even clearer under consideration of the costs based Figure 6: Result for fuel consumption per 100 ha Test Report 6800 Page 5 of 8

on two main factors, fuel and driver. Of course, the relevant area size and a long-term observation have to be carried out. The results are shown in Figure 7. The saving in comparison to an IF tyre is approximately 7 % or 162 per 100 ha, whereas even to a VF competitor a cost advantage of 1.7 % or 40 per 100 ha can be observed. In the measurements of the kappa/slip behaviour we calculate the maximum transferable traction force depending on the slip and in relation to the total tractor weight used. This relation is shown by the kappa traction force coefficient without unit. The maximum possible efficiency value would be achieved with kappa=1. The results in Figure 8 have been shown in scaled format for a better and more detailed overview. It shows the load efficiency under defined slip conditions. Due to the relation between working speed and driving speed a direct relation between the area output and subsequently the fuel consumption efficiency exists. In all areas, the Optimall performed best. The major reason for this is that the active tyre contact area under the set pressure conditions was created most efficiently by the Optimall tyre. Herewith a significant difference came up from the test, but the determined actual tyre tread widths without load from the overview table should be considered for the interpretation of the results. The overview in Figure 9 shows the absolute kappa/slip curves in the range of 5-40 % as a supplement. Total costs for 100 ha* [ ] Traction force [kn] 2500 2450 2400 2350 2300 2250 2200 Slip ratio [%] 110 100 90 80 70 60 50 40 30 20 10 Traction coefficient Kappa 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 Optimall VF Optimall VF 2255 5 % 10 % 15 % 20 % 25 % 30 % 35 % 40 % 0.30 Figure 8: Result of kappa/slip curve scaled 2417 0.44 0.50 0.54 0.54 0.57 0.58 0.57 0.17 0.34 0.42 0.47 0.51 0.53 0.56 0.55 0.25 0.41 0.48 0.53 0.55 0.56 0.54 0.56 0 5 % 10 % 15 % 20 % 25 % 30 % 35 % 40 % Slip [%] 2295 * Assumption: Diesel price 1.25 /litre, costs for the driver 50 /hour Figure 7: Result of the costs resulting from the measurement results based on two important factors Optimall VF Figure 9: Results of traction force curve total Test Report 6800 Page 6 of 8

Summary With regard to efficiency during the simulated traction work, the tested tyre combination of the Vredestein Optimall with VF 650/65 R34 on the front axle and VF 710/75 R42 on the rear axle is the best performer in all shown areas. In the lower slip range until 20 % a significantly more positive behaviour can be observed when assessing the single values. Certainly the differences of the tyre tread widths, especially in direct comparison with the VF tyre, have an impact on these results. This should be considered during the evaluation of the results. Of course, the results are reflected in the measurements of the specific fuel consumption during the constant drive. The differences are obviously approxi mately 7 [g/kwh] lower compared to the direct VF competitor under the given conditions. Naturally this implies increasing economic advantages with increasing sizes of the area worked, namely: 7 % to IF and 1.7 % to VF. Especially as with a similar area size, following the higher area output, e. g. the cost for the driver will be reduced. The Vredestein Optimall demonstrates clearly the advantages of the VF technology for the field cultivation. However, the precondition is always the adjustment of the tyre pressure according to the relevant load situation. Test Report 6800 Page 7 of 8

More information Further tests on agricultural tyres are available for download under www.dlg-test.de. The DLG committee for work management and process engineering has published two instruction leaflets on the topic automatic steering systems titled GPS in the agricultural sector (leaflet no. 316) and Satellite positioning systems (leaflet no. 388). The leaflets are available free of charge in PDF format under www.dlg.org/merkblaetter.html. Test performed by DLG e.v., Test Center Technology and Farm Inputs, Max-Eyth-Weg 1, 64823 Groß-Umstadt, Germany Area of expertise Vehicle engineering/vehicle testing Project director Dipl-Ing (FH) Andreas Ai Test engineer(s) Dipl-Ing (FH) Niels Conradi * * Author The DLG In addition to being the executing body of well-known tests for agricultural engineering, farm inputs and foods, the DLG is also an open forum for the exchange of knowledge and opinions in the agricultural and food industry. Some 180 full-time employees and more than 3,000 volunteer experts are developing solutions to current problems. The more than 80 committees, working groups and committees thereby form the basis of expertise and continuity for the professional work. At the DLG, a great deal of specialist information for agriculture is created in the form of information leaflets and working papers, as well as articles in journals and books. DLG organises the world's leading professional exhibitions for the agriculture and food sector. This contributes to the transparent presentation of modern products, processes and services to the public. Secure the competitive edge as well as other benefits, and contribute to the expert knowledge base of the agricultural industry. Further information can be obtained under www.dlg.org/mitgliedschaft. The DLG Test Center Technology and Farm Inputs The DLG Test Center Technology and Farm Inputs in Groß-Umstadt is the benchmark for tested agricultural products and farm inputs, as well as a leading testing and certification service provider for independent technology tests. The DLG test engineers precisely examine product developments and innovations by utilizing state-of-the-art measurement technology and testing methods gained from practice. As an accredited and EU registered testing laboratory the DLG Test Center Technology and Farm Inputs offers farmers and practitioners vital information and decision support for the investment planning for agricultural technology and farm inputs through recognized technology tests and DLG testing. Internal test code DLG: 2017-00483 Copyright DLG: 2017 DLG DLG e.v. Testzentrum Technik & Betriebsmittel Max-Eyth-Weg 1 64823 Groß-Umstadt Telefon: +49 69 24788-600 Fax: +49 69 24788-690 Tech@DLG.org www.dlg.org Download of all DLG test reports free of charge at: www.dlg-test.de Test Report 6800 Page 8 of 8