POWER SYSTEM OPERATION AND CONTROL YAHIA BAGHZOUZ UNIVERSITY OF NEVADA, LAS VEGAS

Similar documents
An Introduction to Ancillary Services

Ancillary Services. Horace Horton Senior Market Trainer, Market Training, NYISO. New York Market Orientation Course (NYMOC)

Overview of ISO New England and the New England Wholesale Power Markets

IEEE SESSION COMPUTER AIDED SMART POWER GRID

Review of U.S. market reforms for renewable integration, flexibility, and storage

Essential Reliability Services Engineering the Changing Grid

April 30, Michael Schilmoeller, Senior Power Systems Analyst

Operational Opportunities to Minimize Renewables Curtailments

Energy Economics. Lecture 6 Electricity Markets ECO Asst. Prof. Dr. Istemi Berk

TRANSMISSION PLANNING CRITERIA

ERCOT Overview. Paul Wattles Senior Analyst, Market Design & Development. Solar Energy Industries Association July 11, 2012

Grid Impacts of Variable Generation at High Penetration Levels

INTERCONNECTED POWER SYSTEMS POWER GRIDS. Chapter 8

Hawai'i Island Planning and Operations MEASURES TO IMPROVE RELIABILITY WITH HIGH DER

THE TRES AMIGAS PROJECT

Managing California s Electrical Supply System after the shut down of San Onofre Nuclear Generating Station

Grid Integration Costs: Impact of The IRP Capacity Mix on System Operations

Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing

Flexible Ramping Product Technical Workshop

Power Systems Fundamentals

Department of Market Quality and Renewable Integration November 2016

Eric Johnson, Director, External Affairs, ISO New England

Docket No. ER June 2018 Informational Report Energy Imbalance Market Transition Period Report Idaho Power Company

SPS Planning Criteria and Study Methodology

Ancillary Services & Essential Reliability Services

ECEN 667 Power System Stability Lecture 19: Load Models

AMERICAN ELECTRIC POWER 2017 FILING FERC FORM 715 ANNUAL TRANSMISSION PLANNING AND EVALUATION REPORT PART 4 TRANSMISSION PLANNING RELIABILITY CRITERIA

August 15, Please contact the undersigned directly with any questions or concerns regarding the foregoing.

NPCC Natural Gas Disruption Risk Assessment Background. Summer 2017

The Development of Competitive Renewable Energy Zones in Texas

Distributed Energy Resources

WESTERN INTERCONNECTION TRANSMISSION TECHNOLGOY FORUM

Decision on Merced Irrigation District Transition Agreement

The Challenges of Integrating Lithium Ion Battery Storage Arrays in MISO

February 10, The Honorable Kimberly D. Bose Secretary Federal Energy Regulatory Commission 888 First Street, NE Washington, DC 20426

Analysis of Turbophase System Deployment on Natural Gas Generating Stations located in Florida Reliability Coordinating Council

WIRES University Overview of ISO/RTOs. Mike Ross Senior Vice President Government Affairs and Public Relations Southwest Power Pool

Why Japan remains skeptical of restructuring Study of Electricity Market Bidding Characteristics for Modeling Generation Capacity Growth

Operational Objectives

California ISO. Q Report on Market Issues and Performance. December 8, Department of Market Monitoring

FERC 101 for Environmental Lawyers. Linda L. Walsh Hunton & Williams LLP February 11, 2015

IMM Quarterly Report: Summer 2017

Smart Grid A Reliability Perspective

Electric Transmission 101 or Everything You Wanted to Know About the Grid But Were Afraid to Ask. Gerald Deaver Manager Regional Transmission Policy

October 17, Please contact the undersigned directly with any questions or concerns regarding the foregoing.

Effects of Smart Grid Technology on the Bulk Power System

WESTERN EIM BENEFITS REPORT Second Quarter 2018

Accommodating High Levels of Variable Generation. EPRI Managing Complexity for Safety and Reliability September 14-15, 15, 2009

Energy Security Electrical Islanding Approach and Assessment Tools. Dr. Bill Kramer Senior Research Engineer Distributed Energy Systems Integration

Smart Grid Technology Principle and Application Smart Grid Measurement and Control

Electricity Reliability Council of Texas (ERCOT)

DIgSILENT Pacific PowerFactory Technical Seminar

Transmission Planning using Production Cost Simulation & Power Flow Analysis

Grid Stability Analysis for High Penetration Solar Photovoltaics

Merger of the generator interconnection processes of Valley Electric and the ISO;

Load Frequency Control of a Two Area Power System with Electric Vehicle and PI Controller

EE 742 Chap. 7: Wind Power Generation. Y. Baghzouz Fall 2011

EE 742 Chap. 7: Wind Power Generation. Y. Baghzouz

Vehicle Charging as a Source of Grid Frequency Regulation

Southern Alberta Section IAS-PES Chapter. Power Systems for Non Power System Engineer W.O. (Bill) Kennedy, P.Eng. FEIC b7kennedy & Associates Inc.

REGIONAL TRANSMISSION ORGANIZATIONS / INDEPENDENT SYSTEM OPERATORS AND THE ENERGY IMBALANCE MARKET: AN OVERVIEW OF THE PICTURE IN THE WEST

Electric Transportation and Energy Storage

SYSTEM OPERATOR. Ancillary Services Technical Requirements for 2018/ /23 REFERENCE NO. :

A123 s Advanced Grid Storage, Extending Our Experience to Distributed Resource Applications and Microgrids

Flexible Capacity Needs and Availability Assessment Hours Technical Study for 2020

PSE Attachment K Puget Sound Area Transmission Meeting

Service Requested 150 MW, Firm. Table ES.1: Summary Details for TSR #

Running the Electric Power Grid

Future of the Power System? Presented by : Yazhou (Joel) Liu, Ph.D., PE Schneider Electric Engineering Services electric.

Electricity Reliability Council of Texas (ERCOT)

Electrical Theory. Generator Theory. PJM State & Member Training Dept. PJM /22/2018

Literature Review of Energy Storage Services

100 MW Wind Generation Project

Primary Frequency Response. Summary of Stakeholder Comments Appendix

March 14, Please contact the undersigned directly with any questions or concerns regarding the foregoing.

Evaluation of the Performance of Back-to-Back HVDC Converter and Variable Frequency Transformer for Power Flow Control in a Weak Interconnection

Consulting Agreement Study. Completed for Transmission Customer

Georgia Transmission Corporation Georgia Systems Operations Corporation

STOR Market Information Report TR27

CHAPTER 5 FAULT AND HARMONIC ANALYSIS USING PV ARRAY BASED STATCOM

Asia Pacific Research Initiative for Sustainable Energy Systems 2011 (APRISES11)

Demand Response 2.0: transitioning from load shedding to load shaping. Ross Malme Demand Response Resource Center April 19, 2011

DMM 2017 Q4 Report Highlights

August 2011

Western Area Power Administration Sierra Nevada Region

Integrated System Models Graph Trace Analysis Distributed Engineering Workstation

Small Electrical Systems (Microgrids)

Model Predictive Control for Electric Vehicle Charging

Eric John, ABB FACTS, Raleigh NC

Microgrid Storage Integration Battery modeling and advanced control

DEMONSTRATION OF ESSENTIAL RELIABILITY SERVICES BY A 300-MW SOLAR PV POWER PLANT

Interconnection Feasibility Study Report GIP-023-FEAS-R1. Generator Interconnection Request # MW Wind Generating Facility Inverness (L6549), NS

Project #148. Generation Interconnection System Impact Study Report

The FREEDM System: components, main functions, system control

Electrical grid stability with high wind energy penetration

Session 10 NERC Interconnection Requirements

APPENDIX F: Project Need and Description

PID 274 Feasibility Study Report 13.7 MW Distribution Inter-Connection Buras Substation

Interconnection System Impact Study Report Request # GI

GRID CODE REVIEW PANEL 13 September OPERATING MARGIN - OC4 (Paper by National Grid)

Transcription:

POWER SYSTEM OPERATION AND CONTROL YAHIA BAGHZOUZ UNIVERSITY OF NEVADA, LAS VEGAS

OVERVIEW Interconnected systems Generator scheduling/dispatching Load-generation balancing Area Control Error (ACE) Load following and regulation Unit and system ramping curves

NORTH AMERICAN POWER GRID Utilities quickly learned the benefits in reliability and reduced operating reserves by connecting to neighboring systems. There are over 3,000 electric utilities in the US. Some provide service in multiple states. Over 1,700 non-utility power producers. Utilities are either investor-owned, publicly-owned, cooperatives, and Federal utilities. Electric utilities are regulated by local, State, and Federal authorities.

NORTH AMERICAN INTERCONNECTIONS The power system of North America is divided into four major Interconnections which can be thought of as independent islands. Western Generally everything west of the Rockies. Texas - Also known as Electric Reliability Council of Texas (ERCOT). Eastern Generally everything east of the Rockies except Texas and Quebec. Quebec.

NORTH AMERICAN BALANCING AUTHORITIES The actual operation of the Interconnections is handled by over 100 Balancing Authorities (BA s). The BA s dispatch generators in order to meet their individual needs. Some BA s also control load to maintain balance.

INTERCONNECTED OPERATION Each BA in an Interconnection is connected via high voltage transmission lines (i.e., tie-lines) to neighboring Balancing Authorities. Overseeing the BA s are wide-area operators called Reliability Coordinators. The net power in/out of an area is the sum of the flow on its tie-lines. Northern Nevada System One Nevada Line

GENERATION-LOAD BALANCE As electricity itself cannot presently be stored on a large scale, changes in customer demand throughout the day and over the seasons are met by controlling conventional generation, using stored fuels to fire generation plants when needed. The loads are not generally controlled directly, except for the case when there is insufficient generation available on peak days, at which point load may be reduced through DR programs. Frequency is maintained as long as there is a balance between resources and customer demand (plus losses). An imbalance causes a frequency deviation. The overall daily profile of load in a given area can be predicted reasonably well using forecasting tools. A day-ahead generating schedule can be developed based on the predicted next-day load profile.

FREQUENCY: THE HEARTBEAT OF A POWER SYSTEM The figure below shows a sample time history of the frequency on the grid in the western United States, sampled six times a second. The slope of the frequency trace is a measure of the overall imbalance of generation and load at any given moment. The actual grid frequency tends to oscillate slightly around 60 Hz. The frequency error from 60 Hz is used to fine-tune the generation level through regulation. Source: Alec Brooks, Ed Lu,Dan Reicher, Charles Spirakis, and Bill Weihl, Demand Dispatch IEEE Power & Energy magazine, May/June 2010

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 System Load (MW) OPTIMAL GENERATOR SCHEDULING Given a power system with n generators, and a load forecast, the problem is to determine the optimal schedule of each generator (i.e., when to bring on-line and off-line) while recognizing generating unit limits and output capability. 6000 5000 4000 3000 2000 1000 Base Load 0 Hour of Day Unit # x Unit # y Unit # z

GENERATION FLEET CHARACTERISTICS Each generating unit has specific (fixed) physical characteristics that determine the capability of each unit to respond to changes in system load in the up or down direction: Minimum generation P min (MW) Maximum generation P max (MW) Maximum ramp rate R (MW/min) Time-specific characteristics are: Scheduled operating point - P sched (MW) Regulation reserve (MW) Load following reserve (MW) Contingency reserve P cont (MW)

OPERATING RESERVE REQUIREMENTS BA s are required to maintain the following types of reserves to provide for regulation, balance against the load forecasting error and equipment forced and scheduled outages, and to maintain local area reliability (typically 10-15% of peak load): Spinning Reserve Unloaded generation that is synchronized, automatically responsive to frequency deviations, and ready to serve an additional demand. It consists of regulating reserve and contingency reserve. Regulating Reserve An amount of reserve responsive to automatic generation control (AGC), that is sufficient to provide normal regulating margin. Contingency Reserve The capacity available to be deployed by a balancing authority (BA) to meet the North America Electric Reliability Corporation (NERC) and WECC contingency reserve requirements. Non-Spinning Reserve (1) The generating reserve, which is not connected to the system but capable of serving the demand within a specified time from its activation; and (2) loads that can be removed from the system in a specified time.

RESERVE ALLOCATION IN SCHEDULING PROCESS

OPTIMAL GENERATOR DISPATCH (SUB-PROBLEM) Optimal Power Flow/Economic dispatch: Given a forecasted load on the system at a particular hour, determine the optimal power production from each generator that is committed such that operating cost is minimized, while meeting numerous constraints. Conventional generators are dispatchable. On the other hand, renewable resources are not dispatchable, hence cannot be scheduled. Constraints include: Minimum transmission losses Generator limits (regulation, load following and contingency reserves) Voltage limits at all system nodes

MATHEMATICAL FORMULATION Cost function to minimize Generator limits Power flow constraints Voltage constraints P Q i i n Y j 1 n j 1 ij Y cos( Electric utilities use commercial software packages to solve the problem. V ij j V V j i V 0.95 V 1.05 i i ij ij ) sin( ) j j i i

EXAMPLE OF POWER FLOW SOLUTION Red indicates undervoltage at Bus 3

INTERCHANGE ERROR Customer demand and generation are constantly changing within all BA s. BA s will have some unintentional outflow or inflow at any given instant. A Balancing Authority s internal obligations is to control an instantaneous value called the Area Control Error (ACE) by keeping it within acceptable limit that is proportional to the BA size (44 MW for NV Energy South?). ACE consists of the following: Interchange Error, which is the net outflow or inflow compared to what it is scheduled to be imported or exported. Frequency Bias, which is the Balancing Authority s obligation to stabilize frequency: For example, if frequency goes low, each BA is asked to contribute a small amount of extra generation in proportion to its size. Conceptually, ACE is to a Balancing Authority what frequency is to the Interconnection. For example, over-generation makes ACE go positive and puts upward pressure on Interconnection frequency. M Tie-line Scheduled net flow: 350 MW Actual net flow: 340 MW (due to load reduction) ACE goes positive Frequency goes up Reduce generation

AREA CONTROL ERROR (ACE) (NI A - NI S ) represents the ACE associated with meeting schedules. 10ß (F A - F S ) is the BA s obligation to support frequency. ß is in MW/0.1Hz (ß = -1,480 MW/.1 Hz for WSCC) I ME is a correction factor for meter error. Normally this number very small or zero.

INITIAL RESPONSE TO A DISTURBANCE: PRIMARY CONTROL Primary Control (also known as Frequency Response) occurs within the first few seconds following a disturbance, and it is provided by fast-acting generator governor actions (similar to cruise control on a car). They sense a change in speed and adjust the energy input into the generators prime mover. Primary control is provided by spinning reserves. Typical WSCC frequency response due to loss of a generator (Source: NERC Report on Balancing and Frequency Control, July 5,2009)

FOLLOWING RESPONSES: SECONDARY AND TERTIARY CONTROL Secondary Control maintains the minute-to-minute balance throughout the day to restore frequency. This is accomplished using the BA s Automatic Generation and Control (AGC) system and manual dispatch actions to maintain balance. NERC Control Performance Standards: CPS1 assigns each Control Area a slice of the responsibility for control of Interconnection frequency. CPS1 is a yearly standard that measures impact on frequency error - based on a specific formula. CPS2 is a monthly standard intended to limit unscheduled flows also based on a specific formula. NERC does not mandate generation and load to be balanced 100% of the time. Each Balancing Authority shall operate such that its average ACE for at least 90% of its ten-minute periods over a calendar month is within a specific limit (L) AVG10-minute(ACEi) < L Tertiary Control involves the generally manual actions taken by operators in response to disturbances. It includes the initial deployment of reserves and the actions taken to expeditiously restore reserves such that the system is able to withstand the next contingency.

POWER SYSTEM OPERATION REAL TIME In real time, the level of generation is adjusted to meet differences between actual loads and the hourly schedules. This real-time adjustment, can be separated into load following (within-hour resource dispatching) and regulation (sub-minute adjustments of generation) processes according to their respective time scales. Load following typically requires adjustments every 5-15 minutes. This is accomplished through a re-dispatch of on-line generation via automatic adjustments by computerized control systems. Load following and regulation require sufficient capacity and ramp rates, upward and downward, to respond to changes in load. Regulation, in turn, is effected by making sub-minute output adjustments exclusively through an automatic generation control (AGC) system. During real time operation, generators under AGC are adjusted every 2 or 4 seconds (although their actual responses are slower) to keep the ACE close to zero.

POWER SYSTEM OPERATION REAL TIME The hourly day-ahead schedules (based on load forecast) are comprised of hourly energy blocks with 20-minute ramps between hours; the ramping process begins 10 minutes before the end of each hour. Hour-ahead adjustments are made to account for forecact errors Additional adjustments are conducted over regular intervals (5-15 minutes) to track changes in actual load, i.e., load following. Finally, adjustments are made at the sub-minute level to reduce the difference between the actual load and the real-time generation schedule. This must be matched by AGC to maintain system frequency.

ILLUSTRATION OF REGULATION AND LOAD FOLLOWING Load following is the difference between 10-minute interval average and 60-minute average (both with ramps) of load, depicting the variation of load within the hour at a 10-minute time scale. Load Following = [real-time schedule] [hourly schedule] Regulation = [actual load] [ real-time schedule] Note that the regulation ramps (i.e. slopes) are significantly higher than those of load following

ASSESSING ADEQUACY OF RAMPING CAPABILITY Insufficient ramping capability is identified when the ramp requirements exceed generation fleet ramping limits. The figure below illustrates how such a deficiency could occur: the area in red highlights the magnitude and duration of the interval when regulation ramp requirements exceed fleet capability. More units and capacity are needed if composite unit ramping capability is insufficient,

GENERATION FLEET RAMPING CAPABILITY The individual ramping capability of each unit can be combined to calculate total ramping capability of the entire generation fleet. The top figure illustrates the composite ramping capability of the entire generation fleet. The maximum available system ramping capability versus duration is derived from the angles of the red dotted line and time axis. The result is illustrated in the bottom figure.

GENERATOR CYCLING AND MOVEMENTS Generators providing load following and regulation services need to move up or down frequently to balance load with generation. Two effective metrics* that have been proposed to quantitatively evaluate the cycling and movements (i.e., wear and tear) of conventional generators for providing balancing services include 1. Mileage (MW) and number of direction changes in balancing service (load following and regulation); 2. Ramp (or half-cycle) analysis: Half-cycle ramp rate = ratio between half-cycle magnitude and half-cycle duration Half-cycle magnitude Half-cycle duration

SYSTEM MONITORING & CONTROL Structure of a WAMPAC The possibility of measuring synchronized voltage and current phasors using GPS/GIS has led to new innovative ways of monitoring, protecting, and controlling power systems. Structure of a PMU

END!