Supplementary file S1 Individual co-plot of V-slope and lactate curve

Similar documents
Cardio Coach CO2 Test Results

d / cm t 2 / s 2 Fig. 3.1

Figure 1: (a) cables with alligator clips and (b) cables with banana plugs.

Bistable Rotary Solenoid

Impulse, Momentum, and Energy Procedure

Lab 9 AC & Stepper Motors

ELEN 236 DC Motors 1 DC Motors

Lab 2 Electrical Measurements and Ohm s Law

ELECTRIC CARTRIDGES ELECTRO-PROPORTIONAL VALVES

How to Repair and Calibrate a Stuck Speedometer

CHAIN EFFICIENCY vs LOAD

Heating Methods. Reflux and Distillation

ML Maximum Power Point Tracking (MPPT) Series ML2420-ML2430-ML2440 Solar Charge and Discharge Controller

CORONA ER ELECTRONIC METER MULTI-JET

Combustion Performance

Initial each page: 1

TR3A Control Head Turn Signal Mechanism Craig Landrum Jan 4,2009

Physics Experiment 9 Ohm s Law

Performance Test STUDY

Horizontal Alignment

Self-Propelled Oil Droplets Consuming Fuel Surfactant

Additional file 3 Contour plots & tables

Basics of Electronic Indicators

Faraday's Law of Induction

Tork Hand Towel Centerfeed Dispenser: M23 System: 93T (smoke) Dispenser Dimensions HxWxD (Inches): x x 10 (32.39 x x 25.

2 Dynamics Track User s Guide: 06/10/2014

Objective: Students will investigate rate of change (slope) using spring data from RC cars.

Manual Supplement. Manual Title: BT510 Users Supplement Issue: 1 Print Date: May 2014 Issue Date: 3/15 Revision/Date: Page Count: 7

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

BMW E61 Hydraulic Pump replacement instructions

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Section 6H.01 Typical Applications

Market Monitoring Update

AshSPEC Dual Fuel pump control module Installation & users manual

University of TN Chattanooga Physics 1040L 8/28/2012

Ignition Coil Current Waveforms 2007 Honda Accord SE 4CYL

Combined Ventilation Controller RVWS-T-113HA

Short Manual SRM - Ergometer

INTERMEDIATE PROGRAMMING LESSON

Permanent Magnet DC Motor Operating as a Generator

Speed Workshop. In this workshop we will be covering: a. Average speed b. Units c. Relative Speeds d. Distance/time graphs

Heat Engines Lab 12 SAFETY

PT-150 PLUG-IN THERMAL RELAY WITH SNAP-ACTION BACK CONTACT *****************

Stress/Strain Apparatus AP-8214

Exam Review. 1. The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line.

Memorial University of Newfoundland Faculty of Engineering and Applied Science

Land Transport Rule Omnibus Amendment 2013

Product Loss During Retail Motor Fuel Dispenser Inspection

Supplementary file related to the paper titled On the Design and Deployment of RFID Assisted Navigation Systems for VANET

Exercise 2. Discharge Characteristics EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Cutoff voltage versus discharge rate

Flexible Heaters. Silicone Rubber Heaters

SAN FELIPE: Step by Step Pack 8

Q1. To get a bobsleigh moving quickly, the crew push it hard for a few metres and then jump in.

ATTEND Analytical Tools To Evaluate Negotiation Difficulty

DHANALAKSHMI COLLEGE OF ENGINEERING MANIMANGALAM. TAMBARAM, CHENNAI B.E. ELECTRICAL AND ELECTRONICS ENGINEERING

Heating Comparison of Radial and Bias-Ply Tires on a B-727 Aircraft

The Perkin Elmer pressure and vacuum cosine air pressure regulators. telescope on 31 October and 1 November 1989.

PowerControl VI: Getting Started May 4th

Assignment 4:Rail Analysis and Stopping/Passing Distances

Battery Capacity Versus Discharge Rate

TECHNICAL NOTE. NADS Vehicle Dynamics Typical Modeling Data. Document ID: N Author(s): Chris Schwarz Date: August 2006

CHAPTER 13 MAGNETIC EFFECTS OF ELECTRIC CURRENT

WindLab TM Wind Turbine Power System Sample Laboratory Procedure Manual

The Magnetic Field in a Slinky

Welcome and enjoy tuning your Manitou ABS+ Compression Damping System! Purposefully engineered to raise your expectations.

STATE ND PROJECT NO. CP 0883 (14) & CP 1152 (14) SHEET NO. TOTAL SHEETS 9 31 SIGN NUMBER SIGN SIZE DESCRIPTION AMOUNT REQUIRED UNITS PER AMOUNT UNITS

Permanent Magnet DC Motor

INSTRUCTIONS. seconds. the tween the end of the bearing screw and the. top of the shaft. The moving contact is a small silver hemisphere

ABS. Prof. R.G. Longoria Spring v. 1. ME 379M/397 Vehicle System Dynamics and Control

Mr. Freeze QUALITATIVE QUESTIONS

Newton s First Law. Evaluation copy. Vernier data-collection interface

Installation design data for the 500SFK series fuse

Wheelchair Accommodation

TABLE 4.1 POPULATION OF 100 VALUES 2

Appenidix E: Freewing MAE UAV analysis

Instruction of connection and programming of the VECTOR controller

On Control Strategies for Wind Turbine Systems

Rhino-Rack Toyota Prado 2 Bar Aero Roof Rack System (RSP23)

% Mike Scott % HW2 Spring 02 % Solution Set % MATLAB script. % MOSFET MODELING % Questions 1-4. % Vector of lengths (in um) L = [

Physiologic Comparison of Yamaha JWII Power Assisted and Traditional Manual Wheelchair Propulsion

Laboratory 8: Induction and Faraday s Law

Neuron, volume 61 Supplemental Data

WB 23 & WB 27. High-Speed Eddy-Current Dynamometers WB 23 & WB 27. Features. Description. Operating principles

TurboGen TM Gas Turbine Electrical Generation System Sample Lab Experiment Procedure

Lab #3 - Slider-Crank Lab

Evolve LED Roadway Lighting

Fuel Strategy (Exponential Decay)

Experiment 6: Induction

C-Lube Linear Way MLV MLV

Concepts of One Dimensional Kinematics Activity Purpose

RSP17 Rhino Toyota landcruiser 200 series Three Crossbar System.

Anti-Cog Technology. Introduction

Generator Efficiency Optimization at Remote Sites

FARADAY S LAW ELECTROMAGNETIC INDUCTION

5035 vs. NH Boomer 50. Mahindra USA, Inc.

When the points on the graph of a relation lie along a straight line, the relation is linear

High voltage current limiting Fuse links type CEF

MEMORANDUM. Observational survey of car seat use, 2017

Using Statistics To Make Inferences 6. Wilcoxon Matched Pairs Signed Ranks Test. Wilcoxon Rank Sum Test/ Mann-Whitney Test

Rhino-Rack Toyota Prado 3 Bar Heavy Duty System (RLCP23)

Transcription:

Supplementary file S1 Individual co-plot of V-slope and lactate curve Figure legend Open triangles represent resting and warm-up lactate values. Each triangle is the mean of 2 values; the mean first and second lactate values were not significantly different from each other either during rest or warm-up. Open squares represent ramp exercise values. Arrows with (*) represent lactate break points that occurred before the stable V-slope was established (transition phase). Circles represent V-slope data points. Those during the transition phase (due to tissue CO 2 storage) are depicted in blue and those on the S1 in red. The determination of VT was made with difficulty in 2 cases (#12 and #2); A slow upward hump towards the R=1 line following short S1 was taken as a threshold. The determination of LT was made with difficulty in 1 case (#12). In this case, changes in the V-slope and lactate curve were both remarkably small. Typical examples of larger CO 2 storage effect and long S1 are #6 and #16. Examples of less CO 2 storage effect with relatively long S1 are #8 and #18. In some cases, a long stable S1 is not maintained, probably because an interval between the CO 2 storage effect (transit phase) and the approach towards R=1 (VT) is too short (cases #5, #14, #15, #19, and #2).

2 1 Case #1 Protocol: 11watt min -1 9 8 15 7 6 VCO 2 (ml min -1 ) 1 5 Lactate (mmol L -1 ) 4 VT 3 5 2 1 LT1, 2 5 1 15 2 VO 2 (ml min -1 )

15 1 Case #2 Protocol: 6watt min -1 9 8 1 7 6 VCO 2 (ml min -1 ) 5 Lactate (mmol L -1 ) 4 5 VT 3 2 LT1(*) LT2 5 1 15 VO 2 (ml min -1 ) 1

15 1 Case #3 Protocol: 8watt min -1 9 8 1 7 6 VCO 2 (ml min -1 ) 5 Lactate (mmol L -1 ) VT 4 5 3 2 LT1(*) LT2 5 1 15 VO 2 (ml min -1 ) 1

25 1 Case #4 Protocol: 14watt min -1 9 2 8 7 15 6 VCO 2 (ml min -1 ) 5 Lactate (mmol L -1 ) 1 4 VT 3 5 2 LT1(*) LT2 5 1 15 2 25 VO 2 (ml min -1 ) 1

2 1 Case #5 Protocol: 9watt min -1 9 8 15 7 6 VCO 2 (ml min -1 ) 1 5 Lactate (mmol L -1 ) 4 5 VT 3 2 1 LT1, 2 5 1 15 2 VO 2 (ml min -1 )

3 25 Case #6 Protocol: 17watt min -1 1 9 8 2 7 6 VCO 2 (ml min -1 ) 15 5 Lactate (mmol L -1 ) 4 1 VT 3 5 2 LT1, 2 5 1 15 2 25 3 VO 2 (ml min -1 ) 1

15 1 Case #7 Protocol: 7watt min -1 9 8 1 7 6 VCO 2 (ml min -1 ) 5 Lactate (mmol L -1 ) 4 5 VT 3 2 1 LT1, 2 5 1 15 VO 2 (ml min -1 )

25 1 Case #8 Protocol: 16watt min -1 9 2 8 7 15 6 VCO 2 (ml min -1 ) 5 Lactate (mmol L -1 ) 1 4 5 VT 3 2 LT1, 2 1 5 1 15 2 25 VO 2 (ml min -1 )

25 1 Case #9 Protocol: 13watt min -1 9 2 8 7 15 6 VCO 2 (ml min -1 ) 5 Lactate (mmol L -1 ) 1 4 VT 3 5 2 LT1,2(*) 5 1 15 2 25 VO 2 (ml min -1 ) 1

2 1 Case #1 Protocol: 1watt min -1 9 8 15 7 6 VCO 2 (ml min -1 ) 1 5 Lactate (mmol L -1 ) 4 VT 3 5 2 1 LT1, 2 5 1 15 2 VO 2 (ml min -1 )

25 1 Case #11 Protocol: 13watt min -1 9 2 8 7 15 6 VCO 2 (ml min -1 ) 5 Lactate (mmol L -1 ) 1 4 5 VT 3 2 1 LT1, 2(*) 5 1 15 2 25 VO 2 (ml min -1 )

2 1 Case #12 Protocol: 1watt min -1 9 8 15 7 6 VCO 2 (ml min -1 ) 1 5 Lactate (mmol L -1 ) 4 VT 3 5 2 LT1 LT2 1 5 1 15 2 VO 2 (ml min -1 )

15 1 Case #13 Protocol: 8watt min -1 9 8 1 7 6 VCO 2 (ml min -1 ) VT 5 Lactate (mmol L -1 ) 4 5 3 2 1 LT1, 2(*) 5 1 15 VO 2 (ml min -1 )

2 1 Case #14 Protocol: 1watt min -1 9 8 15 7 6 VCO 2 (ml min -1 ) 1 5 Lactate (mmol L -1 ) 4 3 5 VT 2 1 LT1, 2 5 1 15 2 VO 2 (ml min -1 )

15 1 Case #15 Protocol: 9watt min -1 9 8 1 7 6 VCO 2 (ml min -1 ) 5 Lactate (mmol L -1 ) 4 5 3 VT 2 LT1(*) LT2 5 1 15 VO 2 (ml min -1 ) 1

2 1 Case #16 Protocol: 1watt min -1 9 8 15 7 6 VCO 2 (ml min -1 ) 1 VT 5 4 Lactate (mmol L -1 ) 3 5 2 LT1(*) LT2 5 1 15 2 VO 2 (ml min -1 ) 1

25 1 Case #17 Protocol: 11watt min -1 9 2 8 7 15 6 VCO 2 (ml min -1 ) 1 VT 5 4 Lactate (mmol L -1 ) 3 5 2 LT1, 2(*) 5 1 15 2 25 VO 2 (ml min -1 ) 1

15 1 Case #18 Protocol: 7watt min -1 9 8 1 7 6 VCO 2 (ml min -1 ) 5 Lactate (mmol L -1 ) 4 5 VT 3 2 LT1, 2 5 1 15 VO 2 (ml min -1 ) 1

2 1 Case #19 Protocol: 9watt min -1 9 8 15 7 6 VCO 2 (ml min -1 ) 1 5 Lactate (mmol L -1 ) 4 3 5 VT 2 1 LT1, 2 5 1 15 2 VO 2 (ml min -1 )

2 1 Case #2 Protocol: 11watt min -1 9 8 15 7 6 VCO 2 (ml min -1 ) 1 5 Lactate (mmol L -1 ) 4 3 5 VT 2 1 LT1(*) LT2 5 1 15 2 VO 2 (ml min -1 )

Supplementary file S2 Individual ΔVO 2 /Δwork rate graph

3 VO 2 vs. work rate slope Case #1 25 2 15 1 Case #1 Protocol [watt min -1 ] ΔVO 2 /Δwork rate [ml min -1 watt -1 ] 5 Day1 25 1.8 Day2 11 1.3 5 1 15 2 25 work rate [watt]

3 VO 2 vs. work rate slope Case #2 25 2 15 1 Case #2 Protocol [watt min -1 ] ΔVO 2 /Δwork rate [ml min -1 watt -1 ] 5 Day1 25 12.3 Day2 6 11.5 5 1 15 2 25 work rate [watt]

25 VO 2 vs. work rate slope Case #3 2 15 1 Case #3 Protocol [watt min -1 ] ΔVO 2 /Δwork rate [ml min -1 watt -1 ] 5 Day1 25 11.5 Day2 8 11.8 5 1 15 2 work rate [watt]

35 VO 2 vs. work rate slope Case #4 3 25 2 15 1 Case #4 Protocol [watt min -1 ] ΔVO 2 /Δwork rate [ml min -1 watt -1 ] Day1 25 11. 5 Day2 14 11.3 5 1 15 2 25 3 work rate [watt]

3 VO 2 vs. work rate slope Case #5 25 2 15 1 Case #5 Protocol [watt min -1 ] ΔVO 2 /Δwork rate [ml min -1 watt -1 ] 5 Day1 25 1.6 Day2 9 11. 5 1 15 2 25 work rate [watt]

35 VO 2 vs. work rate slope Case #6 3 25 2 15 1 Case #6 Protocol [watt min -1 ] ΔVO 2 /Δwork rate [ml min -1 watt -1 ] Day1 25 11.2 5 Day2 17 11.6 5 1 15 2 25 3 work rate [watt]

25 VO 2 vs. work rate slope Case #7 2 15 1 Case #7 Protocol [watt min -1 ] ΔVO 2 /Δwork rate [ml min -1 watt -1 ] 5 Day1 25 1.2 Day2 7 1.5 5 1 15 2 25 work rate [watt]

35 VO 2 vs. work rate slope Case #8 3 25 2 15 1 Case #8 Protocol [watt min -1 ] ΔVO 2 /Δwork rate [ml min -1 watt -1 ] Day1 25 1.7 5 Day2 16 1.4 5 1 15 2 25 3 work rate [watt]

3 VO 2 vs. work rate slope Case #9 25 2 15 1 Case #9 Protocol [watt min -1 ] ΔVO 2 /Δwork rate [ml min -1 watt -1 ] 5 Day1 25 9.9 Day2 13 1.5 5 1 15 2 25 3 work rate [watt]

3 VO 2 vs. work rate slope Case #1 25 2 15 1 Case #1 Protocol [watt min -1 ] ΔVO 2 /Δwork rate [ml min -1 watt -1 ] 5 Day1 25 12.1 Day2 1 11.2 5 1 15 2 25 work rate [watt]

35 VO 2 vs. work rate slope Case #11 3 25 2 15 1 Case #11 Protocol [watt min -1 ] ΔVO 2 /Δwork rate [ml min -1 watt -1 ] Day1 25 11.2 5 Day2 13 13.3 5 1 15 2 25 3 work rate [watt]

45 VO 2 vs. work rate slope 4 Case #12 35 3 25 2 15 1 5 Case #12 Protocol [watt min -1 ] ΔVO 2 /Δwork rate [ml min -1 watt -1 ] Day1 25 11.5 Day2 1 1.5 5 1 15 2 25 3 35 work rate [watt]

3 VO 2 vs. work rate slope Case #13 25 2 15 1 Case #13 Protocol [watt min -1 ] ΔVO 2 /Δwork rate [ml min -1 watt -1 ] 5 Day1 25 1.6 Day2 8 12.4 5 1 15 2 25 3 work rate [watt]

3 VO 2 vs. work rate slope Case #14 25 2 15 1 Case #14 Protocol [watt min -1 ] ΔVO 2 /Δwork rate [ml min -1 watt -1 ] 5 Day1 25 11.2 Day2 1 12.1 5 1 15 2 25 work rate [watt]

25 VO 2 vs. work rate slope Case #15 2 15 1 Case #15 Protocol [watt min -1 ] ΔVO 2 /Δwork rate [ml min -1 watt -1 ] 5 Day1 25 9.5 Day2 9 11.6 5 1 15 2 25 work rate [watt]

25 VO 2 vs. work rate slope Case #16 2 15 1 Case #16 Protocol [watt min -1 ] ΔVO 2 /Δwork rate [ml min -1 watt -1 ] 5 Day1 25 9.4 Day2 1 1.6 5 1 15 2 25 work rate [watt]

35 VO 2 vs. work rate slope Case #17 3 25 2 15 1 Case #17 Protocol [watt min -1 ] ΔVO 2 /Δwork rate [ml min -1 watt -1 ] Day1 25 11. 5 Day2 11 13.1 5 1 15 2 25 3 work rate [watt]

2 VO 2 vs. work rate slope Case #18 15 1 5 Case#18 Protocol [watt min -1 ] ΔVO 2 /Δwork rate [ml min -1 watt -1 ] Day1 25 9.1 Day2 7 11.7 5 1 15 2 work rate [watt]

35 VO 2 vs. work rate slope Case #19 3 25 2 15 1 Case#19 Protocol [watt min -1 ] ΔVO 2 /Δwork rate [ml min -1 watt -1 ] Day1 25 1. 5 Day2 9 11.2 5 1 15 2 25 3 work rate [watt]

3 VO 2 vs. work rate slope Case #2 25 2 15 1 Case#2 Protocol [watt min -1 ] ΔVO 2 /Δwork rate [ml min -1 watt -1 ] 5 Day1 25 1.5 Day2 11 12.7 5 1 15 2 25 work rate [watt]

Supplementary file S3 Changes in the V-slope VT induced by the ramp shift from the medium to slow ramp Figure legend The red arrow indicates VT.

VCO2 [ml min -1 ] VCO2 [ml min -1 ] Case #1 4 35 3 25 2 15 1 5 5 1 15 2 25 3 35 4 4 35 3 25 2 15 1 5 5 1 15 2 25 3 35 4

VCO2 [ml min -1 ] VCO2 [ml min -1 ] Case #2 35 3 25 2 15 1 5 35 5 1 15 2 25 3 35 3 25 2 15 1 5 5 1 15 2 25 3 35

VCO2 [ml min -1 ] VCO2 [ml min -1 ] Case #3 3 25 2 15 1 5 3 5 1 15 2 25 3 25 2 15 1 5 5 1 15 2 25 3

VCO2 [ml min -1 ] VCO2 [ml min -1 ] Case #4 35 3 25 2 15 1 5 35 5 1 15 2 25 3 35 3 25 2 15 1 5 5 1 15 2 25 3 35

VCO2 [ml min -1 ] VCO2 [ml min -1 ] Case #5 35 3 25 2 15 1 5 35 5 1 15 2 25 3 35 3 25 2 15 1 5 5 1 15 2 25 3 35

VCO2 [ml min -1 ] VCO2 [ml min -1 ] Case #6 35 3 25 2 15 1 5 35 5 1 15 2 25 3 35 3 25 2 15 1 5 5 1 15 2 25 3 35

VCO2 [ml min -1 ] VCO2 [ml min -1 ] Case #7 3 25 2 15 1 5 3 5 1 15 2 25 3 25 2 15 1 5 5 1 15 2 25 3

VCO2 [ml min -1 ] VCO2 [ml min -1 ] Case #8 35 3 25 2 15 1 5 35 5 1 15 2 25 3 35 3 25 2 15 1 5 5 1 15 2 25 3 35

VCO2 [ml min -1 ] VCO2 [ml min -1 ] Case #9 3 25 2 15 1 5 3 5 1 15 2 25 3 25 2 15 1 5 5 1 15 2 25 3

VCO2 [ml min -1 ] VCO2 [ml min -1 ] Case #1 35 3 25 2 15 1 5 35 5 1 15 2 25 3 35 3 25 2 15 1 5 5 1 15 2 25 3 35

VCO2 [ml min -1 ] VCO2 [ml min -1 ] Case #11 35 3 25 2 15 1 5 35 5 1 15 2 25 3 35 3 25 2 15 1 5 5 1 15 2 25 3 35

VCO2 [ml min -1 ] VCO2 [ml min -1 ] Case #12 5 45 4 35 3 25 2 15 1 5 5 1 15 2 25 3 35 4 45 5 5 45 4 35 3 25 2 15 1 5 5 1 15 2 25 3 35 4 45 5

VCO2 [ml min -1 ] VCO2 [ml min -1 ] Case #13 35 3 25 2 15 1 5 35 5 1 15 2 25 3 35 3 25 2 15 1 5 5 1 15 2 25 3 35

VCO2 [ml min -1 ] VCO2 [ml min -1 ] Case #14 3 25 2 15 1 5 3 5 1 15 2 25 3 25 2 15 1 5 5 1 15 2 25 3

VCO2 [ml min -1 ] VCO2 [ml min -1 ] Case #15 3 25 2 15 1 5 3 5 1 15 2 25 3 25 2 15 1 5 5 1 15 2 25 3

VCO2 [ml min -1 ] VCO2 [ml min -1 ] Case #16 3 25 2 15 1 5 3 5 1 15 2 25 3 25 2 15 1 5 5 1 15 2 25 3

VCO2 [ml min -1 ] VCO2 [ml min -1 ] Case #17 35 3 25 2 15 1 5 35 5 1 15 2 25 3 35 3 25 2 15 1 5 5 1 15 2 25 3 35

VCO2 [ml min -1 ] VCO2 [ml min -1 ] Case #18 2 15 1 5 2 5 1 15 2 15 1 5 5 1 15 2

VCO2 [ml min -1 ] VCO2 [ml min -1 ] Case #19 35 3 25 2 15 1 5 35 5 1 15 2 25 3 35 3 25 2 15 1 5 5 1 15 2 25 3 35

VCO2 [ml min -1 ] VCO2 [ml min -1 ] Case #2 35 3 25 2 15 1 5 35 5 1 15 2 25 3 35 3 25 2 15 1 5 5 1 15 2 25 3 35