Dynamic and static ROPS tests on modern tractors

Similar documents
Definition of Unambiguous Criteria to Evaluate Tractor Rops Equivalence

XVII th World Congress of the International Commission of Agricultural and Biosystems Engineering (CIGR)

Evaluation of the safety volume to protect t the driver during rollover of

ISO 5700 INTERNATIONAL STANDARD

The Driver s Protection in Case of. Self-Propelled Machinery Roll-Over

Concept and design of the ROPS for a small articulated tractor for extreme sloped vineyards

Non-Linear Implicit Analysis of Roll over Protective Structure OSHA STANDARD (PART )

CODE 4 OECD STANDARD CODE FOR THE OFFICIAL TESTING OF PROTECTIVE STRUCTURES ON AGRICULTURAL AND FORESTRY TRACTORS (STATIC TEST)

CODE 6 July 2012 CODE 6

CODE 4 OECD STANDARD CODE FOR THE OFFICIAL TESTING OF PROTECTIVE STRUCTURES ON AGRICULTURAL AND FORESTRY TRACTORS (STATIC TEST)

NUMERICAL ANALYSIS OF IMPACT BETWEEN SHUNTING LOCOMOTIVE AND SELECTED ROAD VEHICLE

CHECK AND CALIBRATION PROCEDURES FOR FATIGUE TEST BENCHES OF WHEEL

CEMA position on draft braking regulation, 4 June 2008 ENTR/F1/ /rev16

CODE 10 OECD STANDARD CODE FOR THE OFFICIAL TESTING OF FALLING OBJECT PROTECTIVE STRUCTURES ON AGRICULTURAL AND FORESTRY TRACTORS

Improvements of Existing Overhead Lines for 180km/h operation of the Tilting Train

PREDICTION OF FUEL CONSUMPTION

Actions undertaken in France for the adaptation of tractors

STATIC AND FATIGUE ANALYSIS OF LEAF SPRING-AS A REVIEW

Official Journal of the European Union

Vibration Measurement and Noise Control in Planetary Gear Train

AN INVESTIGATION AND COMPARISON INTO OPERATOR FIELD OF VISION FOR MODERN TRACTOR CABS

OECD Standard Codes for the Official Testing of Agriculture and Forestry Tractors

Study on Braking Energy Recovery of Four Wheel Drive Electric Vehicle Based on Driving Intention Recognition

Special edition paper

Assemblies for Parallel Kinematics. Frank Dürschmied. INA reprint from Werkstatt und Betrieb Vol. No. 5, May 1999 Carl Hanser Verlag, München

SUMMARY AND CONCLUSIONS

DEPLOYMENT STRATEGIES FOR CLEAN AND FUEL EFFICIENT VEHICLES: EFFECTIVENESS OF INFORMATION AND SENSITIZATION IN INFLUENCING PURCHASE BEHAVIOUR

Abaqus Technology Brief. Prediction of B-Pillar Failure in Automobile Bodies

Test rig for rod seals contact pressure measurement

Finite Element Modeling and Analysis of Crash Safe Composite Lighting Columns, Contact-Impact Problem

POLICY POSITION ON THE PEDESTRIAN PROTECTION REGULATION

Profi le rail guides LLR

IMPLEMENTATION OF DIGITAL TACHOGRAPH SYSTEM IN EUROPEAN UNION. Marcin Rychter. Motor Transport Institute, Poland. 1. Introduction

DIRECTIVE 2009/59/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 13 July 2009 on rear-view mirrors for wheeled agricultural or forestry tractors

*Friedman Research Corporation, 1508-B Ferguson Lane, Austin, TX ** Center for Injury Research, Santa Barbara, CA, 93109

LESSON Transmission of Power Introduction

ISO INTERNATIONAL STANDARD. Bi-directional and multi-directional fork-lift trucks Stability tests

Temperature Field in Torque Converter Clutch

EEVC Report to EC DG Enterprise Regarding the Revision of the Frontal and Side Impact Directives January 2000

MULTI-PARAMETER OPTIMIZATION OF BRAKE OF PISTON

ROLL-OVER ACCIDENTS and ROPS IN ITALY

Study Of Static And Frequency Responsible Analysis Of Hangers With Exhaust System

Chapter 2 Analysis on Lock Problem in Frontal Collision for Mini Vehicle

Analysis and evaluation of a tyre model through test data obtained using the IMMa tyre test bench

Relevant friction effects on walking machines

PETROLEUM EQUIPMENT & TECHNOLOGY Magazine, July 1998

Transport System. Telematics. Functioning of Digital Tachograph System in Country of UE

Devices to Assist Drivers to Comply with Speed Limits

WLTP for fleet. How the new test procedure affects the fleet business

Finite Element and Experimental Validation of Stiffness Analysis of Precision Feedback Spring and Flexure Tube of Jet Pipe Electrohydraulic Servovalve

The Testing and Data Analyzing of Automobile Braking Performance. Peijiang Chen

FOR INTERNAL WORKING PURPOSES ONLY Version 7.2 (04/06/2012)

Speed Limit on Railway Curves. (Use of SuperElevation on Railways)

Road safety time for Europe to shift gears

Finite Element Analysis of Bus Rollover Test in Accordance with UN ECE R66 Standard

Research on Collision Characteristics for Rear Protective Device of Tank Vehicle Guo-sheng ZHANG, Lin-sen DU and Shuai LI

Design and Front Impact Analysis of Rollcage

Development of Dynamic Calibration Machine for Pressure Transducers

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: METHODOLOGY Design Parameter [250]

Transmission Error in Screw Compressor Rotors

ISO 8379 INTERNATIONAL STANDARD. Rough terrain trucks Stability tests. Chariots élévateurs tous terrains à fourches Essais de stabillité

A comparison of the impacts of Euro 6 diesel passenger cars and zero-emission vehicles on urban air quality compliance

SUMMARY OF THE IMPACT ASSESSMENT

EXTRACT of chapter XXXIV coupling devices (version of ) ANNEX XXXIV Requirements on mechanical couplings

ROAD SAFETY RESEARCH, POLICING AND EDUCATION CONFERENCE, NOV 2001

Australian Standard. Tractors Roll-over protective structures Criteria and tests. Part 1: Conventional tractors

ACEA Tyre Performance Study

Informal document No 7 (81st GRSG, 8-11 October 2001, agenda item 8.2.) GLOBAL COMPARISON CHART (CLEPA) LAMINATED WINDSCREENS

Simulating Rotary Draw Bending and Tube Hydroforming

MARINE FOUR-STROKE DIESEL ENGINE CRANKSHAFT MAIN BEARING OIL FILM LUBRICATION CHARACTERISTIC ANALYSIS

Improving Roadside Safety by Computer Simulation

DEVELOPMENT OF A DRIVING CYCLE FOR BRASOV CITY

University of Southern Queensland Faculty of Engineering and Surveying

CEMA position on the draft Regulation on braking for tractors & the need for a balanced regulatory approach on ABS. 03 July 2013

Testing Of Fluid Viscous Damper

Seismic Capacity Test of Overhead Crane under Horizontal and Vertical Excitation - Element Model Test Results on Nonlinear Response Behavior-

NUMERICAL ANALYSIS OF LOAD DISTRIBUTION IN RAILWAY TRACK UNDER WHEELSET

Influence of Cylinder Bore Volume on Pressure Pulsations in a Hermetic Reciprocating Compressor

Proposal for a DECISION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

A PORTABLE SYSTEM FOR THE CALIBRATIONOF TRANSDUCERS AND TORQUE WRENCHES: THE CALIBRATION BELL

Vehicle Safety Risk Assessment Project Overview and Initial Results James Hurnall, Angus Draheim, Wayne Dale Queensland Transport

Study of intake manifold for Universiti Malaysia Perlis automotive racing team formula student race car

A STUDY OF THE CENTRIFUGAL COMPRESSOR DISCHARGE PIPELINE CONSTRAINED OSCILLATION. KIRILL SOLODYANKIN*, JIŘÍ BĚHAL ČKD KOMPRESORY, a.s.

Design & Development of Regenerative Braking System at Rear Axle

MODELING SUSPENSION DAMPER MODULES USING LS-DYNA

Development of Two-stage Electric Turbocharging system for Automobiles

Racing Tires in Formula SAE Suspension Development

Modeling and Analysis of Tractor Trolley Axle Using Ansys

Proceedings of the World Congress on Engineering 2008 Vol II WCE 2008, July 2-4, 2008, London, U.K.

Low Sulphur Fuel Oils Preliminary Estimated Costs to Canadian Industry based on European Data

INFLUENCE OF TEMPERATURE ON THE PERFORMANCE TOOTHED BELTS BINDER MAGNETIC

Petition for Rulemaking; 49 CFR Part 571 Federal Motor Vehicle Safety Standards; Rear Impact Guards; Rear Impact Protection

Experimental investigations of pressure pulsations damping in screw compressor system

PREDICTION OF PISTON SLAP OF IC ENGINE USING FEA BY VARYING GAS PRESSURE

Influence of Coupler and Buffer on Dynamics Performance of Heavy Haul Locomotive

REGULATION No. 94 (Frontal collision) Proposal for draft amendments. Proposal submitted by France

ENGINEERING FOR RURAL DEVELOPMENT Jelgava,

Design and Analysis of a Novel Cage Wheel with Hydraulically Actuated Links

Three-Dimensional Center of Gravity Detection for Trucks Hauling Marine Containers

L 24/30 Official Journal of the European Union

Transcription:

Ref: C0373 Dynamic and static ROPS tests on modern tractors Bruno Franceschetti, Valda Rondelli, Adriano Guarnieri and Enrico Capacci, Department of Agricultural Food and Sciences, University of Bologna, Viale G. Fanin 50, 40127 Bologna, Italy Abstract A Roll-Over Protective Structure (ROPS) is a highly effective engineering safety control that can avoid or reduce the severity of injuries in the event of tractor overturns. Strength ROPS procedures were introduced in Europe in the 1950s. These tests require a level of energy based on the tractor reference mass and consider the driver s clearance zone protection. The Code 6 of the Organisation for Economic Co-operation and Development (OECD) is a consensus performance standard established for agricultural front ROPS fitted on narrowtrack tractors. These tractors ROPS requires more attention because the clearance zone is reduced to preserve the normal operation in orchard and vineyard. Code 6 foresees dynamic and static procedures for the ROPS tests. Dynamic procedure is based on a 2000 kg mass oscillating and impacting the ROPS, instead static procedure takes into account a slow rate of load application until the energy level is satisfied. In the current study, according to the OECD Code 6, laboratory dynamic and static tests were carried out on a foldable ROPS fitted on a modern tractor. The work was focused on the evaluation of the ROPS behaviour when stressed dynamically and statically. Dynamic test was carried out on the tractor complete of wheels and attached to the ground, so that the ROPS and the tyres absorbed most of the impact energy. Otherwise, static test was carried out on the ROPS fitted on the tractor chassis without the contribution of tyres; the tractor axels were fixed on the ground and the whole energy was absorbed by the ROPS. Tests results indicate that the deflection obtained with the dynamic testing procedure is higher than that of the static one. The results seem to suggest that the dynamic testing procedure is more conservative than the static one. It could be advisable to extend the comparison between dynamic and static procedures to other types of modern ROPS so as to verify if differences continue to be observed. Keywords: ROPS, tractor, rollover, clearance zone Nomenclature M reference mass (1478 kg in the tested tractor) B minimum overall width of the tractor (1.375 m in the tested tractor) B 6 width of protective structure between the right and left points of impact (1.095 m in the tested tractor) m weight of the pendulum block (2000 kg) g gravitational acceleration (9.81 m s -2 ) F OECD Code 6 crushing forces (N) H height of fall of the pendulum block (mm) E OECD Code 6 energy input (J) v velocity of the pendulum block (m s -1 ) Proceedings International Conference of Agricultural Engineering, Zurich, 06-10.07.2014 www.eurageng.eu 1/8

1 Introduction The tractor is the machine mostly used in agriculture and, due to its wide diffusion, is a major cause of injury for the operator (Harris et al., 2010). The overturning, and specifically the lateral rollover, is the most serious and frequent accident that may occur in field. A solution to this problem, which has been adopted worldwide, has been to provide a passive protection during the rollover by fitting Roll-Over Protective Structures (ROPS). Tractors are normally used in field operation in farms and the variable conditions (such as slopes, slippery surfaces, drainage ditches, etc.) introduce the risk of instability, potentially leading to tractor rollover. Roll-Over Protective Structure (safety cab or frame), is the structure on a tractor the essential purpose of which is to avoid or limit risks to the driver resulting from rollover of the tractor during normal use. The ROPS is characterized by the provision of space for a "clearance zone" large enough to protect the driver when seated either inside the envelope of the structure or within a space bounded by a series of straight lines from the outer edges of the structure to any part of the tractor that might come into contact with flat ground and that is capable of supporting the tractor in that position if the tractor overturns (OECD Codes, 2014). Historically, before the widespread introduction of ROPS, tractor rollover caused the death of many tractor drivers each year; the risk of severe injury or fatality was very high (Chisholm, 1972; Moberg, 1964). Fortunately ROPS have long been recognised as an effective means to greatly reducing the likelihood of operator injury during overturning accident involving agricultural tractors (Springfeldt, 1996). However, the fixing of the ROPS on the tractor has changed considerably over the years (Rondelli et al., 2012). Having introduced as a mandatory requirement on agricultural tractors in Sweden in the late 1950s the ROPS fitting (Moberg, 1973), a similar ROPS approach followed in many countries during the subsequent decade. Development of relevant laboratory test criteria proceeded in parallel to ensure the adequacy of ROPS design for their intended purpose. The OECD test codes have been at the forefront of ROPS performance test criteria development for agricultural tractors, initially with the Code 3 (Dynamic test, OECD Code 3) from the 1960s and subsequently the Code 4 (Static test, OECD Code 4), introduced in the late 1970s. Codes 6 and 7 were developed for the narrow-track tractors (OECD Codes 6 and 7) in the early 1990s. All ROPS test criteria are based on a series of empirical formulae mainly referred to the tractor reference mass, to calculate the minimum level of strain energy. The ROPS must absorb under loading without the structure fails or infringes driver s "clearance zone". The dynamic procedure (Figure 1a) was developed by combining research results, testing activity and evaluation of real rollover accidents. As tractor power and mass increased during the late 1960s and early 1970s, it became evident that the dynamic test procedure had limitations, particularly concerning the testing difficulties for ROPS fitted on heavier vehicles (Moberg, 1973). Researchers in Germany, France, the UK, and the European Commission (EC) recognized certain limitation of this method (Schwanghart, 1978; Söhne & Schwanghart, 1978). In the mid 1970 static ROPS test criteria were adopted by the European Union (EU) and the OECD (Figure 1b). a. b. Figure 1: Tractor arrangement for dynamic test (a.) and static test (b.). Proceedings International Conference of Agricultural Engineering, Zurich, 06-10.07.2014 www.eurageng.eu 2/8

The Schwanghart s results (1978) were taken into account for drafting the new static code; he stated that on average during the dynamic tests, only 50% of the total energy supplied by the pendulum block was absorbed by the ROPS in the form of strain energy. Over the last 40 years ROPSs have made a major contribution to agricultural vehicle safety, even if it is worldwide accepted that it is impossible to protect the operator in all rollover instances. Consequently the ROPS test criteria have to ensure that the tested ROPS will provide "the highest reasonable probability of driver protection" in the event of rollover in "normal operations". The focus of the paper was to compare the behaviour of a ROPS fitted on a modern tractor when subjected to static and dynamic strength tests. 2 Materials and methods ROPS dynamic and static tests were carried out at the OECD Test Station of Bologna, Department of Agricultural Food and Sciences, University of Bologna. Three ROPSs were subjected to dynamic tests using the pendulum block and three ROPSs were subjected to static tests with a hydraulic cylinder loading almost "statically" the structure. Tests were performed using the Standard Loading Systems available at the Test Station. Load cells and linear displacement transducers were fitted to measure the loading force and ROPS deflection. 2.1 ROPS testing procedures The ROPS procedures considered are referred to front mounted ROPS on narrow-track wheeled agricultural tractors (OECD Code 6, 2014). During the ROPS tests no parts may intrude into the driver s clearance zone. A reduced clearance zone is provided for this ROPS type (Figure 2). Figure 2: Clearance zone according to OECD Code 6. In case of narrow track tractors fitted with front Roll-bar ROPS the strength procedures, are completed by two preliminary tests. The protective structure may only be subjected to the strength tests if both the Lateral Stability Test and the Non-Continuous Rolling Test have been satisfactorily completed. The sequence of strength tests for OECD Code 6 (Table 1) is as follows: 1. rear of the structure; 2. Crushing at the rear of the structure (Dynamic or Static test); 3. front of the structure; 4. side of the structure; 5. Crushing at the front of the structure (Dynamic or Static test). Proceedings International Conference of Agricultural Engineering, Zurich, 06-10.07.2014 www.eurageng.eu 3/8

Table 1: Sequence of codified tests. Sequence of strength tests rear of the structure Crushing at the rear of the structure front of the structure side of the structure Crushing at the front of the structure Dynamic procedure Static procedure The tractor Reference Mass (M (kg)) is the mass, selected by the manufacturer, used in formulae to determine the strength tests. With respect to the dynamic test, M defines the fall height of the pendulum block (H (mm)); instead in the static test, it defines the energy that an hydraulic cylinder has to inputs to the structure (E (J)) In both cases, M defines the value of crushing force (F (N)) also. The load static procedure is satisfied when the required energy (E) is absorbed by the ROPS; rather, the impact dynamic procedure is satisfied when the pendulum mass is pulled back so that the height of its center of gravity corresponds to the required height (H) and is dropped to impact the ROPS. The Reference Mass must not be less than the unballasted tractor mass and must be sufficient to ensure the Mass Ratio does not exceed 1.75, i.e. tractor Maximum Permissible Mass / tractor Reference Mass < 1.75. 2.2 Control, measurement and data acquisition instruments. The ROPS was fitted with sensors in order to acquire test data. ROPSs of same type were placed on the tractor and were subjected to the procedure of static loads and dynamic impacts. The control, measurement and data acquisition system is shown in Figure 3. Figure 3: Control, measurement and data acquisition system. Dynamic load cells and linear displacement transducers were used to acquire signals of force and deflection. The output signals from the sensors (Volt) were acquired by Voltage input modules fitted on the Data acquisition system (DAQ - National Instruments). A Com- Proceedings International Conference of Agricultural Engineering, Zurich, 06-10.07.2014 www.eurageng.eu 4/8

puter connected allowed to process data with dedicated software (LabView). The force signal was amplified before the DAQ by means of a charge amplifier (Kistler). In addition to this instrumentation, an high speed camera recorded the tests to better understand the dynamic phases. 3 Results and discussions Strength tests were carried out. The evaluation was based on the energy required in the OECD Code 6 (Table 2). The tractor instrumented and subjected to strength tests at the side of the ROPS structure is shown in Figure 4. Table 2: Comparison between dynamic and static procedures. Sequence of strength tests rear of the structure Crushing at the rear of the structure front of the structure side of the structure Crushing at the front of the structure Dynamic procedure Static procedure a. b. Figure 4: Lateral test provided for the OECD Code 6: a. Dynamic procedure, b. Static procedure. 3.1 Dynamic test The dynamic approach was an impact loading: a pendulum block impacted against the ROPS from the drop heights ( ). The height of the pendulum block with respect to the point of impact on the ROPS allowed to evaluate the initial potential energy (Table 2). The swing of the block causes a transformation of potential energy into kinetic energy. Consequently, knowing the velocity at the impact point, the kinetic energy available was calculated. The pendulum block, after the impact, decreased progressively the velocity Proceedings International Conference of Agricultural Engineering, Zurich, 06-10.07.2014 www.eurageng.eu 5/8

due to the contact with the ROPS, transferring energy and causing the deflection of the ROPS. To analyse the data the impact event was divided into three phases (Figure 5). Phase 1: Pendulum block before the free fall Phase 2: Pendulum block at the impact time Phase 3: Impact end, corresponding to the maximum deflection of the ROPS Figure 5: Dynamic impact phases. Figure 6: Force and deflection vs. time in the dynamic procedure. The strain energy in Phase 3, obtained on the basis of force and deflection acquired during the dynamic tests (Figure 6), was different compared to the energy values associated to the previous two phases. Friction and air resistance were factors that greatly affected the energy transferred between phases 1 and 2. Tyres deformation affected the energy transferred be- Proceedings International Conference of Agricultural Engineering, Zurich, 06-10.07.2014 www.eurageng.eu 6/8

tween phases 2 and 3. It was possible to evaluate the energy lost in Phase 3 by measuring with the high speed camera the velocity of the pendulum block at the impact time on the ROPS. 3.2 Static test The ROPS was subjected to a very slow increasing load applied by means of a hydraulic cylinder (Figure 7). The rate of load application (0.004 m/s) was so low that it could be considered static. In Figure 8 is shown the behaviour of the ROPS during the side load test: a first elastic deflection till 72 mm then the slope of the curve changes due to the change of behaviour from elastic to plastic. At 228 mm the load was released and there was a springback. 4 Conclusions Figure 7: Force and deflection of the ROPS subjected to the static load. The energy corresponding to the pendulum block height in the procedure dynamic is higher with respect to the energy required in the static procedure but the two procedures are considered approximately equivalent in terms of safety because it is known that in the dynamic tests only a portion of energy is absorbed by the ROPS. However the results showed that the official testing procedures were not comparable in terms of total ROPS deflections. In the dynamic tests more than 50% of the total energy supplied by the pendulum block was absorbed by the ROPS in form of strain energy. It could be advisable to extend the comparison between dynamic and static procedures to other types of modern ROPS so as to verify if differences continue to be observed. 5 Acknowledgements This work has received the support of PRIN 2009, Italian MIUR. 6 References Chisholm, C. J. (1972). A survey of 114 tractor sideways overturning accident in the UK 1969 to 1971. Departmental Note DN/TE/238/1425. Unpublished internal report. National Institute of Agricultural Engineering (NIAE), Silsoe, UK. Harris, J. R., McKenzie, E. A. (Jr), Etherton, J. R., Cantis, D. M., & Ronaghi, M. (2010). ROPS performance during field upset and static testing. Journal of Agricultural and Safety and Health, 16(1), 5-18. Proceedings International Conference of Agricultural Engineering, Zurich, 06-10.07.2014 www.eurageng.eu 7/8

Moberg, H. A. (1964). Tractor safety cabs: test methods and experiences gained during ordinary farm work in Sweden. National Swedish Testing Institute for Agricultural Machinery, Uppsala 7, Sweden. Moberg, H. A. (1973). Dynamic testing of tractor protection cabs: development of method, practical experiences. SAE paper 730761. Society of Automotive Engineers, INC., New York, U.S.A.. OECD (Organisation for Economic Co-operation and Development) Codes. (2014). OECD Standard Codes for the official testing of agricultural and forestry tractors. Available at. Paris, France: OECD Headquarters. www.oecd.org. OECD (Organisation for Economic Co-operation and Development) Code 3. (1967). OECD Standard Code for the official testing of protective structures on agricultural and forestry tractors (dynamic test). Available at. Paris, France: OECD Headquarters. www.oecd.org. OECD (Organisation for Economic Co-operation and Development) Code 4. (1983). OECD Standard Code for the official testing of protective structures on agricultural and forestry tractors (static test). Available at. Paris, France: OECD Headquarters. www.oecd.org. OECD (Organisation for Economic Co-operation and Development) Code 6. (2014). OECD Standard Code for the official testing of front mounted roll-over protective structures on narrow-track wheeled agricultural and forestry tractors. Available at. Paris, France: OECD Headquarters. www.oecd.org. OECD (Organisation for Economic Co-operation and Development) Code 7. (2014). OECD Standard Code for the official testing of rear mounted roll-over protective structures on narrow-track wheeled agricultural and forestry tractors. Available at. Paris, France: OECD Headquarters. www.oecd.org. Rondelli, V., Capacci, E., Franceschetti, B., & Guarnieri, A. (2012). ROPS Design Evolution with Respect to the Requirements of the Strength Test Procedures. Proceedings of International Conference of Agricultural Engineering (AgEng 2012). Valencia (Spain), July 8-12, 2012, 1-6. Schwanghart, H. (1978). Der statische test als prüfung der festigkeit von schlepper - umsturzschutzvorrichtungen in der europäischen gemeinschaft [The static test as the strength test of the tractor - Roll-Over Protective Structure in the European Community]. Grundl. Landtechnik, 28(5), 184 189. Söhne, W. and Schwanghart, H. (1978). Stand und entwicklung von prüfmethoden bei schlepper umsturzschutzvorrichtungen [Level and development of testing methods for tractor and Roll-Over Protective Structure]. Grundl. Landtechnik, 28(5), 178 184. Springfeldt, B. (1996). Rollover of tractors - international experiences. Safety Science, 24(2), 95 110. Proceedings International Conference of Agricultural Engineering, Zurich, 06-10.07.2014 www.eurageng.eu 8/8