CONCEPTUAL DESIGN OF FLYING VEHICLE

Similar documents
Design Considerations for Stability: Civil Aircraft

AIRCRAFT DESIGN SUBSONIC JET TRANSPORT

AE 451 Aeronautical Engineering Design Final Examination. Instructor: Prof. Dr. Serkan ÖZGEN Date:

DESIGN AND DEVELOPMENT OF A MICRO AIR VEHICLE (µav) CONCEPT: PROJECT BIDULE

A STUDY OF STRUCTURE WEIGHT ESTIMATING FOR HIGH ALTITUDE LONG ENDURENCE (HALE) UNMANNED AERIAL VEHICLE (UAV)

Design of a High Altitude Fixed Wing Mini UAV Aerodynamic Challenges

AE 451 Aeronautical Engineering Design I Estimation of Critical Performance Parameters. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering Fall 2015

1.1 REMOTELY PILOTED AIRCRAFTS

Flight Stability and Control of Tailless Lambda Unmanned Aircraft

ECO-CARGO AIRCRAFT. ISSN: International Journal of Science, Engineering and Technology Research (IJSETR) Volume 1, Issue 2, August 2012

DEVELOPMENT OF A MORPHING FLYING PLATFORM FOR ADAPTIVE CONTROL SYSTEM STUDY

A SOLAR POWERED UAV. 1 Introduction. 2 Requirements specification

AERODYNAMIC STUDY OF A BLENDED WING BODY; COMPARISON WITH A CONVENTIONAL TRANSPORT AIRPLANE

Evaluation of Novel Wing Design for UAV

Flugzeugentwurf / Aircraft Design SS Part 35 points, 70 minutes, closed books. Prof. Dr.-Ing. Dieter Scholz, MSME. Date:

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN BY B.MADHAN KUMAR

DESIGN AND PERFORMANCE TEST OF A TWIN- FUSELAGE CONFIGURATION SOLAR-POWERED UAV

Primary control surface design for BWB aircraft

THE ANALYSIS OF WING PERFORMANCE FOR RECONNAISSANCE UAV ZULKIFLI BIN YUSOF UNIVERSITI MALAYSIA PAHANG

Aircraft Design Conceptual Design

DEVELOPMENT OF A CARGO AIRCRAFT, AN OVERVIEW OF THE PRELIMINARY AERODYNAMIC DESIGN PHASE

Experimental Investigations of Biplane Bimotor Fixed-Wing Micro Air Vehicles

SILENT SUPERSONIC TECHNOLOGY DEMONSTRATION PROGRAM

FABRICATION OF CONVENTIONAL CYLINDRICAL SHAPED & AEROFOIL SHAPED FUSELAGE UAV MODELS AND INVESTIGATION OF AERODY-

Electric Flight Potential and Limitations

THE AERODYNAMIC DESIGN OF AN OPTIMISED PROPELLER FOR A HIGH ALTITUDE LONG ENDURANCE UAV

Appenidix E: Freewing MAE UAV analysis

Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests

Revisiting the Calculations of the Aerodynamic Lift Generated over the Fuselage of the Lockheed Constellation

Powertrain Design for Hand- Launchable Long Endurance Unmanned Aerial Vehicles

Design, Fabrication and Testing of an Unmanned Aerial Vehicle Catapult Launcher

EXPERIMENTAL ANALYSES OF DROOP, WINGTIPS AND FENCES ON A BWB MODEL

The use of new facility by means internal balance with sting support for wide range Angle of Attack aircraft

Dragon Eye. Jessica Walker Rich Stark Brian Squires. AOE 4124 Configuration Aerodynamics

Preface. Acknowledgments. List of Tables. Nomenclature: organizations. Nomenclature: acronyms. Nomenclature: main symbols. Nomenclature: Greek symbols

Evaluation of the Applicability of the Vortex Lattice Method to the Analysis of Human Powered Aircraft

FLIGHT TEST RESULTS AT TRANSONIC REGION ON SUPERSONIC EXPERIMENTAL AIRPLANE (NEXST-1)

CONCEPTUAL DESIGN OF UTM 4-SEATER HELICOPTER. Mohd Shariff Ammoo 1 Mohd Idham Mohd Nayan 1 Mohd Nasir Hussain 2

Design and construction a flying wing unmanned aerial vehicles

PERFORMANCE ANALYSIS OF UNMANNED AIR VEHICLE INTERCEPTOR (UAV-Ip)

Aeronautical Engineering Design II Sizing Matrix and Carpet Plots. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering Spring 2014

DESIGN THE VTOL AIRCRAFT FOR LAND SURVEYING PURPOSES SHAHDAN BIN AZMAN

DESIGN OF AN ARMAMENT WING FOR A LIGHT CATEGORY HELICOPTER

CONCEPTUAL DESIGN OF BLENDED WING BODY BUSINESS JET AIRCRAFT

Preliminary Design of Solar Powered Unmanned Aerial Vehicle Sumit Jashnani a, Prashant Shaholia b, Ali Khamker c, Muhammad Ishfaq d, and Tarek Nada e

A PARAMETRIC STUDY OF THE DEPLOYABLE WING AIRPLANE FOR MARS EXPLORATION

SIMULATION OF PROPELLER EFFECT IN WIND TUNNEL

Chapter 3: Aircraft Construction

FURTHER ANALYSIS OF MULTIDISCIPLINARY OPTIMIZED METALLIC AND COMPOSITE JETS

INVESTIGATION OF ICING EFFECTS ON AERODYNAMIC CHARACTERISTICS OF AIRCRAFT AT TSAGI

DESIGN AND ANALYSIS OF AUTONOMOUS 400MM SPAN FIXED WING MICRO AERIAL VEHICLE

DEVELOPMENT OF A LAP-TIME SIMULATOR FOR A FSAE RACE CAR USING MULTI-BODY DYNAMIC SIMULATION APPROACH

Design and Analysis of UCAV Wing with a by Varying the Cant Angle

AIRCRAFT DESIGN MADE EASY. Basic Choices and Weights. By Chris Heintz

The Sonic Cruiser A Concept Analysis

7. PRELIMINARY DESIGN OF A SINGLE AISLE MEDIUM RANGE AIRCRAFT

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

Keywords: Supersonic Transport, Sonic Boom, Low Boom Demonstration

CONCEPTUAL DESIGN REPORT

COMPUTATIONAL AERODYNAMIC PERFORMANCE STUDY OF A MODERN BLENDED WING BODY AIRPLANE CONFIGURATION

Conceptual Design of a Model Solar-Powered Unmanned Aerial Vehicle

31 st National Conference on FMFP, December 16-18, 2004, Jadavpur University, Kolkata

Conceptual Design of Hybrid UAV

DEVELOPMENT OF DESIGN AND MANUFACTURING OF A FIXED WING RADIO CONTROLLED MICRO AIR VEHICLE (MAV)

PRELIMINARY DESIGN OF A JOINED WING HALE UAV

Lockheed Martin. Team IDK Seung Soo Lee Ray Hernandez Chunyu PengHarshal Agarkar

STRUCTURAL DESIGN AND ANALYSIS OF ELLIPTIC CYCLOCOPTER ROTOR BLADES

Wing Cuff Design for Cessna CJ1

MODELLING AND STRUCTURAL ANALYSIS OF A GO-KART VEHICLE CHASSIS FRAME

Design of a High Altitude Long Endurance Solar Powered UAV Solar Powered Aerial Communicator (SPACOM)

blended wing body aircraft for the

EXPERIMENTAL METHOD OF DETERMINING CHARACTERISTICS OF POWER AND TORQUE ENGINE FOR LOW-POWER UNMANNED AERIAL VEHICLES

Theory of Flight. Main Teaching Points. Definition Parts of an Airplane Aircraft Construction Landing Gear Standard Terminology

Jay Gundlach AIAA EDUCATION SERIES. Manassas, Virginia. Joseph A. Schetz, Editor-in-Chief. Blacksburg, Virginia. Aurora Flight Sciences

IJSER. Sivanesh Prabhu.M, Arulvel.S,Mayakkannan.S. 1. Introduction 2. THEORETICAL CALCULATION

High aspect ratio for high endurance. Mechanical simplicity. Low empty weight. STOVL or STOL capability. And for the propulsion system:

Modeling, Structural & CFD Analysis and Optimization of UAV

CONCEPTUAL STUDY OF AN INNOVATIVE HIGH ALTITUDE SOLAR POWERED FLIGHT VEHICLE

SENSITIVITY ANALYSIS OF DESIGN PARAMETERS OF A SMALL SOLAR-POWERED ELECTRIC UNMANNED AERIAL VEHICLE

STRESS AND THERMAL ANALYSIS OF CLUTCH PLATE

Preliminary Design of High Altitude and High Endurance UAV: SAURON

Computational Analysis of the Aerodynamic Performance of a Long-Endurance UAV

AIRCRAFT CONCEPTUAL DESIGN WITH NATURAL LAMINAR FLOW

Selection of low-cost recovery system for Unmanned Aerial Vehicle

Solar Based Propulsion System UAV Conceptual Design ( * )

Multidisciplinary Shape Optimization of Aerostat Envelopes

DESIGN AND TEST OF A UAV BLENDED WING BODY CONFIGURATION

Aircraft Design in a Nutshell

Rotary Wing Micro Air Vehicle Endurance

Missile Interceptor EXTROVERT ADVANCED CONCEPT EXPLORATION ADL P

The Airplane That Could!

PROPOSED DESIGN OF SELF PROPELLED AERIAL VEHICLE

Design and Development of Hover bike

Chapter 11: Flow over bodies. Lift and drag

Weight & Balance. Let s Wait & Balance. Chapter Sixteen. Page P1. Excessive Weight and Structural Damage. Center of Gravity

A Joint DLR-ONERA Contribution to CFD-based Investigations of Unconventional Empennages for Future Civil Transport Aircraft

A Game of Two: Airbus vs Boeing. The Big Guys. by Valerio Viti. Valerio Viti, AOE4984, Project #1, March 22nd, 2001

Lecture 5 : Static Lateral Stability and Control. or how not to move like a crab. G. Leng, Flight Dynamics, Stability & Control

CDR Presentation 26 Nov Dust Thrusters Dain Christensen Julene Forner Jessica Howe Jonathan Newhall David Roman Michael Straka Kyle Vonnahmen

AIAA Undergraduate Team Aircraft Design

Transcription:

International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 6, June 2017, pp. 471 479, Article ID: IJMET_08_06_049 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=6 ISSN Print: 0976-6340 and ISSN Online: 0976-6359 IAEME Publication Scopus Indexed CONCEPTUAL DESIGN OF FLYING VEHICLE Alka Sawale Assistant Professor, Department of Aeronautical Engineering, MLR Institute of Technology, Hyderabad, India Sreekanth Sura Assistant Professor, Department of Aeronautical Engineering, MLR Institute of Technology, Hyderabad, India Anitha D Assistant Professor, Department of Aeronautical Engineering, Institute of Aeronautical Engineering, Hyderabad, India B. Subbaratnam Professor and Head, Department of Mechanical Engineering, Vardhaman College of Engineering, Hyderabad, India ABSTRACT The primary objective of this report is to design a solar powered unmanned aerial vehicle with less weight of around 3kg.Another objective of this report is to provide an initial selection of the solar powered UAV. A comparative study of other solar powered will be done to have configurations of this solar powered UAV. For initial configuration there will be a weight estimation for this UAV, initial selection of weight distribution will be discussed. Since Power is most crucial parameter for solar powered UAV, so will be looking at fundamental equations of power. Finally a drag polar estimation will be done. Key words: Unmanned Aerial Vehicle (UAV), solar power, weight estimation, weight distribution. Cite this Article: Alka Sawale, Sreekanth Sura, Anitha D and B. Subbaratnam. Conceptual Design of Flying Vehicle. International Journal of Mechanical Engineering and Technology, 8(6), 2017, pp. 471 479. http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=6 1. INTRODUCTION A flying wing is sometimes represented as theoretically the most aerodynamically efficient (lowest drag) design configuration for a fixed wing aircraft. It also would offer high structural efficiency for a given wing depth, leading to light weight and high fuel efficiency. Because it lacks conventional stabilizing surfaces and the associated control surfaces, in its purest form http://www.iaeme.com/ijmet/index.asp 471 editor@iaeme.com

Conceptual Design of Flying Vehicle the flying wing suffers from the inherent disadvantages of being unstable and difficult to control. These compromises are difficult to reconcile, and efforts to do so can reduce or even negate the expected advantages of the flying wing design, such as reductions in weight and drag. Moreover, solutions may produce a final design that is still too unsafe for certain uses, such as commercial aviation. Further difficulties arise from the problem of fitting the pilot, engines, flight equipment, and payload all within the depth of the wing section. Other known problems with the flying wing design relate to pitch and yaw. Pitch issues are discussed in the article on tailless aircraft. In some flying wing designs, any stabilizing fins and associated control rudders would be too far forward to have much effect, thus alternative means for yaw control are sometimes provided. One solution to the control problem is differential drag: the drag near one wing tip is artificially increased, causing the aircraft to yaw in the direction of that wing. Typical methods include. A consequence of the differential drag method is that if the aircraft maneuvers frequently then it will frequently create drag. So flying wings are at their best when cruising in still air: in turbulent air or when changing course, the aircraft may be less efficient than a conventional design. Figure 1 Bi-directional flying wing. Top-down view The supersonic bi-directional flying wing design comprises a long-span low speed wing and a short-span high speed wing joined in the form of an unequal cross. The proposed craft would take off and land with the low-speed wing across the airflow, then rotate a quarter-turn so that the high-speed wing faces the airflow for supersonic travel has funded a study of the proposal The design is claimed to feature low wave drag, high subsonic efficiency and little or no sonic boom. The proposed low-speed wing would have a thick, rounded airfoil able to contain the payload and a long span for high efficiency, while the high-speed wing would have a thin, sharp-edged airfoil and a shorter span for low drag at supersonic speed. The Defense Advance Research Academy (DARA) has researched a solar powered HALE UAV. The main idea behind the project called vulture is to combine the key benefits of both an aircraft and a satellite into one system and to keep these systems in air continuously for 5 years. If the analysis is successful we will undergo the process of making prototype of this UAV with some advanced features included in it. http://www.iaeme.com/ijmet/index.asp 472 editor@iaeme.com

Alka Sawale, Sreekanth Sura, Anitha D and B. Subbaratnam 2. MISSION SPECIFICATION 2.1. Mission Profile The mission profile for this mission is shown as:- Figure 2 Mission Profile Table 1 Dimensions WING SPAN 280 ROOT CHORD 80 TIP CHORD 50 SWEEP ANGLE 33.34 degrees WING AREA 18200 2.2. Swept Wings 2.2.1. Neutral Point and Stability We have already learned that the center of gravity must be located in front of the neutral point. While the n.p. of an un swept, rectangular wing is approximately at thec/4point, the n.p. of a swept, tapered wing must be calculated. The following procedure can be used for a simple, tapered and, swept wing. First, we Calculate the mean aerodynamic chord length from the sweep angle: of a tapered wing, which is independent With the root chord lr, the tip chord lt and the tap. We can also calculate the span wise location of the mean Chord, using the span b, The n.p. of our swept wing can be found by drawing a line, parallel to the fuselage center line, at the spanwise station y. The chord at this station should be equal to. The n.p. is approximately located at the c/4 point of this chord line (see the sketch below). http://www.iaeme.com/ijmet/index.asp 473 editor@iaeme.com

Conceptual Design of Flying Vehicle Figure 3 Geometric parameters of a tapered, swept wing Instead of using the graphical approach, the location of the neutral point can also be calculated by using one of the following formulas, depending on the taper ratio:, if taper ratio> 0.375, if taper ratio< 0.375 The c.g must be placed in front of this point, and the wing may need some twist (washout) to get a sufficiently stable wing. 2.3. Finding the Required Twist ßreq Using graph 1, we enter the graph with the aspect ratio AR on the horizontal axis, and draw a vertical line upwards, until we intersect the curve, corresponding to the sweep angle of the c/4 line. Continuing to the axis on the left border, we find the standard value β*req for the required twist angle. This standard value is valid for a wing, which is trimmed at = 1.0 and has a stability coefficient of β* =10% (see above), and Uses airfoils with a moment coefficient of zero. From the standard value we calculate the true, required twist angle, using the formula inset into the graph. Therefore, we calculate the ratio of our target lift coefficient to the standard lift coefficient (CL/ ) and the ratio of our desired stability coefficient to the standard. We see, that a reduction of the lift coefficient to CL=0.5 also reduces the required twist by 50%. Also, if we use a smaller stability margin β, we need a smaller amount of twist. Figure 4 Finding the Required Twist Graphs http://www.iaeme.com/ijmet/index.asp 474 editor@iaeme.com

Alka Sawale, Sreekanth Sura, Anitha D and B. Subbaratnam 2.3.1. Variation of zero lift angle If we use different airfoils at root and tip, they may have different zero lift directions, which influences the equilibrium state. The geometric twist has to be reduced by the difference of the zero lift directions β 0 of tip and root sections: Using the same airfoil for both sections, we can set β0 to zero. 2.3.2. Influence of the Airfoil Moment coefficients The moment coefficient of the airfoils contributes to the equilibrium, and has to be taken into account for the calculation of the twist. Graph 2 can be used to find the equivalent twist due to the contribution of Cm, which has to be subtracted from the required twist. If we use airfoils with positive moment coefficients, the contribution will be positive, which results in a reduction of the amount twist, highly cambered airfoils yield negative values βcm, which force us to build more twist into the wing. Similar to the previous graph, We enter with the aspect ratio, intersect with the sweep curve and read the value for βcm from the left hand axis. Figure 5 Finding the additional twist due to the airfoils moment coefficient. Again, the graph has been plotted for a certain standard condition, which is a moment coefficient of cm* = 0.05 (note: positive value). We apply the ratio of the moment coefficients (cm/cm*) to find the contribution βcm of the moment coefficient to the geometric twist. This contribution has to be subtracted from the required twist angle, too. Using the usual, cambered airfoils with negative moment coefficients will change the sign of the ratio cm/cm*, which results in negative β Cm values. This means, that the subtraction from βreq will actually be an addition, increasing the geometric twist angle. If we have different airfoils at root and tip, we can use the mean moment coefficient (cm,tip+ cm,root)/2 to calculate the ratiocm/cm*.finally, we can calculate the geometric twist angle βgeo, which has to be built into the wing: S = (l_r + l_t)/2 * b = 0.5085 m² And the aspect ratio AR = b²/s = 11.0 And the mean moment coefficient cm = (cm,r + cm,t)/2 = 0.02.. http://www.iaeme.com/ijmet/index.asp 475 editor@iaeme.com

Conceptual Design of Flying Vehicle Using graph 1, we find β*req = 11.8, which has to be corrected to match our design lift coefficient and the desired stability margin: 11.8 * (0.5/1.0) * (0.05/0.1) = 2.95 This means that our model would need a twist angle of 2.95 (wash out) from rot to tip, if we would use a symmetrical airfoil section. The difference of the zero lift angle of tip and root section is Now we read the twist contribution of the moment coefficient from graph 2, which is β*cm = 5.8, which has to be corrected for our smaller mean moment coefficient: 5.8 * (0.02/0.05) = 2.32 Finally, we calculate the geometric twist from 2.95-0.8-2.32 = -0.17 The negative value means, that we could use a small amount of wash-in! This is because we have already enough stability due to the selection of airfoils with reflexes camber lines. Since the calculated amount is very small, we can use the same angle of incidence for the root and tip ribs. Since the presented method is not perfect, we can assume accuracy to 1 degree, which is also a reasonable assumption for the average building skills. 3. OVERALL WING AND AIRFOIL CONFIGURATION Based on Roskam, conventional configuration is used for the HALE-SUPAV. The UAV will not have higher range and thus will preliminary fly on land and if necessary on water. Adding another alternative fuel system would give more rang but will also increase complexity and weight, which is not recommended. The geometry of the wing should have negligible sweep because the aircraft will be operating at low speeds. Sweep will also increase weight and reduce available solar cell area, both of which will hinder the aircraft s performance. An initial airfoil selection will be the Selig 1223, as shown in Figure. This airfoil has12.14% maximum thickness-to-chord ratio at roughly 20% from the leading edge. The Selig 1223 airfoil was chosen as the initial configuration because it has all the characteristics, which requires in solar power high altitude and long endurance airplanes. The first important one is that it a low Reynolds number will be generated throughout the mission, and therefore an airfoil that has ideal characteristics at low speed has been chosen. High lift to drag ratio is also one of the important characteristics. Using XFLR5 software that analyses the airfoils, a graph of L/D vs. angle of attack was created and is shown in Figure 8. A legend that is used for the different Reynolds number used is shown in figure 5. As the figures show, not only does this airfoil have a high lift-to-drag ratio, but also it has a fairly wide operating angle of attack where the lift-to-drag ratio is optimum. Other airfoil characteristics are shown in figures. http://www.iaeme.com/ijmet/index.asp 476 editor@iaeme.com

Alka Sawale, Sreekanth Sura, Anitha D and B. Subbaratnam Figure 6 Selig 1223 Airfoil 4. ANALYSIS Figure 7 Plot Points Figure 8 CL/CD Vs ALPHA Figure 9 CL-ALPHA Curve Figure 10 CM-ALPHA Curve Figure 11 CL/CD Curve http://www.iaeme.com/ijmet/index.asp 477 editor@iaeme.com

Conceptual Design of Flying Vehicle The drag polar will now be calculated for the airplane itself. Using the value of the calculated zero-lift drag coefficient, the overall aircraft drag coefficient can be calculated using. Assuming a lift coefficient of 1.2169 from Section 8.3, as well as an Oswald efficient factor of 0.9, the total aircraft drag coefficient can be found as 0.0231.This will be used to find lift to drag ratio as shown: XFLR5 program also used to find out lift to drag ratio for this airplane and the data are shown in appendix F. During the analysis, three different values of drag coefficient have come out hence the lift to drag ratios. 5. RESULT AND DISCUSSION The drag polar explains in table 9 shows that lift to drag ratio ranges from 38to 52. The major difference is in analysis because other two have less difference. The analysis does not include fuselage drag coefficient as other so that analysis should be most inaccurate among others. The average value between these two approaches can be used in further analysis if needed. 5.1. Flying wing CG calculator Figure 12 CG Calculations Figure 13 Solid works Model Figure 14 Side View with Winglet 6. CONCLUSIONS The current desire for a greener society, an alternative source of energy for aircraft is needed. There are many alternative energy solutions that are promising including bio-fuel and hydrogen fuel cells, but nothing is as limitless as solar technology. As, mentioned throughout the project, the application of high altitude long endurance UAVs can potentially be very large, whether it is in weather surveillance, studying natural disaster, or fire direction. The solar power UAV design discussed weight, has a large wingspan of 280mm, and hold upto 300grams of payload, which is more than enough for all the surveillance and autopilot instruments. The advances in solar technology have made it so the concept of solar powered UAVs and MAVs is not just a theory anymore. Solar power airplanes are necessary for greener society and can be an important part of the future of aviation. Hence we consider this UAV for future scope of making it a solar powered UAV. http://www.iaeme.com/ijmet/index.asp 478 editor@iaeme.com

Alka Sawale, Sreekanth Sura, Anitha D and B. Subbaratnam REFERENCES [1] Bilstein, RE. Air travel and the traveling public: the American experience, 1920-1970. In From airships to airbus: the history of civil and commercial aviation. Vol. 2, Pioneers and operations (ed. W.F. Trimble).Proc. International Conference on the History of Civil and Commercial Aviation, Lucerna (CH), 1992, Smithsonian Institution, Washington (USA), 1995. [2] Liebeck, RH, Page, MA and Rawdon, BK. Blended Wing-Body Subsonic Commercial Transport. 36thAerospace Science Meeting & Exhibit, Reno (NV, USA), AIAA Paper 98-0438, 1998. [3] McMasters, JH and Kroo, IM. Advanced configurations for very large transport airplanes. Aircraft Design, Vol. 1, No. 4, pp.217-242, 1998 [4] Lange, RH. Review of Unconventional Aircraft Design Concepts. Journal of Aircraft, Vol. 25, No. 5, pp. 385-392, 1988. [5] Global Market Forecast 1998-2017. Airbus Industrie, Toulouse (F), 1998. [6] Martínez-Val, R, Pérez, E, Muñoz, T and Cuerno, C. Design Constraints in the Payload-Range Diagram of Ultrahigh Capacity Transport Airplanes. Journal of Aircraft, Vol. 31, No. 6, pp. 1268-1272, 1994. [7] Nimmy George, Grid Connected PV System Using 9-Level Flying Capacitor Multilevel Inverter. International Journal Of Electrical Engineering & Technology (IJEET). 5(12), 2014, pp. 57 64. [8] Prithvish Mamtora, Sahil Shah, Vaibhav Shah, Vatsal Vasani, Unmanned Aerial Vehicle (UAV). International Journal of Electronics and Communication Engineering & Technology (IJECET), 4(5), 2013, pp. 187 191. [9] T. Prabhu, Unmanned Surface Vehicle (USV) for Coastal Surveillance. International Journal of Mechanical Engineering and Technology, 7(3), 2016, pp. 13 28. http://www.iaeme.com/ijmet/index.asp 479 editor@iaeme.com