Selection of an Efficient Method of Biodiesel Production from Vegetable Oil Based on Fuel Properties

Similar documents
Transesterification of Palm Oil to Biodiesel and Optimization of Production Conditions i.e. Methanol, Sodium Hydroxide and Temperature

Emission Analysis Of The Biodiesel From Papaya And Chicken Blends

Emission Analysis of Biodiesel from Chicken Bone Powder

Project Reference No.: 40S_B_MTECH_007

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria

Temperature-Viscosity Correlation for Biodiesel Blends Derived from Corn, Olive and Palm Oil

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine

Characterization of Crude Glycerol from Biodiesel Produced from Cashew, Melon and Rubber Oils.

Biodiesel Production and Analysis

Biodiesel Production and Analysis

Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process

Comparison of Performance of Castor and Mustard Oil with Diesel in a Single and Twin Cylinder Kirsloskar Diesel Engine

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

PERFORMANCE AND ANALYSIS OF DIESEL ENGINE USING CHICKEN OIL WITH DIESEL AS A BIOFUEL

SYNTHESIS OF BIODIESEL

CHEMISTRY 135. Biodiesel Production and Analysis

EXPERIMENTAL STUDY ON PERFORMANCE OF DIESEL ENGINE USING BIO-DIESEL

Material Science Research India Vol. 7(1), (2010)

PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL

PROJECT REFERENCE NO.: 39S_R_MTECH_1508

PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER

V.Venkatakranthi Teja. N S Raju Institute of Technology (NSRIT), Sontyam, Visakhapatnam, Andhra Pradesh , India.

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India

Optimization of Biodiesel production parameters (Pongamia pinnata oil) by. transesterification process,

Experimental Analysis of Bio Oil under Transestrification Process by Using Babool Tree Seeds

Biodiesel: Making Renewable Fuel from Waste Oils

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

Abstract Process Economics Program Report 251 BIODIESEL PRODUCTION (November 2004)

COMBUSTION CHARACTERISTICS OF DI-CI ENGINE WITH BIODIESEL PRODUCED FROM WASTE CHICKEN FAT

ASTM D Standard Specification for Biodiesel Fuel (B 100) Blend Stock for Distillate Fuels

Comparative Analysis of Jatropha-Methanol Mixture and Diesel on Direct Injection Diesel Engine

BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID PUNNAKKA OIL

Experimental Investigation On Performance And Emission Characteristics Of A Diesel Engine Fuelled With Karanja Oil Methyl Ester Using Additive

Investigation of Single Cylinder Diesel Engine Using Bio Diesel from Marine Algae

Production and Comparative Characterization of Castor Biodiesel as Alternative Fuel for Diesel Engines

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL

CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF

Keywords: Simarouba Glauca, Heterogeneous base catalyst, Ultrasonic Processor, Phytochemicals.

Performance Analysis of a Diesel Engine with the Help of Blends of Linseed Oil Biodiesel

Prediction of Performance and Emission of Palm oil Biodiesel in Diesel Engine

Performance and Emission Characteristics of 4 S DI diesel Engine fueled with Calophyllum Inophyllum Biodiesel Blends

GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN:

Performance evaluation of a diesel engine fueled with methyl ester of castor seed oil

EXPERIMENTAL ANALYSIS ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH NEEM OIL AND NANO POWDER

Transesterification of Waste Cooking Oil with Methanol and Characterization of the Fuel Properties of the Resulting Methyl Ester and its Blends

What s s in your Tank?

Performance and Emission Characteristics of Direct Injection Diesel Engine Running On Canola Oil / Diesel Fuel Blend

EFFECT OF ETHANOL BLENDED WITH COTTONSEED OIL METHYL ESTER ON ENGINE PERFORMANCE AND EMISSION IN A DI DIESEL ENGINE BY VARYING INJECTION PRESSURE

Experimental Analysis of Cotton Seed oil Biodiesel in a Compression Ignition Engine

Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine

Inturi Vamsi et al. Int. Journal of Engineering Research and Applications ISSN : , Vol. 5, Issue 5, ( Part -4) May 2015, pp.

BIODIESEL PRODUCTION IN A BATCH REACTOR 1. THEORY

Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction

Eucalyptus Biodiesel; an Environmental friendly fuel for Compression Ignition Engines

PRODUCTION OF BIODIESEL FROM CHICKEN FAT

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends

TESTING OF FUELS : FLASH AND FIRE POINT

BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID MAROTTI OIL

ComparativeStudyonPropertiesofMethylEsterofCottonSeedOilandMethylEsterofMangoSeedOilwithDiesel

The Purification Feasibilityof GlycerinProduced During

Performance and Emission Evaluation of a Diesel Engine Fueled with Methyl Esters of Tobacco Seed Oil

International Journal of Advance Engineering and Research Development PRODUCTION OF AN ALTERNATIVE FUEL FROM A LOW COST FEEDSTOCK- AN ECONOMICAL VIEW

INVESTIGATIONS ON BIODIESEL FROM WASTE COOKING OIL AS DIESEL FUEL SUBSTITUTE

Chemical Modification of Palm Oil for Low Temperature Applications and its Study on Tribological Properties

, RMK College of Engineering and Technology R.S.M.Nagar, Puduvoyal, India Corresponding author

JATROPHA AND KARANJ BIO-FUEL: AN ALTERNATE FUEL FOR DIESEL ENGINE

Chapter 3 FUEL DEVELOPMENT AND CHARACTERIZATION

Experimental Investigations on a Four Stoke Diesel Engine Operated by Jatropha Bio Diesel and its Blends with Diesel

INVESTIGATION OF BLENDED PALM BIODIESEL-DIESEL FUEL PROPERTIES WITH OXYGENATED ADDITIVE

Performance, Combustion and Emission Characteristics of Corn oil blended with Diesel

Ester (KOME)-Diesel blends as a Fuel

Experimental Investigation Of Performance Of I.C. Engine Using Biodiesel Soybean Oil

Performance Testing of Diesel Engine using Cardanol-Kerosene oil blend

The Effect of Bio-Fuel Blends and Fuel Injection Pressure on Diesel Engine Emission for Sustainable Environment

ABSTRACT I. INTRODUCTION II. TECHNICAL SPECIFICATIONS OF THE ENGINE III. MATERIAL & METHODS

Automotive Technology

Use of Palm oil Biodiesel Blends as a Fuel for Compression Ignition Engine

Effect of Nano-Fluid Additiveon Emission Reduction in Biodiesel

A Feasibility Study on Production of Solid Fuel from Glycerol and Agricultural Wastes

BIODIESEL Using renewable resources Introduction: Reference: Background information:

Experimental Investigation of Performance and Emission Characteristics of Simarouba Biodiesel and Its Blends on LHR Engine

Use of Ultrasound for Monitoring Reaction Kinetics of Biodiesel Synthesis: Experimental and Theoretical Studies.

Performance of Biodiesel Fuel in cold weather condition. Mechanical Engineering Graduation Thesis / Presented by: Zeloon Lye

What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source

A R DIGITECH International Journal Of Engineering, Education And Technology (ARDIJEET) X, VOLUME 2 ISSUE 1, 01/01/2014

, RMK College of Engineering and Technology R.S.M.Nagar, Puduvoyal, India Corresponding author

Biodiesel Production from waste Oil with Micro-Scale Biodiesel System Under Laboratory Condition

Effect of biodiesel and its blends with oxygenated additives on performance and emissions from a diesel engine

Experimental Investigation on Combustion, Performance and Emission Characteristics of Neem Oil Bio-Diesel in Four Stroke Single Cylinder Diesel Engine

ENVO DIESEL TEST ON AUTOMOTIVE ENGINE AN ANALYSIS OF ITS PERFORMANCE AND EMISSIONS RESULTS

EXPERIMENTAL INVESTIGATION OF PERFORMANCE ANALYSIS ON VCR DI DIESEL ENGINE OPERATED ON MULTI BLEND BIODIESEL

Processing of Biodiesel from Algae and Experimental Investigation on Single Cylinder Diesel Engine

BIODIESEL PRODUCTION FROM JATROPHA CURCAS OIL

Biodiesel Production from False Flax (Camelina Sativa) Oil and Its Blends with Diesel Fuel

Optimization for Community Biodiesel Production from Waste Palm Oil via Two-Step Catalyzed Process

Performance Analysis of Four Stroke Single Cylinder CI Engine Using Karanja Biodiesel-Diesel Blends

8/3/2012 SIF: Energy School 2012,Varenna. Omar Said

Study of Transesterification Reaction Using Batch Reactor

DAVI DOS SANTOS, STEPHEN MONTGOMERY, ANN NUNNELLEY, MD NURUDDIN BSEN 5540/6540: BIOMASS AND BIOFUELS BIODIESEL PRODUCTION FROM VEGETABLE OIL GROUP:

Transcription:

Selection of an Efficient Method of Biodiesel Production from Vegetable Oil Based on Fuel Properties Abdullah Al Mamun 1, Shaila Siddiqua 2, Sheikh Md. Enayetul Babar 3 1,2 Post Graduate Students, Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh. 3 Professor, Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh. Abstract Biodiesel has become more attractive recently because of its environmental benefits. Biodiesel is an alternative fuel for diesel engines consisting of the alkyl monoesters of fatty acids from vegetable oils or animal fats. Currently most of the is made from vegetable oil, methanol, and an alkaline catalyst. In this study, three different methods were modified and used to extract from four different sources e.g. soybean oil (Glycine max), sesame oil (Sesamum orientale), palm oil (Elaeis guineensis) and mustard oil (Brassica nigra). The objective of this study was to establish an efficient method from three modified methods by comparing the fuel properties (kinematic viscosity, flashpoint, calorific value and density) of extracted from those methods. It was found that fuel properties of produced by modified method 1 were better than produced by modified method 2 and 3. Keywords Biodiesel, Vegetable oil, Kinematic viscosity, Density, Calorific value, Flash point. I. INTRODUCTION The concept of using vegetable oil as an engine fuel likely 100 years old, when Rudolf Diesel (1858-1913) developed the first engine to run on peanut oil, as he demonstrated at the World Exhibition in Paris in 1900 [1]. In 1912 Rudolf Diesel said that The use of vegetable oils for engine fuels may seem insignificant today. But such oils may in course of time be as important as petroleum and the coal tar products of the present time. But, by the availability of low-priced petroleum products, use of as a fuel never took off. However in today s world, the diminishing amount of petroleum reserves and increase need of fuel make us look through for an alternative fuel. The use of comes as a promising solution to meet the current demand of fuel. Vegetable oils (VO) or animal fats are used in the production of Biodiesel, which just need to undergo a transesterification process to be able to use in the diesel engine [2], [3], [4]. In the transesterification process the vegetable oil chemically reacts with alcohol in the presence of a catalyst. Glycerol is produced as a by-product of transesterification reaction [5], [6]. The quality of is most important for engine part of view and various standards have been specified to check the quality [7], [8]. The most standard process to determine the quality of is to analyse the fuel properties of such as kinematic viscosity, density, calorific value and flash point, etc. Among the different fuel properties of, kinematic viscosity is one of the major fuel properties, which is measured at 40 C (ASTM D445) since it is the standard temperature for determining kinematic viscosity of and petroleum [9]. Another important property of is flash point, which is the lowest temperature at which it can vaporize to form an ignitable mixture in air. Measuring a liquid's flash point requires an ignition source. Calorific value of is the amount of heat released during the combustion of a specified amount of it. Density is the weight per unit volume. Oils that are denser contain more energy. For example, petrol and diesel fuels give comparable energy by weight, but is denser and hence gives more energy per litre [10]. The objectives of this study were to analyse various extraction methods and establish an efficient method based on the fuel properties. In this work three methods- method 1[11]; method 2 [12] and method 3 [12] are modified to lessen the working difficulties and production cost and to produce better quality from soybean, palm, mustard and sesame oil. The extent of the quality of is determined by analysing the four major fuel properties- kinematic viscosity, density, calorific value and flash point, and on the basis of this result the best method selected from these three methods which produce best quality. II. MATERIALS The experiment was carried out with 4 types of VO (soybean, palm, mustard and sesame oil). Methanol and sodium hydroxide were used to produce sodium methoxide which react with VO to produce through transesterification reaction. Methanol and sodium hydroxide were supplied by Merck, Germany. VO was collected from local marketplace (Khulna, Bangladesh). III. METHODS A. Methods of Biodiesel Production 1) Modified Method-1: Method 1[11] was modified to produce from soybean, palm, mustard and sesame oil. The catalyst sodium hydroxide, at an amount of 0.64 % (w/v) of vegetable oil was dissolved in the methanol at an amount of 20% (v/v) of vegetable oil by hand shaking and whirling to form sodium methoxide solution. The sodium ISSN: 2231-5381 http://www.ijettjournal.org Page 3289

methoxide solution was then poured into the beaker that contains vegetable oil (pre heated at 45 C) and the total mixture kept closed to the atmosphere to prevent the loss of alcohol. Then the beaker was gently shake for a few minutes and heated at 55 C on a water heater for 3 hours. After heating, the beaker was set aside undisturbed for 24 hours at normal temperature for completion of the reaction. From the reaction mixture 2 major products were found- raw and glycerine. The was then separated by gravity settling and pipetting and washed with water. Finally, extra water was removed by heating at100 C for 15 minutes to get pure, usable. 16.67 % (v/v) of vegetable oil respectively) mixed with VO and the beaker was placed on a magnetic stirrer, stirred for 20 minutes. The mixture kept undisturbed for 24 hours at normal temperature, the was separated from glycerine. Then washed with water and excess water was removed to get pure. Figure 2 Scheme of production (Modified Method 2) B. Methodology of Fuel Properties Determination Figure 1 Scheme of production (Modified Method 1) 2) Modified Method-2: Method 2 [12] was modified to produce from soybean, palm, mustard and sesame oil. Sodium methoxide solution (same concentration as method-1) was poured into VO containing beaker and placed on a heating magnetic stirrer. Turned on the magnetic stirrer and stirred for 30 minutes at 45 C. The mixture was kept undisturbed for 24 hours at normal temperature at the end of stirring. Then the was separated, washed and removed extra water to get pure. 1) Kinematic Viscosity: SAYBOLT/REDWOOD viscometer bath was used to determine kinematic viscosity. At first a cork stopper was inserted into the air chamber at the bottom of the viscometer and placed the thermometer. 80 ml sample was poured into the gallery of viscometer bath. When the temperature reached at 40 C, 60 ml sample was collected in the receiving flask. The time of collection was recorded by a stopwatch. Above stages were repeated three times. Then the average time was measured and the kinematic viscosity was determined by using the equation. 2) Flash Point: It was determined by flashpoint tester, type- 00-ESR. 80 ml sample was poured into the metal cup of the apparatus. Then the thermometer was placed and the flashpoint tester was switched on. 3) Modified Method-3: In method 3 [12] concentration of sodium hydroxide and methanol and stirring time were modified to produce from soybean, palm, mustard and sesame oil. Sodium methoxide solution was (sodium hydroxide and methanol at an amount of 0.29 % (w/v) and ISSN: 2231-5381 http://www.ijettjournal.org Page 3290

3) Calorific Value: The heating value or calorific value was determined by oxygen bomb calorimeter. At first less than 1.5g sample weight was determined. Then fuse was prepared and attached to the bomb of calorimeter. The bomb was closed tightly and oxygen punched into it. The bomb then placed into pot contained water and turned on the oxygen bomb calorimeter. Initial temperature was recorded and observed the temperature rise. When the temperature rise stopped the reading was taken. Calorific value was determined by using temperature difference and mass in the equation. 4) Density: Mass of 10 ml sample was measured by electric balance. This step repeated three times and average mass was determined. Density was determined by mass/volume equation. IV. RESULT AND DISCUSSION A. Analysis of Biodiesel Properties and Methods: Different properties of were analysed to establish an efficient chemical method of production from soybean, palm, mustard and sesame oil by using three different chemical method. Figure 3 Scheme of production (Modified Method 3) The flash point of a volatile liquid is the lowest temperature at which it can vaporize to form an ignitable mixture in air. The flashpoint was checked after every 2 C and found the exact flashpoint. The comparison between different methods can be better understood by examining the following tables of kinematic viscosity, flashpoint, calorific value and density values. Table I Experimental Value for Kinematic Viscosity at 40 C (cst) Modified Soybean Palm Mustard Sesame Accepted value* 1 5.18 5.015 5.57 5.795 2 5.98 6.17 6.515 6.765 3 8.74 8.445 8.765 8.88 3.7-5.8 Table 2 Experimental Value for Flashpoint [Degree Celsius ( C)] Modified Soybean Palm Mustard Sesame Accepted value* 1 131 142 154 164 2 112 61 74 62 >130 3 65 74 132 53 Table 3 Experimental Value for Calorific Value (Kcal/kg) Modified Soybean Palm Mustard Sesame Accepted value* ISSN: 2231-5381 http://www.ijettjournal.org Page 3291

1 9308 9289.21 9573.525 9237.11 8850-10000 2 8879.525 8669.155 8785.885 8601.405 3 8735.19 8803.135 9325.985 8458.74 Table 4 Experimental value for density (gm/ml) Modified Soybean Palm Mustard Sesame Accepted value* 1 0.8733 0.8787 0.87515 0.8856 2 0.8595 0.856 0.8605 0.8565 0.87-0.89 3 0.947 0.918 0.859 0.9785 B. Discussion From the values shown in the table 1, table 2 and table 3 for kinematic viscosity, flashpoint and calorific value From the above result, it is observed that the values of consequently, it is clear that the values of modified method 1 different physical properties found in modified method 2 and for soybean, palm, mustard and sesame belong in the 3 differ greatly from the standard values of. The accepted range of for all of three properties. While deviation of the values may caused by different reasons. the values of modified method 2 and 3, have mostly been Presence of much soap in the solution may increase the deviated from the accepted range of. viscosity and density of the. As the viscosity increases it loses its fuel properties and became lubricating oil. In case of density, it is observed that the values for density for modified method 1 for soybean, palm, mustard and sesame belong in the accepted range of. On the other hand, the values of density of modified method 2 were less than that of minimum accepted value (0.87 g/ml) and the values of modified method 3 were more than maximum accepted value (0.89 g/ml). If the reaction was not completed properly, the vegetable oil would not convert fully into. As a result the density would become lower. In case of modified method 2 and 3, the quality of may be affected by the change in concentration of methanol and NaOH, reaction and heating time and temperature. The variation in this condition may also affect the flashpoint and calorific value of. The reaction and heating time and temperature of modified method 2 and 3 are lower than modified method 1, and this might be a cause of lower quality production. Table 5 Comparison of Experimental Value of Method 1 and Standard Value of Biodiesel and Diesel Properties Kinematic viscosity at 40 C(cst) Flashpoint ( C) Calorific value (Kcal/kg) Experimental value (for modified method 1) Standard value Soybean Palm Mustard Sesame Biodiesel* Diesel* 5.18 5.015 5.57 5.795 3.7-5.8 1.3 4.1 131 142 154 164 >130 60 80 9308 9289.21 9573.525 9237.11 8800-1000 10500 Density (gm/ml) 0.8733 0.8787 0.8752 0.8856 0.87-0.89 7.1 standard diesel the chances of to accidentally Flash point is the lowest temperature at which certain liquid can vaporize to form an ignitable mixture in air. Since burns at much higher temperature compared to combust are much lower compared to standard diesel. Biodiesel is much safer to use compared to standard diesel because it has significantly higher flash point than standard ISSN: 2231-5381 http://www.ijettjournal.org Page 3292

diesel (130 C compared to 75 C), and table 5 shows that experimental values of four types of for flash point have significantly higher than standard diesel. Biodiesel also has less energy content compared to standard diesel. The amount of energy per gallon of is approximately 11 percent lower than that of petroleum diesel. The densities of soybean, palm, mustard and sesame are close to the density of diesel (0.82-0.86). So it is obvious that the extracted from soybean, palm, mustard and sesame oil by using modified method 1 is more suitable as an alternative of diesel. V. CONCLUSSION Four types of were produced from soybean, sesame, palm and mustard oil by three modified methods, and the quality of those were analysed by comparing the experimental value of fuel properties (kinematic viscosity, flashpoint, calorific value and density) with the standard value of. According to the experimental result, values of the fuel properties of s of modified method 1 belong in the range of standard value, while the values of s of modified method 2 and 3 have mostly been deviated from the standard values. Thus from the result it may be concluded that modified method 1 produces better quality than modified method 2 and 3. ACKNOWLEDGEMENT The authors acknowledge Khulna University, Bangladesh for the financial and technical support and Department of Chemical Engineering of Bangladesh University of Engineering and Technology for chemical analyses. REFFERENCES [1] EG. Shay, Diesel fuel from vegetable oil: status and opportunities. Biomass Bioenergy 1993;4(4):227^4-2, 1993. [2] S.N. Naik, Vaibhav V. Goud, Prasant K. Rout and Ajay K. Dalai, Production of first and second generation biofuels: A comprehensive review, Renewable and Sustainable Energy Reviews, Volume 14, Issue 2, Pages 578 597, February 2010. [3] M. Kouzu, T.Kasuno, M.Tajika, Y.Sugimoto, S. Yamanaka and J. Hidaka, Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to production Fuel, Volume 87, Issue 12, Pages 2798 2806, September 2008. [4] G. Knothe, Designer Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties, Energy Fuels, 22 (2), pp 1358 1364, February 2008. [5] L.C. Meher, D. V. Sagar and S.N. Naik, Technical aspects of production by transesterification a review, Renewable and Sustainable Energy Reviews, Volume 10, Issue 3, Pages 248 268,June 2006. [6] A. Srivastava and R. Prasad, Triglycerides-based diesel fuels. Renew Sustain Energy Rev 2000;4:111-33, 2000. [7] J. Xuea, T. E. Grifta and A. C. Hansena, Effect of on engine performances and emissions, Renewable and Sustainable Energy Reviews, Elsevier, 15 (2011) 1098 1116. [8] M.Lapuerta, O.Armas and J.Rodríguez-Fernández, Effect of fuels on diesel engine emissions, Progress in Energy and Combustion Science, Elsevier, Volume 34, Issue 2, Pages 198 223, April 2008. [9] B.Gutti, S. S. Bamidele and I. M. Bugaje, BIODIESEL KINEMATICS VISCOSITY ANALYSIS OF Balanite aegyptiaca SEED OIL ARPN Journal of Engineering and Applied Sciences, ISSN 1819-6608, VOL. 7, NO. 4, April 2012. [10] S. H. Yoon, S. H. Park and C. S. Lee, Experimental Investigation on the Fuel Properties of Biodiesel and Its Blends at Various Temperatures, Energy & Fuels 2008, 22, 652 656, September 2007. [11] M. A. A. Bari, H. Ali, M. Rahman and R. Hossain, Prospect of Biodiesel Production from soybean oil and sesame oil: An Alternative and Renewable Fuel for Diesel Engines. International Journal of Mechanical Engineering. ISSN : 2277-7059 Volume 2 Issue 2. 2012. [12] Christine and S. Gable (2011). Mini Test Batches for Homemade Biodiesel. About.com Guides. [Online] Retrived June 12, 2011. Available: http://alternativefuels.about.com/od//a/bdtestbatches.htm [13] (2009). U.S. Department of Energy, National Renewable Energy Laboratory. Biodiesel Handling and Use Guide (Fourth Edition).NREL/TP- 540-43672. [online]. Available: http://www.nrel.gov/vehiclesandfuels/pdfs/43672.pdf ISSN: 2231-5381 http://www.ijettjournal.org Page 3293