LANDFILL GAS ELEVATED (CANDLESTICK) FLARE SYSTEM

Similar documents
97311T. Features T Enclosed Burner with Touch Screen Control Panel. No visible flame. Touch Screen Control Panel

Features Enclosed Burner. Enclosed Burner. No visible flame. Controlled Combustion environment with natural draft design

Specifications of STICKTITE and PILOTPAK Nozzles

XID ENHANCEMENT SYSTEM IMPROVED EFFICIENCY AND PERFORMANCE

Field proven low emissions. State-of-the-art low NOx firing - adjustable for application flexibility

Specifications of STICKTITE and PILOTPAK Nozzles

Section 3 Technical Information

IMMERSION FIRED HOT WATER BOILER

Product Information. Model: LNVG, LNVLG Burner Sizes: 13, 15, 17, 20, 21, 25 GENERAL DESCRIPTION U.L. STANDARD EQUIPMENT

100% OUTSIDE AIR MAKE-UP UNITS WITH DISCHARGE TEMPERATURE CONTROL & c.pco DIRECT DIGITAL CONTROL MODULE

02. Purpose : Heating / Drying / Calcination etc. 04. Feeder System : 0.5 H.P. Motorized Screw Feeder with VFD.

Design and Application Details

Start-up Instructions

Low Temperature Burners - STICKTITE and PILOTPAK Nozzles

Power Flame Incorporated

E Series CE Approved Intermittent Pilot Ignition Control

G76x Direct Spark Ignition Controls

Sample Specifications 2110_KA.DOC KOBELCO KNW SERIES 1 OF 10 AIR-COOLED, OIL FREE AIR COMPRESSOR Frame 0, 1, HP

ROGERS MACHINERY COMPANY, INC

Advantage-D. Operating Instructions and Maintenance Manual. Central Vacuum Systems (Expandable/Modular Models) (Ver.

2.0 Burner Operating Parameters and Requirements

1630 SERIES CYCLOPS TM ULTRA 4 LOW NOX TM HOT AIR BAFFLE BURNER

The World s First Flameless Crude Heater

Start Up Instructions for the Kiln, Page 1 of 2

Biogas safety control equipment

PROFIRE 1100i IGNITION FLAME SAFETY CONTROLLER

Applications. Compressor-Features The Vilter Advantages. LNG Boil Off Gas Gathering BIO - Gas Digester CO 2 Nitrogen Hydrogen Refrigerant

ZEECO BURNER DIVISION

Sample Specifications 2111_A00.doc 01/18/06 KOBELCO KNWA00 SERIES 1 of 8 AIR-COOLED, OIL FREE AIR COMPRESSOR Frame HP

Eclipse Vortometric Burners Series HI

The Combustex Pilot Pro 800 Pilot Burner Assembly with Ignition & Flame Failure Monitor

NFPA 286 STANDARD METHODS OF FIRE TESTS FOR EVALUATING CONTRIBUTION OF WALL AND CEILING INTERIOR FINISH TO ROOM FIRE GROWTH

TECHNICAL SERVICE DEPARTMENT Technical Service Bulletin LowNOx Commercial Gas Electronic Spark Ignition Sequence

Info 110 4/98. RatioMatic Burners. RM Series version through 600 Sizes. 750 through 2000 Sizes

X4 Installation and Operation Manual - POWER FLAME INCORPORATED

G600 Series Replacement Intermittent Pilot Ignition Controls

CIRCULATION HEATERS SPECIFICATIONS DESCRIPTION FEATURES CH & CHP SERIES HEAT EXCHANGE AND TRANSFER, INC. 6 to 480 kw and higher. Flanged construction

G861 Series Integrated Function. Direct Spark Ignition Control

ROGERS MACHINERY COMPANY, INC

The Combustex Pilot Pro 900 Ignition System with Pilot Tip and Flame Sensor

The Combustex Pilot Pro 500 Ignition System with Pilot Tip and Flame Sensor

15100 VALVES. E. Section Building Automation and Control System Guidelines

G72x Series Direct Spark Ignition Controls

Specifications. Cover Equipment. Shand & Jurs Cover Position Indicator and MCG 2000MAX 4-20 Transmitter

INSTALLATION MANUAL ACL 5500 COMBUSTION SAFETY CONTROLLER

G821L/G822L Series Integrated Function Direct Spark Ignition Controls

CF50.0 CRITICAL FUEL SYSTEMS For Fuel Storage Up To 250,000 Gallons (946,000 liters)

G21Q ENGINEERING DATA. Typical Applications. Bulletin # March 1993

ALLEGHENY COUNTY HEALTH DEPARTMENT AIR QUALITY PROGRAM

Applies to: Models F, B, FE, and BE with spark pilot

ECLIPSE AIR HEAT BURNERS Series AH, DAH, TAH & CAH

ME Switchgear with Vacuum Circuit Breaker and Auto-jet II Switch with Ground Position

TOTAL ENGINEERED SOLUTIONS CSG PROCESS FILTER MODEL CL

W4100, W4200 & W4300 Electric Pump

Primary Controls. Chapter 11. Introduction. Functions of the primary control

Exhaust System - 2.2L Diesel

SECTION 3.00 WARNING WARNING ENGINE STARTUP AND SHUTDOWN PRESTART INSPECTION

Q35 Series Automatic Vent Damper System

SECTION MOTOR REQUIREMENTS for HVAC

Energetech LLC 7427 S. Main (P.O. Box 400) Midvale, Utah (801) Ph. (801) Fx.

Modulating Furnace Information. Warning on Meter Setting - Read First!

TWO-WAY LED AUTOMATIC TRANSMISSION REMOTE STARTER. User Guide WARNING

THC Heated FID 3-300A

North American 4575 HiRAM

Specifications of OPTIMA SLS Burners

Maxon Shut-Off and Vent Valves General Purpose

Temperature Controller. TC5+2V4SA Plus USER'S MANUAL

FPS- 80. Manual. Reverso Pumps, Inc. Ph: (954)

Series Cantilever Liquid Level Control

Heating and Gas Installations - December 2014

Spin Klin 12" Super Flow

Model DV-5 Deluge Valve, Diaphragm Style, 1-1/2 thru 8 Inch (DN40 thru DN200), Deluge System Electric Actuation

Burner Selection Criteria

PASSIVE OPERATION Completely self-contained with no reliance on power supplies, sensors, actuators or any external components.

ARGONITE Fire Protection Systems

P0401-EGR SYSTEM PERFORMANCE

Design and Application Details

AIR COMPRESSOR OPERATING INSTRUCTION AND PARTS LIST

Series 774 Automatic Skid Package

SELKIRK CORP INSTALLATION INSTRUCTION SUPPLEMENT MODEL G - CHIMNEY LINER

RULE BOILERS, STEAM GENERATORS, AND PROCESS HEATERS (Adopted 5/11/93, Revised 6/13/95, 6/13/00, 9/11/12)

Process switches and PLC circuits

Modified Downdraft Paint Booth Nut and Bolt Assembly Pre-Punched Panel Flanges

First Correlating Revision No. 1-NFPA [ Section No ]

3.1 Air Pollution Control Officer (APCO): as defined in Rule 1020 (Definitions).

Regulatory Impacts of Biogas-fired Internal Combustion Engines

Installation, Operation and Maintenance Manual

Bombardier Challenger Auxiliary Power Unit

DENVER PUBLIC SCHOOLS DESIGN AND CONSTRUCTION STANDARDS This Standard is for guidance only. SECTION MOTORS, STARTERS & DRIVES

Converting low quality gas into a valuable power source

VENT SILENCER PRODUCT GUIDE

North American 4485 Tempest SE

S4562C 1085 COMBI BOARD APPLICATION. Contents PRODUCT HANDBOOK. General

SECTION AIR TERMINAL UNITS

RULE 4352 SOLID FUEL FIRED BOILERS, STEAM GENERATORS AND PROCESS HEATERS (Adopted September 14, 1994; Amended October 19, 1995; Amended May 18, 2006)

ISIMET/MAPA, LLC, an affiliate of WCM Industries, Inc. 103 CJ Wise Parkway Naples, TX (903) fax (903)

Low emissions, high performance natural gas burners

Jordan Control Valve Series

GAS BURNERS TYPE JR Forced Draft Burners 3450 RPM motor and squirrel cage blower Leakage test, pilot and main gas cocks Gas electric pilot and gas ign

TWO-WAY LED MANUAL TRANSMISSION REMOTE STARTER. User Guide WARNING

Transcription:

LANDFILL GAS ELEVATED (CANDLESTICK) FLARE SYSTEM Part 1. General 1.01 Description A. This section describes a candlestick flare system for the combustion of landfill gases. The flare system must be of industrial quality and be designed specifically for use in landfill gas service. The flare manufacturer shall have a minimum 10 years experience in the design and manufacture of this type of equipment and have a minimum of 25 candlestick flares in successful operation in the United States. B. The flare system to be supplied must be complete and operable as specified herein: 1.02 Design Criteria A. The landfill gas utility flare shall be designed to operate continuously at the following operation conditions: (maximum) gases (maximum) Landfill gas flow rate: SCFM Composition: 30% - 50% CH 4 Remainder CO 2, air, and inert Lower Heating Value (LHV): Temperature: LFG moisture content : Heat release: BTU/SCF 100F Saturated MMBtu/Hr B. Mechanical level Design Wind Speed: 110 mph Seismic Zone: 4 Site Elevation: ft above sea Electrical Area: Non-hazardous (unclassified) C. Unit Design Smokeless Capacity 100% Pressure Drop <5 w.c. from inlet through outlet of the flare Turndown >10:1

1.03 Performance Requirements A. The candlestick flare system must be capable of achieving the following performance requirements: Part 2 - Products 2.01 General 1. The flare must be capable of sustaining stable combustion with 30% - 50% CH4 at the maximum required flow rate. 2. The flare must be capable of a minimum 10:1 turndown. 3. The flare exit velocity must be designed strictly in accordance with EPA 40 CFR Ch. 1 section 60.18, but shall not exceed 100 feet per second at any time. 4. The radiation on any point at grade shall not exceed 500 Btu/Hr-ft2 when the flare is firing at the maximum design heat release and with a 20 mph wind. This radiation is to be determined via the 3-point method utilizing the radiant heat fractions at each point. 5. Flame shape shall be determined and be based on the momentum flux differences between the landfill gas exiting the flare tip and the cross wind. The landfill gas should take into account the hydrocarbon concentration. 6. Flame length shall be determined and be based on the maximum design heat release with allowances for the molecular weight. 7. The pressure loss through the flare must be less than 5 w.c. from the inlet flange through the outlet of the flare. 8. Emissions from the flare shall not exceed the following: Nitrogen Oxide (NOx) - 0.068 lbs per MMBtu Fired Carbon Monoxide (CO) - 0.37 lbs per MMBtu Fired 9. The flare shall be capable of achieving a minimum destruction efficiency of >98% of total non-methane organic compounds (NMOCs). A. All equipment shall be designed and shall perform as a minimum in accordance with these specifications. B. These specifications are intended to be specific in nature such that the flare operator will not be in danger from radiant heat emitted from the flame, and to

2.02 Equipment determine the location of the flare from nearby structures, power lines, trees, etc., based on the flame shape and flame length. A. The landfill gas open (candlestick) flare system shall have the following items as a minimum: 1. Self supporting base ring. 2. Carbon steel stack 3. Spark ignited pilot assembly 4. Flare tip 5. Ignition and control system 6. Ancillary Equipment B. The equipment provided shall be designed specifically for use in landfill gas service. All components directly supporting combustion, such as the flare tip and pilot, must be manufactured by the flare supplier. Only ancillary equipment, such as gas blowers, flame arrestors, and instrumentation shall be manufactured by others. C. The control system shall be completely assembled and tested prior to shipment by the flare supplier at the supplier's own fabrication facility. 2.03 Equipment Description A. Self supporting base ring 1. Minimum ¾ A-36 plate 2. Minimum ¾ diameter bolt holes B. Carbon steel stack 1. The flare stack shall be fabricated from A106-B standard weight carbon steel pipe up through 10 and A53-B carbon steel pipe from 12 to 16. 2. The inlet shall be a 90 entrance into the stack. 3. The inlet shall project a minimum of 10 from the stack and terminate with a 150# ANSI FFSO flange. 4. The inlet nozzle shall contain one (1) 1/2 FNPT connection on the top of the nozzle for a temperature switch to be mounted. 5. A carbon steel inclined floor plate at least 4 below the lowest part of the inlet connection shall be seal welded to the interior of the stack with one (1) 1 3000# FNPT connection located as a low point drain connection above the inclined plate, on the down slope side. C. Spark ignited pilot assembly

D. Flare Tip 1. The pilot shall be spark ignited. 2. The spark plug shall be located no closer than 5-0 from the end of the flare tip and shall be located in a position that is not considered a low point, that can collect water. 3. The pilot shall consist of an ignition rod internal to the pilot assembly and shall be weather proof such that rain or condensation will not cause the ignition rod to arc out in a location other than the pilot tip. 4. The arc (spark) that ignites the flare pilot shall be located at the pilot tip, such that the base of the pilot flame is directly adjacent to the arc (spark). 5. The pilot shall consist of a cast iron self-inspirating capable of achieving the air/gas mixture required for proper pilot flame stability. This eductor shall have a windshield around the inlet air opening such that a cross-wind will not affect the operation of the pilot. 6. The gas inlet connection to the pilot eductor shall be ½ FNPT. 7. The pilot tip shall be made from stainless steel and shall be positioned such that the main flare tip is ignited easily. 1. The flare tip shall be a minimum length of 5-0. 2. The flare tip shall be 304 stainless steel schedule 10S pipe of the same diameter as that of the carbon steel stack. 3. The flare tip shall be continuously welded to the carbon steel flare stack with a 309 SS weld. 4. The flare tip shall incorporate integral flame retention for increased flame stability. 5. The flare tip wind shield shall be fabricated from 309/310 stainless steel. 6. The wind shield shall be designed to educt the proper amount of air into the flame zone for stable combustion throughout the flow range. 7. The flare tip shall have one (1) type K thermocouple assembly with 310 stainless steel sheathing mounted to the stack for sizes 4 through 8 and two (2) type K thermocouple assemblies with 310 stainless steel sheathing for sizes 10 through 16. Each thermocouple shall be located such that it detects the main flame throughout the entire design operating range. E. Control System Provide a complete and operational control system designed for 480V/3ph/60hz incoming power and step-down as required to successfully operate the blower(s) and flare system. The control system shall be supplied with the following items completely pre-assembled on a structural steel rack:

1. One (1) weatherproof single phase power transformer to convert electrical power service from 480 V to 120 V. 2. One (1) weatherproof Flare Control Panel including the following instrumentation for safe, overall system operation and control: Allen Bradley Programmable Logic Controller or equal Honeywell DR 4500 Truline digital circular chart recorder for recording flow. Automation Direct 6 touch screen display or equal. The following switch and lights are required on the front of the control panel, as a minimum: Panel Power (On/Off) switch Power ON light (white) Flare operating light (green) Flare shutdown light (red) The following flare system status is required on the touch screen display, as a minimum: Flare start up status Thermocouple status (normal or cooling) Pilot gas ON/OFF status Igniter ON/OFF status Pilot proved status Auto valve status Blower status Flare thermocouple temperatures Flame arrester thermocouple temperature The following switches/settings are required on the touch screen display, as a minimum. System control (Local Off Remote) Blower control (Hand Off Auto) Main thermocouple setpoint Pilot thermocouple setpoints Reset switch Alarm acknowledgement switch The following alarms are required on the touch screen display, as a minimum. Manual stop Pilot flame failure

Flame arrester high temperature Auto valve failure Blower failure Main flame failure 3. One (1) pilot gas control system including pressure regulator, failclosed shutdown valve, manual block valve, and pressure indicator. 4. Weatherproof combination motor starter for each gas blower. The following components shall be installed on or mounted to the flare stack. 1. One (1) weatherproof Ignition Panel with 6000 V transformer mounted to the stack for intermittent pilot ignition. 2. Main flame thermocouples. 3. One (1) pilot assembly with integral thermocouple. The control station and instrumentation shall be assembled and wired completely in a facility approved by Underwriters Laboratories and shall be functionally tested prior to shipment simulating actual operation. F. Ancillary Equipment Part 3 - System Operation 3.01 General 1. A flame arrester with aluminum body and removable, internal aluminum element shall be installed at the flare inlet flange. 2. An automatic block valve assembly consisting of a high performance butterfly valve with 316 stainless steel disc and Teflon seal, and a failclosed pneumatic actuator shall be supplied. 2. Gas blowers with totally enclosed, fan cooled motors (TEFC) shall supply the enclosed flare with landfill gas. 3. A moisture separator vessel with flanged inlet and outlet connections, stainless steel demister element capable of removing 99% of water droplets 10 micron and larger from landfill gas, differential pressure gauge, and level gauge shall be supplied. 4. A suitable amount of thermocouple and ignition wire shall be supplied. A. The flare system shall safely destroy 98% of the organic compounds generated by solid waste. B. The system shall be controlled by a programmable logic controller (PLC) which receives and transmits signals with respect to operating conditions. If an unacceptable operating condition occurs, the system shall discontinue operation.

C. System operation shall include an initial timed ignition sequence, and fail-safe controls. D. System shutdown shall result pilot flame failure, main flame failure, automatic block valve failure, and flame arrester high temperature. F. Individual thermocouples shall monitor both pilot flame and main flame. 3.02 System Control Selection System operation begins automatically by selecting either local or remote system control. Local control requires interaction at the control panel to start and stop operation. Remote control allows starting and stopping operation without interaction at the control panel. 3.03 Operating Permissives System operation is permitted only after confirming two safety conditions exist. The closed limit switch for the automatic block valve must be satisfied, proving a closed valve position. Additionally, the pilot and main thermocouples must not detect the presence of flame. 3.04 Ignition Sequence When the flare Start switch is selected, the pilot gas solenoid valve opens automatically, supplying gas to the pilot, the "Pilot Gas ON" status is indicated, and the ignition transformer energizes. The ignition transformer continues for ten seconds and then the pilot thermocouple verifies flame is present. The "Pilot Proved" status indicates and the pilot gas solenoid valve remains open. 3.05 Gas Supply Once pilot flame is detected, the automatic block valve opens, operation of the selected gas blower begins, supplying gas to the flare, and the Blower On" status is indicated. After the open limit switch for the automatic block valve is achieved, the pilot gas solenoid valve closes and the "Igniter OFF" status is indicated. While the main thermocouple verifies flame is present, system operation continues. If the open limit switch for the automatic block valve is not achieved within twenty seconds, the "Auto Valve failure alarm is indicated on the display, and system operation discontinues. Part 4 - System Failure 4.01 Automatic Block Valve Failure If the open or closed limit switch on the automatic block valve indicates improper valve position at any time during start up or operation, the Automatic Block Valve Failure alarm will be indicated on the display and the unit will shut down.

4.02 Pilot Flame Failure and Shutdown Pilot Flame Failure occurs, during the ignition sequence, when the pilot thermocouple is unable to detect the presence of pilot flame. When Pilot Flame Failure occurs, system operation is interrupted momentarily. Then the entire ignition sequence is repeated automatically. A shutdown occurs only after three consecutive failures, or unsuccessful attempts. Once Pilot Flame Shutdown occurs, the "Pilot Flame Failure" alarm is indicated and system operation discontinues. 4.03 Main Flame Failure and Shutdown Main Flame Failure occurs, once the ignition sequence is complete, when the main thermocouple is unable to detect the presence of main flame. When Main Flame Failure occurs, system operation is interrupted momentarily. Then the entire ignition sequence is repeated automatically. A Shutdown occurs only after three consecutive Failures, or unsuccessful attempts. Once Main Flame Shutdown occurs, the "Main Flame Failure" alarm is indicated and system operation discontinues. 4.04 Flame Arrester High Temperature Flame Arrester High Temperature occurs when the temperature switch on the face of the flame arrester detects the presence of a flame, indicating a flash back. This will immediately cause a shutdown and the Flame Arrester High Temp alarm will be indicated.