Experimental Investigation On Performance, Combustion Characteristics Of Diesel Engine By Using Cotton Seed Oil

Similar documents
Performance and Emission Analysis of Diesel Engine Using Fish Oil And Biodiesel Blends With Isobutanol As An Additive

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 11 Nov p-issn:

EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL

Chandra Prasad B S, Sunil S and Suresha V Asst. Professor, Dept of Mechanical Engineering, SVCE, Bengaluru

Experimental Investigations on a Four Stoke Diesel Engine Operated by Jatropha Bio Diesel and its Blends with Diesel

INVESTIGATION OF PERFORMANCE AND EMISSION CHARACTERISTICS OF A COMPRESSION IGNITION ENGINE WITH OXYGENATED FUEL

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL

Combustion and Emission Characteristics of Jatropha Blend as a Biodiesel for Compression Ignition Engine with Variation of Compression Ratio

EXPERIMENTAL INVESTIGATION OF FOUR STROKE SINGLE CYLINDER DIESEL ENGINE WITH OXYGENATED FUEL ADDITIVES

Experimental Investigation on Performance Characteristic of Diesel Engine by Using Methyl Ester of Linseed and Neem oil

Material Science Research India Vol. 7(1), (2010)

Research Article. Effect of exhaust gas recirculation on NOx emission of a annona methyl ester operated diesel engine

Performance and Emission Analysis of Diesel Engine using palm seed oil and diesel blend

Experimental Investigations on Diesel Engine Fueled with Tyre Pyrolysis Oil and Diesel Blends

Performance and Emission Characteristics of 4 S DI diesel Engine fueled with Calophyllum Inophyllum Biodiesel Blends

ABSTRACT I. INTRODUCTION II. TECHNICAL SPECIFICATIONS OF THE ENGINE III. MATERIAL & METHODS

PERFORMANCE AND EMISSION ANALYSIS OF CI ENGINE FUELLED WITH THE BLENDS OF PALM OIL METHYL ESTERS AND DIESEL

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

Performance and Emission Characteristics of a Kirloskar HA394 Diesel Engine Operated on Mahua Oil Methyl Ester

Project Reference No.: 40S_B_MTECH_007

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF BTE AND NOX IN A DIRECT INJECTION VCR DIESEL ENGINE RUNNING WITH RICE BRAN METHYL ESTER

PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF

National Conference on Advances in Mechanical Engineering Science (NCAMES-2016)

Experimental Investigation of Emission Reduction by Blending Methanol, Ethanol and Biodiesel with diesel on C.I. Engine

EXPERIMENTAL INVETIGATIONN ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DI- CI ENGINE FUELED WITH PREHEATED SHEA OLEIN BIODIESEL

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.5, pp ,

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine

Performance, Combustion and Emission Characteristics of Corn oil blended with Diesel

TO INVESTIGATE THE PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE USING MUSTARD OIL BIODIESEL AS FUEL

Effect of Varying Load on Performance and Emission of C.I. Engine Using WPO Diesel Blend

GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN:

International Journal on Theoretical and Applied Research in Mechanical Engineering (IJTARME)

A.S.P. Sri Vignesh 1, Prof C. Thamotharan 2 1 (Department of Automobile Engineering, Bharath Institute of Science and Technology, Bharath University

Simultaneous reduction of NOx and smoke emission of CI engine fuelled with biodiesel

EXPERIMENTAL AND THEORETICAL INVESTIGATION ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL FUEL BLENDS

Impact of Various Compression Ratio on the Compression Ignition Engine with Diesel and Mahua Biodiesel

EFFECT OF BUTANOL-DIESEL BLENDS IN A COMPRESSION IGNITION ENGINE TO REDUCE EMISSION

Feasibility Study of Soyabean Oil as an Alternate Fuel for CI Engine at Variable Compression Ratio

National Journal on Advances in Building Sciences and Mechanics, Vol. 1, No.2, October

Performance, emission and combustion characteristics of fish-oil biodiesel engine

Optimization of Neem and Niger Oil Blends and IOP Used for Diesel Engine Using Taguchi Method

EFFECT OF STEAM INJECTION ON NO X EMISSIONS AND PERFORMANCE OF A SINGLE CYLINDER DIESEL ENGINE FUELLED WITH SOY METHYL ESTER

ANALYSIS OF EXHAUST GAS RECIRCULATION (EGR) SYSTEM

CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES

EXPERIMENTAL INVESTIGATION OF METHODS TO IMPROVE PERFORMANCE OF DI ENGINE USING PONGAMIA BIODIESEL BY VARYING PARAMETERS

PERFORMANCE OF DIRECT INJECTION C.I. ENGINE USING KARANJA OIL AT DIFFERENT INJECTION PRESSURES

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HYDROGEN BLENDING ON THE CONCENTRATION OF POLLUTANTS EMITTED FROM A FOUR STROKE DIESEL ENGINE

Use of Alternative Fuel in Lower Heat Rejection Engine with Different Insulation Levels

EXPERIMENTAL INVESTIGATION OF A DIESEL ENGINE FUELED BY EMULSIFIED B20 BIODIESEL

Impact of Cold and Hot Exhaust Gas Recirculation on Diesel Engine

Evaluation of Performance and Emission Characteristics of Flax Oil Ethyl Ester with Ignition Improver on Diesel Engine and Comparison With Jatropha

EFFECT OF EGR AND CYCLONIC SEPARATOR ON EMISSIONS IN DI DIESEL ENGINES

Ester (KOME)-Diesel blends as a Fuel

Available online Research Article

Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark

Study of Performance and Emission Characteristics of a Two Stroke Si Engine Operated with Gasoline Manifold Injectionand Carburetion

EFFECTS OF ETHANOL-DIESEL EMULSIONS ON THE PERFORMANCE, COMBUSTION AND EMISSION CHARACTERISTICS OF DI DIESEL ENGINE

Sathyabama Institute of Science and Technology,Chennai ,Tamilnadu,India. JSPM s,college of Engineering,Hadapsar,Pune ,Maharashtra,India.

Performance Enhancement & Emission Reduction of Single Cylinder S.I. Engine using Tri Fuels -An Experimental Investigation

National Conference on Advances in Mechanical Engineering Science (NCAMES-2016)

CHAPTER 5 EXPERIMENTAL SET UP AND TESTING PROCEDURES

Properties and Use of Jatropha Curcas Ethyl Ester and Diesel Fuel Blends in Variable Compression Ignition Engine

Government Engineering College, Bhuj.

EXPERIMENTAL INVESTIGATION OF PERFORMANCE ANALYSIS ON VCR DI DIESEL ENGINE OPERATED ON MULTI BLEND BIODIESEL

Experimental determination of suitable ethanol gasoline blend for Spark ignition engine

An Experimental Investigation On Four Stroke Single Cylinder Diesel Engine Using Animal Fat And Palm Oil As Biodiesel

Effect of Injection Pressure on The Performance And Emission Characteristics of Single Cylinder Diesel Engine Using Neem And Niger Oil As A Biodiesel

S S Ragit a *, S K Mohapatra a & K Kundu b. Indian Journal of Engineering & Materials Sciences Vol. 18, June 2011, pp

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

Performance And Emissions Characteristics Of Diesel Engine Fuelled With Rice Bran Oil

PERFORMANCE AND EMISSION CHARACTERISTICS OF A VARIABLE COMPRESSION SI ENGINE USING ETHANOL- GASOLINE BLENDS AS FUEL

INTERNATIONAL CONFERENCE ON RECENT ADVANCEMENT IN MECHANICAL ENGINEERING &TECHNOLOGY (ICRAMET 15)

Mechatronics, Electrical Power, and Vehicular Technology

Emission Characteristics of Rice Bran Oil Biodiesel as an Alternative in Single Cylinder CI Engine with DI Ethyl Ether Blends

EFFECT OF EMULSIFIER ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING PALM BIODIESEL

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine

INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL

INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE

Effect Of Exhaust Gas Recirculation On The Performance And Emission Characteristics Of Diesel Engine With Orange Oil- Diesel Blend

INVESTIGATIONS ON THE EFFECT OF MAHUA BIOFUEL BLENDS AND LOAD ON PERFORMANCE AND NOX EMISSIONS OF DIESEL ENGINE USING RESPONSE SURFACE METHODOLOGY

Experimental Investigation of a Diesel Engine fueled by emulsified B20 biodiesel

Effect of Oxygenated DEE Additive to Ethanol and Diesel Blend in the Context of Performance and Emissions Characteristics of CI Engine

July 2016 IJIRT Volume 3 Issue 2 ISSN:

April-June JCPS Volume 8 Issue 2

PERFORMANCE IMPROVEMENT OF A DI DIESEL ENGINE WITH TURBOCHARGING USING BIOFUEL

Comparative Analysis of Jatropha-Methanol Mixture and Diesel on Direct Injection Diesel Engine

Automotive Technology

An Experimental Analysis of IC Engine by using Hydrogen Blend

PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE FUELLED WITH NON EDIBLE VEGETABLE OIL AND DIESEL BLENDS

THE EFFECT OF SUPERCHARGING ON PERFORMANCE AND EMISSION CHARACTERISTICS OF COMPRESION IGNITION ENGINE WITH DIESEL-ETHANOL-ESTER BLENDS

Comparative Analysis of Performance and Emission Charactristics of Neem Oil Using 3 And 4 Holes Injection Nozzle on DI Diesel Engine

International Journal on Emerging Technologies (Special Issue on NCRIET-2015) 6(2): 57-62(2015)

Experimental Study on Performance and Emission of Diesel Engine using Sunflower Oil-Diesel Blends as Fuel

Investigation of Single Cylinder Diesel Engine Using Bio Diesel from Marine Algae

Effect of Direct Water Injection on Performance and Emission Characteristics of Diesel Engine Fueled with Bio Diesel and Hydrogen

Effect of Composite Additives on CI Engine Performance and Emission

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL

Investigation of the Performance and Emission Characteristics of CI Engine Using Simarouba Biodiesel as Fuel

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE WITH MUSTARD OIL-DIESEL BLENDS AS FUEL

Transcription:

Experimental Investigation On Performance, Combustion Characteristics Of Diesel Engine By Using Cotton Seed Oil S.KIRANKUMAR Lecturer, Department of Mechanical Engineering Blue hora university, Ethiopia Abstract- Injection pressure plays an important role in the engine performance and emission control of internal combustion engines. Present work describes the experimental investigations carried on a four stroke single cylinder water cooled Kirloskar diesel engine with Cotton seed oil-diesel blends. Cotton seed oil is blended with diesel in varying proportions like (,, ) 1%, 2% and 3% and experiments were carried out by varying the injection pressures from 165 bar to 21 bar. The performance characteristics like brake thermal efficiency, brake specific fuel consumption and exhaust gas temperatures are investigated. Based on investigations, a comparison is drawn on engine performance with pure diesel operation and with different blends. Experimental results demonstrate that at 195 bar fuel injection pressure, the performance characteristics are observed to be better with blends when compared to the pure diesel operation. Maximum brake thermal efficiency observed is 34.1% with 3% blend at an injection pressure of 195 bar and lower specific fuel consumption observed is.258 kg/kw-hr with 3% blend at an injection pressure of 195bar. Keywords: injection pressure, Cotton seed oil, brake power,specific fuel consumption, compression ignition. 1. INTRODUCTION Researchers have used different additives to petrol and diesel fuels for efficiency and emission improvement. The addition of alcohol based fuels to petroleum fuels has been increasing due to advantages like better combustion and lower exhaust emissions. Oxygenates like ethanol, I- propanol, I-butanol and I-pentanol improved performance parameters and reduced exhaust emissions (1, 2). Gasolineethanol blends with additives such as cyclooctanol, cycloheptanol increased brake thermal efficiency when compared to gasoline with reduction in CO,CO2 and NOx while HC and O2 increased moderately(3). Gasoline with additives like ethanol and ethanol-isobutanol increased the brake power, volumetric and brake thermal efficiencies and fuel consumption. The CO and HC concentrations in the engine exhaust decreased while the NOx concentration increased. The addition of 5% isobutanol and 1% ethanol to gasoline gave the best results(4). Bio-additives (matter extracted from palm oil) as gasoline additives at various percentages (.2%,.4% and.6%) showed improvement in fuel economy and exhaust emissions of SI engine(5). Methyl-ester of Jatropha oil diesel blends with Multi-DM- 32 diesel additive showed comparable efficiencies, lower smoke, CO2 and CO (6). The addition of Di Methyl Carbonate (DMC) to diesel fuel increases efficiency marginally with reductions in NOx emissions while PM and soot emissions were reduced considerably (7,8). Biodiesel with Di Ethyl Ether in a naturally aspirated and turbocharged, high-pressure, common rail diesel engine reduced NOx emissions with slight improvement in brake thermal efficiency (9,1). Ethanol addition to dieselbiodiesel blends increased brake thermal efficiency with reduction in carbon monoxide and smoke emissions and at the same time hydrocarbons, oxides of nitrogen and carbon dioxide emissions increased(11). Some researchers have used cetane improvers and some others have used additives in coated engines. Biodiesel blended fuel, and a cetane improving additive (2-EHN) reduced PM emissions(12). Addition of di-1-butyl peroxide and the conventional cetane improver, 2-ethylhexyl nitrate additives to diesel fuel reduced all regulated and unregulated emissions including NOx emissions(13).present work attempts to investigate performance, combustion and emission characteristics of diesel engine with the cotton seed oil blends. The properties of cotton seed oil are shown in Table 1. ISSN: 2231-5381 http://www.ijettjournal.org Page 47

Table 1 Properties of cotton seed oil properties DIESE L COTTO N SEED OIL carbon % (W/W) flash point.213.192.1566.2439.1269 57 59 61 6 12 ( O C) Fire point ( o c) 64 68 71 62 153 Density (g/cm 3 ) 822.5 826 829 83 868 Kinematicvisco sity (centi stroke ) at 3 c 3.575 3.96 4.387 3.15 9.155 Specific gravity.811.821.827.83.876 Calorific value (kj/kg) 41.9 1 41.46 1 4.87 1 42.5 1 37.4 1 3 3 3 3 3 2. EXPERIMENTAL SET UP AND PROCEDURE 2.1 Experimental Set Up: The engine shown in plate.1 is a 4 stroke, vertical, single cylinder, water cooled, constant speed diesel engine which is coupled to rope brake drum arrangement to absorb the power produced. The engine crank started. Necessary dead weights and spring balance are included to apply load on brake drum. Suitable cooling water arrangement for the brake drum is provided. Separate cooling water lines fitted with temperature measuring thermocouples are provided for engine cooling. A measuring system for fuel consumption consisting of a fuel tank, burette, and a 3- way cock mounted on stand and stop watch are provided. Air intake is measured using an air tank fitted with an orifice meter and a water U- tube differential manometer. Also digital temperature indicator with selector switch for temperature measurement and a digital rpm indicator for speed measurement are provided on the panel board. A governor is provided to maintain the constant speed. Table 2 Specifications of the Test Engine Specifications of the Test Engine Particulars Make Rated Power Bore Stroke Length Swept volume Specifications Kirloskar 3.7 kw(5hp) 8 mm 11 mm 562 cc Compression ratio 16.5:1 Compression ratio 16.5:1 Plate 1 Diesel Engine Test Rig 2.2 TEST FUELS For experimental investigations, biodiesel derived from cotton seed oil was mixed with diesel in varying proportions 1%, 2% and 3% by volume respectively to all the blends. 2.3 EXPERIMENTAL PROCEDURE Calculate full load (W) that can be applied on the engine from the engine specifications. Clean the fuel filter and remove the air lock. Check for fuel, lubricating oil and cooling water supply. Start the engine using decompression lever ensuring that no load on the engine and supply the cooling water Allow the engine for 1 minutes on no load to get stabilization. Note down the total dead weight, spring balance reading, time taken for 2cc of fuel consumption and the manometer readings. Repeat the above step for different loads up to full load. Connect the exhaust pipe to the smoke meter and exhaust gas analyzer and corresponding readings are tabulated. Allow the engine to stabilize on every load change and then take the readings. Before stopping the engine remove the loads and make the engine stabilized Stop the engine pulling the governor lever towards the engine cranking side. Check that there is no load on engine while stopping 3. RESULTS AND DISCUSSION 3.1 PERFORMANCE ANALYSIS The experiments are conducted on the four stroke single cylinder water cooled diesel engine at constant speed (15 rpm) with varying loads. Various performance parameters such as, The variation of brake thermal ISSN: 2231-5381 http://www.ijettjournal.org Page 48

efficiency with load for different fuels is presented in Fig. 1.1. In all cases, it increased with increase in load. This was due to reduction in heat loss and increase in power with increase in load. The maximum thermal efficiency for (34.1 %) was higher than that of diesel [32.82%]. This blend of 3% also gave minimum brake specific energy consumption. Hence, this blend was selected as optimum blend for further investigations and long-term operation. The variation of mechanical efficiency with brake power is shown in the Fig. 1.2. From the plot it is observed that there is slight variation of the mechanical efficiency for all the blends of cotton seed oil compared to the diesel fuel. The variation of volumetric efficiency with Brake Power is shown in Fig. 1.3. From the plot it is observed diesel contains 78.42% at full load, but in case of cotton seed oil blends it shown a slight decrement. The decrement in the volumetric efficiency is due to the decrease in the amount of intake air due to high temperature in the cylinder.the variation in BSFC with load for diesel and cotton seed oil blends is presented in Fig 1.4. In all cases, it decreased sharply with increase in percentage load for all fuels. The BSFC full load condition for the diesel is.26 and among all the blends has taken minimum fuel my giving the value of.258. The main reason for this could be that percent increase in fuel required to operate the engine is less than the percent increase in brake power due to relatively less portion of the heat losses at higher loads. The BSFC for was observed lower than diesel.the variation of Indicated Specific Fuel Consumption (ISFC) with Brake Power is shown in Fig. 1.5.From the plot it is observed that the indicated specific fuel consumption is slightly higher than the diesel for the blends of cotton seed oil. At full load condition the ISFC for the diesel is.163 which is lower than the.188 for the blend. Initially it is higher than the diesel but coming to the full load condition it is coming closer to the diesel. The variation of Air-Fuel Ratio with Brake Power is shown in Fig. 1.6. From the plot it is observed that air fuel ratio decreases compare with Diesel at full load condition for the different blends of cotton seed oil. At the full load condition the air fuel ratio for the blend is 22.5 which is lower than the diesel having 22.79. The air fuel ratio decreases due to increase in load because of the compensation of load can only be done with increasing the quantity of fuel injection to develop the power required to bare the load. Fig. 1.1 Variation of Brake Thermal Efficiency with Brake 8 6 2 35 3 25 2 BTE (%) 15 1 Mech 4.Eff (%) Volum etric 8 Efficien cy(%) Fig. 1.2 Variation of Mechanical Efficiency with Brake 1 5 9 7 6 5 Fig. 1.3 Variation of Volumetric Efficiency with Brake ISSN: 2231-5381 http://www.ijettjournal.org Page 49

.5 BSFC (Kg/kW-hr) Fig. 1.4 Variation of Brake Specific Fuel Consumption with Brake Fig. 1.5 Variation of Indicated Specific Fuel Consumption with Brake 8 6 4 2.4.3.2.24 ISFC (Kg/kW-hr).22.2.18.16 A/F Ratio Fig. 1.6 Variation of Air Fuel Ratio with Brake Power Using CSO Blends 3.2 EMISSION ANALYSIS USING DIESEL AND COTTON SEED OIL BLENDS: The experiments are conducted on the four stroke single cylinder water cooled diesel engine at constant speed (15 rpm) with varying loads. Various emission parameters in the sense of smoke density, unburned hydro carbons, carbon monoxide and nitrogen are discussed below. The variation of Smoke density with Brake Power is shown in Fig. 1.7. The Smoke is nothing but solid soot particles suspended in exhaust gas. Fig. 1.8 shows the variation of smoke level with brake power at various loads for different blends like, and tested fuels. It is observed that smoke is decreases for CSO-DIESEL blends at full load conditions. It is observed that the smoke density for the diesel fuel is 79.6 high compared to all blend and for the blend smoke density is lesser compared to all the other blends by giving the value of 61.34.The variation of CO emission with Brake Power is shown in Fig. 1.9The plot it is observed that is interesting to note that the engine emits more CO for diesel as compared to biodiesel blends under all loading conditions. The CO concentration is decreases for the blends of, and for all loading conditions. At full load conditions the CO emissions for the diesel is lower than the other blends and at full load condition the blend given the lower emissions compared to all blends. At lower biodiesel concentration, the oxygen present in the biodiesel aids for complete combustion. However as the biodiesel concentration increases, the negative effect due to high viscosity and small increase in specific gravity suppresses the complete combustion process, which produces small amount of CO. The variation of carbon dioxide with brake power is shown in fig. 1.1. The plot is revels that different specified blends are indicated. The co 2 emission for all the fuels tested fallowed an increasing trend with respect to load. At full load condition the blend has given the maximum co 2 emission which is allowable. The reason could be the high amount oxygen in the specified fuel blends which is converting CO emission into CO 2 emission content. The variation in HC emissions with Brake Power is shown in Fig. 1.1. The plot it is observed that the HC emission variation for different blends is indicated. That the HC emission decreases with increase in load for diesel and it is drastic decreases for all biodiesel blends. Traces are seen at no load and full load. At full load condition the HC emissions for diesel is high compared to the all the blends, the blend has shown the maximum reduction in the HC emissions. As the Cetain number of ester based fuel is higher than diesel, it exhibits a shorter delay period and results in better combustion leading to low HC emission. Also the intrinsic oxygen contained by the biodiesel was responsible for the reduction in HC emission. The variation of NO x emission with Brake Power is shown in Fig. 1.11. The plot it is observed that for different blends is indicated. The NO x emission for all the fuels tested followed an increasing trend with respect to load. At full load condition the blend has given the most decrement in the oxides of nitrogen compared to all the other blends of cotton seed oil. The reason could be the higher average gas temperature, ISSN: 2231-5381 http://www.ijettjournal.org Page 5

residence time at higher load conditions. A reduction in the emission for all the blends as compared to diesel was noted. With increase in the biodiesel content of the fuel, corresponding increment in emission was noted. The variation of unused oxygen emission with brake power is shown in Fig. 1.12. From the graph it is observed that as the load increases the unused oxygen decreases. At full load condition the unused oxygen obtained are 18.62%, 18.7%, 19.5% and 19.74% for the fuels of diesel,, and respectively. The decrement of unused oxygen due to CO emission converts into CO 2 emission. 8 Smoke Density 6 (H.S.U) 12 1 CO2 8(%) 6 4 2 Fig.1.9 Variation of Carbon Dioxide with Brake 4 6 2 HC 4 (ppm) Fig. 1.7 Variation of Smoke Density with Brake 2.16.14.12 CO (%) Fig. 1.1 Variation of Unburned Hydrocarbons with Brake.1.8.6.4 15 NOx (ppm) 1 Fig. 1.8 Variation of Carbon Monoxide with Brake 5 Fig.1.11 Variation of NOx Emission with Brake ISSN: 2231-5381 http://www.ijettjournal.org Page 51

3 27 24 (%) full load conditions as compared to diesel except blend. 4. The unburned hydrocarbons are obtained 58ppm, 12ppm, 9ppm and 8ppm for the fuels of diesel,, and respectively. O 2 21 18 15 Fig. 1.12 Variation of Unused Oxygen with Brake 5. The CO emission obtained are.5%,.9%,.1% and.9% for the fuels of diesel,, and respectively. The CO concentration is little increases for the blends of, and. 6. The NOx emission obtained are 1236ppm, 183ppm, 168ppm and 144ppm for the fuels of diesel,, and respectively. The reason could be the higher average gas temperature, residence time at higher load conditions. A reduction in the emission for all the blends as compared to diesel was noted. 4. CONCLUSIONS The conclusions deriving from present experimental investigation to evaluate the experimental tests are conducted on 4-stroke, single cylinder, water cooled and direct injection diesel engine by using cotton seed oil blends of, and, pure diesel at constant speed of 15 rpm. From the first set of results it can be conclude that the blend has given the better performance in the sense of brake thermal efficiency, specific fuel consumption and emission parameters. No engine seizing, injector blocking was found during the entire operation while the engine running with different blends of cotton seed oil and diesel are summarized as follows: 1. The BSFC obtained are.26 kg/kw-hr,.265 kg/kw-hr,.257 kg/kw-hr and.25 kg/kw-hr for fuels of diesel,, and respectively. The minimum fuel consumption is for is.25 kg/kw-hr as to that of diesel are.26 kg/kw-hr. The BSFC of cotton seed oil blend is decreases up to 1.53% as compared with Diesel at full load condition. 2. The brake thermal efficiencies are obtained 32.82%, 32.33%, 33.71% and 34.8% for the fuels diesel,, and respectively, among the three blends of cotton seed oil the maximum BTE is 34.8% which is obtained for. The BTE of cotton seed oil is increases up to.46% as compared with Diesel at full load condition. 3. The smoke density obtained are 79.6 HSU, 58.5 HSU, 71.51 HSU and 61.34 HSU for the fuels of diesel,, and. It is observed that smoke is decreases for cotton seed oil blends at 7. Exhaust emissions like smoke density, unburned hydrocarbons, carbon monoxide and NOx are decreases of cotton seed oil blends as compared to diesel fuel. 5. REFERENCES 1. Ryo.Michikawauchi.Shiro.Tanno. Yasushi,Ito. And Mutsumi, Kanda., Combustion improvement of Diesel Engine by Alcohol Addition- Investigation of Port Injection Method and Blended Fuel Method, SAE International Journal of Fuels Lubricants, 4:48-57. 211. 2. Sivalakshmi,S. and Balusamy,T., Effects of oxygenated Organic Compounds-neem Oil Blends on the Performance and Exhaust Emissions of a DI Diesel Engine, SAE Paper Number: 211-1-331. 3. Ananda Srinivasan,C. and Saravanan, C.G., Study of Combustion Characteristics of an SI Engine Fuelled with Ethanol and Oxygenated Fuel Additives, Journal of Sustainable Energy & Environment, 85-91, 21. 4. Balaji.,D.Govindarajan,P. and Venkatesan,. Influence of isobutanol blend in spark ignition engine Performance and emissions operated with gasoline and Ethanol,International Journal of Engineering Science and Technology, Vol. 2(7), 2859-2868, 21. 5. YAO, ChunDe. ZHANG.Zhi. Hui, XU.Yu. and Li,HUANG.Yu., Experimental investigation of effects of bio-additives on fuel economy of the gasoline engine, Science in China Series E: Technological Sciences. 28. 6.HanumanthaRao,Y.V.Ramsudheer,Voleti.SitaramaRaju, A.V. and Nageswarareddy,P., Experimental investigations on jatropha biodiesel and additive in diesel engine, Indian Journal of Science and Technology, Vol. No.2,No.4,29. 7. Zhang,G.D. Liu,H.X. Xia,X.X. Zhang,W.G. and Fang,J.H., Effects of Dimethyl Carbonate fuel additive on ISSN: 2231-5381 http://www.ijettjournal.org Page 52

diesel engine performances, Proc.IMechEPart D:J.Automobile Engineering, Vol 219, D1394, 25. Biodiesel As an additive In Diesel-Ethanol Blends For Diesel Engines, Ijrras, 3(3), 21. 8. Nibin,T.Sathiyagnanam,A.P. Sivaprakasam, S. and Saravanan.C.G., Investigation on Emission Characteristics of a Diesel Engine using Oxygenated Fuel Additive, IE(I) Journal, MC, Vol 86, 25. 9. Ni Zhang, Zuohua Huang, Xiangang Wang and Bin Zheng., A Comparative Study of Two Kinds of Biodiesels and Biodiesel-DEE Blends in a Common Rail Diesel Engine, SAE International Journal of Fuels and Lubricants,vol. 4, no. 1, 96-19, 211. 1. VenkataSubbaiah,G. RajaGopal,K. SyedAltafHussain. Durga Prasad,B. and Tirupathi Reddy,K., RiceBran Oil ISSN: 2231-5381 http://www.ijettjournal.org Page 53