Temperature Cycling of Coreless Ball Grid Arrays

Similar documents
BOARD LEVEL RELIABILITY OF FINE PITCH FLIP CHIP BGA PACKAGES FOR AUTOMOTIVE APPLICATIONS

Jet Dispensing Underfills for Stacked Die Applications

Cooling from Down Under Thermally Conductive Underfill

Underfilling Flip Chips on Hard Disk Drive Preamp Flex Circuits and SIPs on Substrates using Jetting Technology

Simple, Fast High Reliability Rework of Leadless Devices Bob Wettermann

EFFECTIVE APPROACH TO ENHANCE THE SHOCK PERFORMANCE OF ULTRA-LARGE BGA COMPONENTS

Core Power Delivery Network Analysis of Core and Coreless Substrates in a Multilayer Organic Buildup Package

As originally published in the SMTA Proceedings

Coreless Packaging Technology for High-performance Application

Automotive Technology

Embedded Components: A Comparative Analysis of Reliability

How to Develop Qualification Programs for Lead Free Products

Platinum-chip Temperature Sensors in SMD Design Type According to DIN EN 60751

Getting the Lead Out December, 2007

C3P and NASA Technical Workshop September 8 th 2005, Lisbon, Portugal

SURFACE MOUNT ASSEMBLY AND BOARD LEVEL RELIABILITY FOR HIGH DENSITY POP (PACKAGE-ON-PACKAGE) UTILIZING THROUGH MOLD VIA INTERCONNECT TECHNOLOGY

IGBT Modules for Electric Hybrid Vehicles

Future Challenges in BGA/CSP Rework Patrick McCall PACE Incorporated Laurel, Maryland, USA

Future Challenges in BGA/CSP Rework Patrick McCall PACE Incorporated Laurel, Maryland, USA

Copper Clip Package for high performance MOSFETs and its optimization

Realization of a New Concept for Power Chip Embedding

Surface Mount Terminal Blocks. 950-D-SMD-DS 5.00 mm (0.197 in) Spacing poles PICTURES TECHNICAL INFORMATION. page 1/5 950-D-SMD-DS

inemi Lead-Free Rework Optimization Project: Solder Joint Characterization and Reliability

Metal Thermal Materials Types Applications Testing

Ultra-Small Absolute Pressure Sensor Using WLP

A Trace-Embedded Coreless Substrate Technique

Surface Mount Terminal Blocks. 971-SLR-THR 5.00 mm (0.197 in) Spacing poles PICTURES TECHNICAL INFORMATION. page 1/5 971-SLR-THR

EMI Shielding: Improving Sidewall Coverage with Tilt Spray Coating

Process Considerations when Reworking Area Array Packages Patrick McCall PACE Incorporated Laurel, Maryland, USA

Versatile Z-Axis Interconnection-Based Coreless Technology Solutions for Next Generation Packaging

EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2007/47

Advanced Topics. Packaging Power Distribution I/O. ECE 261 James Morizio 1

Motor Driver PCB Layout Guidelines. Application Note

Performance Testing of Composite Bearing Materials for Large Hydraulic Cylinders

Reliability of LoPak with SPT

Optimizing Battery Accuracy for EVs and HEVs

Custom ceramic microchannel-cooled array for high-power fibercoupled

A Novel Non-Solder Based Board-To-Board Interconnection Technology for Smart Mobile and Wearable Electronics

Reliability Test Report

Surface Mount Terminal Blocks. 120-M-221-SMD 5.00 mm (0.197 in) Spacing poles PICTURES TECHNICAL INFORMATION. page 1/5

Introduction. Abstract

Surface Mount Terminal Blocks. 930-D-SMD (-DS) 3.50 mm (0.138 in) Spacing poles PICTURES TECHNICAL INFORMATION. page 1/5 930-D-SMD-DS

Accelerating the Development of Expandable Liner Hanger Systems using Abaqus

Warpage Issues and Assembly Challenges Using Coreless Package Substrate

Surface Mount Terminal Blocks. 971-SLK-THR 5.00 mm (0.197 in) Spacing poles PICTURES TECHNICAL INFORMATION APROVAL INFORMATION.

Module design and development for LHCb VELO Upgrade Project

New Reliability Assessment Methods for MEMS. Prof. Mervi Paulasto-Kröckel Electronics Integration and Reliability

I. Tire Heat Generation and Transfer:

Thermoelectric Module Installation Guidance

PowIRtab Mounting Guidelines

PIPELINE REPAIR OF CORROSION AND DENTS: A COMPARISON OF COMPOSITE REPAIRS AND STEEL SLEEVES

Evolving Bump Chip Carrier

Surface Mount Terminal Blocks. 971-SLR-SMD mm (0.197 in) Spacing poles PICTURES TECHNICAL INFORMATION. page 1/5 971-SLR-SMD-1.

Continuous Stribeck Curve Measurement Using Pin-on-Disk Tribometer

CHAPTER 4 HARDWARE DEVELOPMENT OF DUAL ROTOR RADIAL FLUX PERMANENT MAGNET GENERATOR FOR STAND-ALONE WIND ENERGY SYSTEMS

White Paper: Pervasive Power: Integrated Energy Storage for POL Delivery

Semiconductor Manufacturing Technology. Semiconductor Manufacturing Technology

Reed Switch Life Characteristics under Different Levels of Capacitive Loading

Future Trends in Microelectronic Device Packaging. Ziglioli Federico

The World Leader in High Performance Signal Processing Solutions. QMI2569 Conductive Ag Glass Adhesive Qualification Data

GT Silver Button Technology Socket for Semiconductor Test

NASA-DoD COMBINED ENVIRONMENTS TESTING RESULTS

VIA Platform Environmental Qualification Testing Standards

Heat Transfer Enhancement for Double Pipe Heat Exchanger Using Twisted Wire Brush Inserts

3M Textool Test and Burn-In Sockets for 1.0 mm Area Array Packages Including Ball Grid Array and Land Grid Array

Grey Box System Identification of Bus Mass

PREDICTION OF PISTON SLAP OF IC ENGINE USING FEA BY VARYING GAS PRESSURE

STEALTH INTERNATIONAL INC. DESIGN REPORT #1001 IBC ENERGY DISSIPATING VALVE FLOW TESTING OF 12 VALVE

Improved Adhesion EVA for Extrusion Coating / Extrusion Laminating. Presented by: Scott Weber AD&TS Engineer Celanese

Mitsubishi Electric Semi-Conductors Division. IGBT Module 7th Generation T-Series. June 14, 2018

APPLICATION NOTE. Package Considerations. Board Mounting Considerations. Littelfuse.com

Application challenges and potential solutions for robust radar sensors

Integrated MEMS Mechanical Shock Sensor

IRDA-WELDER User Manual Model: TX-999DM

PIV ON THE FLOW IN A CATALYTIC CONVERTER

Automotive Systems Design: A Support Engineer s Perspective

THE PRACTICE OF MANUFACTURING DURISOL NOISE BARRIER PANELS

Advanced Cooling Technologies, Inc. Low-Cost Radiator for Fission Power Thermal Control NETS Conference

Enhanced Heat Transfer Surface Development for Exterior Tube Surfaces

Generators for the age of variable power generation

DEVELOPMENTAL HALT Report R XSS S Power Supplies. Michael Farragher Engineering Test Technician Test Performed By

Numerical Optimization of HC Supply for HC-DeNOx System (2) Optimization of HC Supply Control

MODELING SUSPENSION DAMPER MODULES USING LS-DYNA

GHz BGA Socket User Manual

Performanceenhancing

Eutectic Sn/Pb Fine-Pitch Solder Bumping and Assembly for Rad-Hard Pixel Detectors

Abstract. 1 Description of the Problem

ROLLOVER CRASHWORTHINESS OF A RURAL TRANSPORT VEHICLE USING MADYMO

EFFECTIVENESS OF COUNTERMEASURES IN RESPONSE TO FMVSS 201 UPPER INTERIOR HEAD IMPACT PROTECTION

Monitoring of Shoring Pile Movement using the ShapeAccel Array Field

High Performance Machine Design Considerations

Pb-free Assembly, Rework, and Reliability Analysis of IPC Class 2 Assemblies

OPTIMIZATION STUDIES OF ENGINE FRICTION EUROPEAN GT CONFERENCE FRANKFURT/MAIN, OCTOBER 8TH, 2018

BRISTLE BLASTING SURFACE PREPARATION METHOD FOR MAINTENANCE. Neil Wilds

ANALYSIS OF GEAR QUALITY CRITERIA AND PERFORMANCE OF CURVED FACE WIDTH SPUR GEARS

A. General Specifications. B. Dimensional Layout. BTU International Specification: Model 150Nz12 Reflow Solder System Date: 11/05/09 Page: 1/6

Reliability Evaluations and Test Functions Devised for Automotive Power Devices

PNEUMATIC HIGH SPEED SPINDLE WITH AIR BEARINGS

0.3 or 0.4 mm pitch, 3 mm above the board, Flip-Lock actuator, Flexible Printed Circuit ZIF connectors

June 13, 2012 Presentation for CTEA Symposium

Transcription:

Temperature Cycling of Coreless Ball Grid Arrays Daniel Cavasin, Nathan Blattau, Gilad Sharon, Stephani Gulbrandsen, and Craig Hillman DfR Solutions, MD, USA AMD, TX, USA Abstract There are countless challenges in making mobile electronics more reliable, including the thin form factor of cellphones and tablets that is forcing mobile computing packages to get thinner. Using coreless ball grid array (BGA) substrates decreases the overall height of the component, but it presents manufacturing challenges and potential reliability concerns when subjected to thermal cycling. This study presents results from tests performed on a coreless 25 mm by 27 mm BGA package with a relatively large die and stiffener ring that survived over 8,000 temperature cycles without failure. In order to investigate the reason behind this robust performance the coefficient of thermal expansion (CTE) of the part was measured using digital image correlation (DIC). The DIC results indicated that this combination of die size, package size, and stiffener ring reduces the CTE mismatch between the BGA package and printed circuit board (PCB). I. INTRODUCTION Standard flip chip substrates are constructed with a 200-800 micron thick core laminate layer with build-up layers on either side. A coreless substrate does not have the core laminate and is only comprised of the build-up layers. A comparison of a standard and coreless substrate is shown in Figure 1, where the coreless substrate lacks the thick glass laminate layer present in the standard substrate. 1 Figure 1: Coreless substrate (left) and standard substrate 1 The use of coreless substrates for BGA packages involves overcoming manufacturing and reliability challenges. They are typically more prone to warpage during assembly than a standard substrate and coreless BGAs have a higher CTE, which may lead to decreased reliability during temperature cycling. In this study, a large BGA package with a large die was subjected to 8,000 temperature cycles without any failures. The robust performance of this part during temperature cycling was unexpected because of the large die dimensions. Therefore, additional experiments were conducted to better understand the fatigue behavior of the package. II. EXPERIMENTAL PROCEDURE The BGA package studied is shown in Figure 2. The die can be seen on the top, the substrate is below, and the stiffener ring is located along the perimeter of the substrate. The package is 25 mm by 27 mm by 1.54 mm (total thickness), and the die is 13.8 mm by 16.5 mm by 0.75 mm. 1 http://www.toppan.co.jp/material/english/semicon/package/fc-bga/coreres/

An example of the printed circuit board assembly (PCBA) sample subjected to thermal cycling is shown in Figure 4. Figure 2: Coreless BGA studied Samples 11 samples of 2 different configurations of the device were studied. 1. 5 samples no edge bonding 2. 6 samples adhesive edge bonded Monitoring Each device featured multiple daisy chains to allow for monitoring and isolation of failed solder joints within the ball grid array, as shown in Figure 3. During testing the daisy chains for each device were connected in serial resulting in a single resistance value for combined chains. This was monitored using an Agilent 34970A data logger populated with 34908A singe ended multiplexer cards. Resistances were recorded in 1 minute intervals. Figure 3: Daisy chain locations Figure 4: Test PCBA Environment The test boards were subjected to 8,027 temperature cycles in a SUN Electronics thermal chambers with liquid nitrogen cooling. The boards were thermal cycled from -40 C to 85 C. The dwell time at the minimum and maximum temperature was 23 minutes and the ramp rates were maintained at 17 C/min. After the initial 8,027 thermal cycles the samples were subjected to an additional 3,840 cycles using an Espec TCC-150 thermal chamber under the same thermal profile as detailed previously. Digital Image Correlation After testing, a sample was subjected to (differential) digital image correlation and tracking (DIC/DDIT), an optical method that employs tracking and image registration techniques for accurate 2D and 3D measurements of changes in sample deformation. DIC was conducted at the Optomechanics and Physical Reliability Lab at the State University of New York at Binghamton. First, the sample was coated with a stochastic pattern using white paint to 2

allow for tracking of the sample movement as shown in Figure 5. Then the deformation over a range of temperatures was recorded and used to calculate the effective CTE of the top (die side) and bottom (solder side) of the package. Figure 5: Front and back of BGA with white stochastic pattern III. RESULTS and DISCUSSIONS The 11 devices were subjected to a total of 11,867 thermal cycles in order to induce failure of all the devices. Cycles to Failure A 2 parameter Weibull plot of the failures for each sample type are shown in Figure 6. The Weibull parameters are: Samples with adhesive edge bonding: Shape parameter, β = 8.9575 Characteristic Life η = 10,924 cycles Samples without edge bonding: Shape parameter, β = 15.369 Characteristic Life η = 9,777 cycles The results indicate that the presence or absence of edge bonding does not impact the failure behavior of the tested devices. This is evidenced by comparable β and η values and can be seen visually in Figure 6, where the slope and times to failure of the with adhesive edge bonding and without edge bonding samples are comparable. Therefore, the data was combined into one population and plotted using a 2- parameter Weibull plot as shown in Figure 7. The overall Weibull parameters are: Shape parameter, β = 10.8304 Characteristic life η = 10,425 cycles Figure 7: Cycles to failure for both samples combined into one Weibull To better understand the demonstrated robustness of the coreless BGA under thermal cycling a part was removed from the printed circuit board (PCB) and subjected to DIC to determine its CTE behavior. Images of the deformation in the X direction at 70 C and 110 C are shown in Figure 8 and Figure 9. Figure 6: Cycles to failure for samples with (green) and without (blue) edge bonding 3

Figure 8: Top X deformation at 70 C Figure 9: Top X deformation at 110 C Images of the deformation in the Y direction at 70 C and 110 C are shown in Figure 10 and Figure 11. Figure 11: Top Y deformation at 110 C These images indicate the top of the deformation on the top of the package is driven by the presence of the die. The stiff die experiences little to no deformation as evidenced by the green color in all the images. The majority of the deformation occurs in the substrate between the die edge and the substrate edge. These results support the typical BGA device observations that solder balls at the edge of the die typically fail first. Images of the deformation on the bottom of the package in the X direction at 70 and 110 C are shown in Figure 12 and Figure 13. Figure 10: Top Y deformation at 70 C Figure 12: Bottom X deformation at 70 C 4

Figure 13: Bottom X deformation at 110 C Images of the deformation on the bottom of the package in the Y direction at 70 C and 110 C are shown in Figure 14 and Figure 15. Figure 14: Bottom Y deformation at 70 C Figure 15: Bottom Y deformation at 110 C Unlike the top side, the results show that the deformation of the bottom of the package is not impacted by presence of the stiff die. Rather, the bottom side has a relatively uniform deformation across both the x and y axes. The computed CTE values from the deformation plots are summarized in Table 1. The CTE values from the bottom side of the package match to that of PCBs, which are typically 15-17 ppm/ C. Therefore, the stresses on the solder balls caused by CTE mismatch between the coreless BGA package and PCB are minimized. The CTE values from the top side of the package are slightly lower because they are driven by the stiffness of the die. Table 1: Coefficient of thermal expansions Side X ppm/ C Y ppm/ C Top 13.5 15 Bottom 16 17.2 The CTE match between the bottom of the coreless BGA package and the PCB resulted in the samples surviving more than 8,000 thermal cycles without failure. A standard substrate BGA package does not last as long because the die stiffness has a greater impact on the bottom side CTE, creating larger mismatch and more thermally induced stresses within the solder joint. While the coreless BGA was robust under thermal cycling, one of the main issues with using coreless substrates is their propensity for warping (z-axis deformation) during assembly. The package studied featured a stiffener ring to prevent warpage during reflow. The effectiveness of the stiffener ring was measured over a limited temperature range (up to 110 C). The warpage at 70 C and 110 C are shown in Figure 16 and Figure 17. 5

can be predicted based on the study by Garrett. Figure 16: Warpage at 70 C Figure 17: Warpage at 110 C Typically the warpage of the package shows an inflection point close to the glass transition temperature (T g ) of the 1 st level underfill or overmolding. An example of this was shown in a study conducted by Garrett, as shown in Figure 18. A comparison of the warpages for the tested BGA samples with different molding materials indicated that around the T g of each material, an inflection point in warpage behavior exists. The warpage behaviors seen in Figure 16 and Figure 17 are comparable, indicating that 110 C is below the T g of the molding compound used in the tested coreless BGA. It is possible that the studied coreless BGA will experience a warpage inflection point during reflow, however, the DIC testing presented here focused on temperatures the package would see during operation and not during manufacturing. The warpage behavior Figure 18: Warpage of molding compounds; grey circles indicate approximate T g [1] As shown in Figure 18 the amount of warpage measured by Garrett was between 2 and 4 mils (50 to 100 µm) from room temperature to 110 C. As shown in Figure 17, the warpage measured for the part tested in this study was about 80 µm which is within this range. One would expect the warpage behavior to show the same behavior (decrease in warpage) as the temperatures increase beyond the T g of the underfill of the part. IV. CONCLUSIONS The accelerated life cycle testing of a coreless BGA package has been reported. This particular coreless BGA package was very robust with regards to temperature cycling. The source of this robustness was investigated using digital image correlation and was shown to be due to the coefficient of thermal expansion of the package bottom being very well matched to that of the printed circuit board. An additional investigation also showed that the warpage of the package over the limited temperature range of standard overmolded BGA parts did not include an inflection point. 6

References 1. Elevated Temperature Measurements of Warpage of BGA Packages, David W. Garrett, Amoco Electronic Materials, Plaskon Division, Alpharetta, Georgia 7