Malaysian Journal of Civil Engineering 29(2): (2017) *Corresponding Author:

Similar documents
NUMERICAL ANALYSIS OF LOAD DISTRIBUTION IN RAILWAY TRACK UNDER WHEELSET

Special edition paper

Dynamic characteristics of railway concrete sleepers using impact excitation techniques and model analysis

VIBRATION REDUCTION IN CONVENTIONAL VEHICLES BY INCREASING THE STIFFNESS ON THE CHASSIS FRAME

Prerequisites for Increasing the Axle Load on Railway Tracks in the Czech Republic M. Lidmila, L. Horníček, H. Krejčiříková, P.

A Model for the Characterization of the Scrap Tire Bale Interface. B. J. Freilich1 and J. G. Zornberg2

STIFFNESS CHARACTERISTICS OF MAIN BEARINGS FOUNDATION OF MARINE ENGINE

Study on System Dynamics of Long and Heavy-Haul Train

Effect of Stator Shape on the Performance of Torque Converter

PREDICTION OF PISTON SLAP OF IC ENGINE USING FEA BY VARYING GAS PRESSURE

Study of the Performance of a Driver-vehicle System for Changing the Steering Characteristics of a Vehicle

FINITE ELEMENT METHOD IN CAR COMPATIBILITY PHENOMENA

AXLE HOUSING AND UNITIZE BEARING PACK SET MODAL CHARACTERISATION

Railway Engineering: Track and Train Interaction COURSE SYLLABUS

On the potential application of a numerical optimization of fatigue life with DoE and FEM

SOLUTIONS FOR SAFE HOT COIL EVACUATION AND COIL HANDLING IN CASE OF THICK AND HIGH STRENGTH STEEL

Using ABAQUS in tire development process

Seismic-upgrading of Existing Stacks of Nuclear Power Station using Structural Control Oil Dampers

COST ANALYSIS FOR BRIDGE AND CULVERT. Essam A. Mostafa

Computer Aided Transient Stability Analysis

IMPACT OF SKIN EFFECT FOR THE DESIGN OF A SQUIRREL CAGE INDUCTION MOTOR ON ITS STARTING PERFORMANCES

QUIET-TRACK: Track optimisation and monitoring for further noise reduction

ANALYSIS ON MECHANICAL PARAMETERS OF LUNAR ROVER WHEEL

Design and Stress Analysis of Crankshaft for Single Cylinder 4-Stroke Diesel Engine

Comparison of T-Beam Girder Bridge with Box Girder Bridge for Different Span Conditions.

Research on Skid Control of Small Electric Vehicle (Effect of Velocity Prediction by Observer System)

Torsional Stiffness Improvement of Truck Chassis Using Finite Elemen Method

Load Analysis and Multi Body Dynamics Analysis of Connecting Rod in Single Cylinder 4 Stroke Engine

Investigation of the Influences of Track Superstructure Parameters on Ballasted Railway Track Design

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 4, 2011

Pavement performance evaluation for different combinations of temperature conditions and bituminous mixes

Parametric study of bridge response to high speed trains

Experimental investigation on vibration characteristics and frequency domain of heavy haul locomotives

Safety factor and fatigue life effective design measures

Analysis of Geotechnical Problems with Abaqus. Abaqus 2018

CHAPTER 5 PARAMETRIC STUDIES AND SQUEAL REDUCTION METHODS

Design and Analysis of Hydrostatic Bearing Slide Used Linear Motor Direct-drive. Guoan Hou 1, a, Tao Sun 1,b

e t Performance of Extended Inlet and Extended Outlet Tube on Single Expansion Chamber for Noise Reduction

Vehicle Dynamic Simulation Using A Non-Linear Finite Element Simulation Program (LS-DYNA)

Static And Modal Analysis of Tractor Power Take Off (PTO) Gearbox Housing

COMPRESSIBLE FLOW ANALYSIS IN A CLUTCH PISTON CHAMBER

Analysis Of Gearbox Casing Using FEA

345. Fellenius, B.H., Plugging effect of opentoe pipe piles in sandy soil. Discussion. Canadian Geotechnical Journal 52(5):

Modal Analysis of Automobile Brake Drum Based on ANSYS Workbench Dan Yang1, 2,Zhen Yu1, 2, Leilei Zhang1, a * and Wentao Cheng2

ANALYSIS OF SURFACE CONTACT STRESS FOR A SPUR GEAR OF MATERIAL STEEL 15NI2CR1MO28

EFFECTIVENESS OF COUNTERMEASURES IN RESPONSE TO FMVSS 201 UPPER INTERIOR HEAD IMPACT PROTECTION

Comparing FEM Transfer Matrix Simulated Compressor Plenum Pressure Pulsations to Measured Pressure Pulsations and to CFD Results

Study Of Static And Frequency Responsible Analysis Of Hangers With Exhaust System

THERMAL STRESS ANALYSIS OF HEAVY TRUCK BRAKE DISC ROTOR

Behaviour of ballasted track during high speed train passage

Design and Analysis of Pressure Die Casting Die for Side Differential Cover of Mini truck

MODERNIZATION OF THE KNI VIADUCT AND ITS INFLUENCE ON DYNAMIC RESPONSE UNDER SELECTED HIGH SPEED TRAIN

STATIC AND FATIGUE ANALYSIS OF LEAF SPRING-AS A REVIEW

Interrelation between Wavelengths of Track Geometry Irregularities and Rail Vehicle Dynamic Properties

Design, Fabrication and Testing of an Unmanned Aerial Vehicle Catapult Launcher

Thermal Stress Analysis of Diesel Engine Piston

ISSN: [ICEMESM-18] Impact Factor: 5.164

Noise Reduction in a Reciprocating Compressor by Optimizing the Suction Muffler

NUMERICAL ANALYSIS OF IMPACT BETWEEN SHUNTING LOCOMOTIVE AND SELECTED ROAD VEHICLE

Design and Analysis of Front Lower Control Arm by Using Topology Optimization

MARINE FOUR-STROKE DIESEL ENGINE CRANKSHAFT MAIN BEARING OIL FILM LUBRICATION CHARACTERISTIC ANALYSIS

ISSN: SIMULATION AND ANALYSIS OF PASSIVE SUSPENSION SYSTEM FOR DIFFERENT ROAD PROFILES WITH VARIABLE DAMPING AND STIFFNESS PARAMETERS S.

Design, Analysis& Optimization of Truck chassis- Rail & Cross member

Non-contact Deflection Measurement at High Speed

METHODOLOGY FOR THE SELECTION OF SECOND HAND (RELAY) RAIL

Analysis of Torsional Vibration in Elliptical Gears

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March ISSN DESIGN AND ANALYSIS OF A SHOCK ABSORBER

Application of Airborne Electro-Optical Platform with Shock Absorbers. Hui YAN, Dong-sheng YANG, Tao YUAN, Xiang BI, and Hong-yuan JIANG*

A STUDY OF THE CENTRIFUGAL COMPRESSOR DISCHARGE PIPELINE CONSTRAINED OSCILLATION. KIRILL SOLODYANKIN*, JIŘÍ BĚHAL ČKD KOMPRESORY, a.s.

DESIGN AND OPTIMIZATION OF HTV FUEL TANK ASSEMBLY BY FINITE ELEMENT ANALYSIS

AN INVESTIGATION OF EFFECTS OF AXLE LOAD AND TRAIN SPEED AT RAIL JOINT USING FINITE ELEMENT METHOD

Effect of concave plug shape of a control valve on the fluid flow characteristics using computational fluid dynamics

A Study on the Contact Force between Catenary and Pantograph in Duplicate KTX-II Operation

THE LONGITUDINAL VIBRATION OF COMPOSITE DRIVE SHAFT

INFLUENCE OF CROSS FORCES AND BENDING MOMENTS ON REFERENCE TORQUE SENSORS FOR TORQUE WRENCH CALIBRATION

FLOW AND HEAT TRANSFER ENHANCEMENT AROUND STAGGERED TUBES USING RECTANGULAR VORTEX GENERATORS

Characteristics of wheel-rail vibration of the vertical section in high-speed railways

Design, Analysis & Balancing of 5 Cylinder Engine Crankshaft

Chapter 7: Thermal Study of Transmission Gearbox

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: METHODOLOGY Design Parameter [250]

White Paper. Stator Coupling Model Analysis By Johan Ihsan Mahmood Motion Control Products Division, Avago Technologies. Abstract. 1.

Research on Optimization for the Piston Pin and the Piston Pin Boss

Optimization of Design Based on Tip Radius and Tooth Width to Minimize the Stresses on the Spur Gear with FE Analysis.

The Effect of Wheel Loading on a Railway Bridge: A Case Study on Minnamurra Railway Bridge

FINITE ELEMENT ANALYSIS OF TIE-ROD FOR SPACECRAFTS

Finite Element Analysis on Thermal Effect of the Vehicle Engine

China. Keywords: Electronically controled Braking System, Proportional Relay Valve, Simulation, HIL Test

INFLUENCE OF THE NUMBER OF NOZZLE HOLES ON THE UNBURNED FUEL IN DIESEL ENGINE

Study on Mechanism of Impact Noise on Steering Gear While Turning Steering Wheel in Opposite Directions

A LES/RANS HYBRID SIMULATION OF CANOPY FLOWS

Finite Element Modeling and Analysis of Vehicle Space Frame with Experimental Validation

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

Heat treatment Elimination in Forged steel Crankshaft of Two-stage. compressor.

ROTATING MACHINERY DYNAMICS

Improvement Design of Vehicle s Front Rails for Dynamic Impact

DESIGN AND FABRICATION OF CHASSIS FOR ELECTRICAL VEHICLE

Gauge Face Wear Caused with Vehicle/Track Interaction

WITHOUT MUCH OF A STIR

USE OF GEOSYNTHETICS FOR STABILIZING RECYCLED BALLAST IN RAILWAY TRACK SUBSTRUCTURES

TITLE: EVALUATING SHEAR FORCES ALONG HIGHWAY BRIDGES DUE TO TRUCKS, USING INFLUENCE LINES

Transcription:

Malaysian Journal of Civil Engineering 29(2):145-156 (2017) ANALYSIS OF BALLASTLESS RAILWAY TRACK STRUCTURES OVER SOFT CLAYS Mohamed Ismail Aly 1 *, Mohamed El-Shabrawy 2, Mohamed El Gendy 1 & Ahmed Adel Turk 1 1 Civil Engineering Department, Port Said University, Egypt 2 Civil Engineering Department. Mansoura University. Egypt *Corresponding Author: mohamedismail36@yahoo.com Abstract: Railway developments in Egypt have gained much interest recently. This development was in many fields one of which is railway speeds and the term high speed trains HST was introduced as an alternative on Egyptian national railways. HST has many challenges from a geodynamic perspective; such as the case of HST operating in areas with soft soils such as soft clays in Delta area in Egypt. In this paper, the problem of HST over soft soils was considered from a dynamic response point of view and ballastless tracks was investigated and compared with the traditional ballasted track. A track concept was introduced recently as a solution for this problem called Deck track but very few literature studied this idea. This track concept was studied and further modified into two other types. These tracks were dynamically analyzed using 3D finite element modeling constructed. Results of the ballastless track models will be compared with the Ballasted track model in order to observe if it mitigates the effects of HST over soft clays or not and also to show if the modified tracks is performing better than the Deck track or not. Dynamic response results of the models were displayed and comparisons were made for all track structures. Keywords: Deck track, railway on soft soil, finite element model, ballastless track. 1.0 Introduction Recently Egypt had a growing interest in developing the Railways. In the last 40 years an increase in train speed and axle load around the world. High speed trains (HST) has developed rapidly and gained much interest due to its impact on the economy of a country (Esveld, 2001). HST has many challenges from a geodynamic point of view (Madshus et al., 2004), these challenges gave birth to ballastless railway track system (slab track) and almost all HST developed by any country was associated with a similar All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of Faculty of Civil Engineering, UniversitiTeknologi Malaysia

146 Malaysian Journal of Civil Engineering 29(2):145-156 (2017) development in the structure of railway tracks supporting this HST (Esveld, 2001). One of these HST challenges was the critical speed that any train must not reach (Madshus et al., 2001); this critical speed was the result of a structural behavior called Resonance that will occur between the frequency the HST propagates and either the natural frequency of the superstructure itself or the shear wave velocity of the substructure (Madshus et al., 2001). The problem of resonance with the superstructure can be easily avoided by increasing the bending stiffness of the superstructure via Slab track approach; the problem of the substructure on the other hand is much more complicated and costly. This substructure problem happens when the supporting soil beneath the track is considered a weak soil such as soft clays (Woldringh et al., 1999). The soft clays and very soft clays has relatively low shear wave velocity that can get as low as 60 m/s (216 kph), this low shear wave velocity makes the situation of resonance occurrence a very likely to happen scenario. Once the train reaches the critical velocity, large displacements can be observed (Adolfsson et al., 1999) and much more seriously, Mach cones like ones that flying jets produce in the air can form inside the clay soil beneath the track (Peter et al., 2013) which produces severe displacements that can damage the structure in this zone. Another problem associated with soft clays is consolidation settlement that can easily make structural damages to HST (Dingqing et al., 2015). Several classical attempts have been made from a geotechnical point of view to overcome this problem. Some commonly used improvement techniques are vibro replacement techniques, deep soil mixing techniques, jet grouting and soil removal and replacement techniques (Dingqing et al., 2015). Another very recent approach was the Deck track concept (Bos, 2000 and Ismail, 2016). The concept is based on a reinforced concrete supporting body with a hollow shape. Its weight is less than that of the soil excavated for its laying. Almost no consolidation settlement will occur as a result of the weight of the structure (Bos, 2000), (Ismail, 2016). This type of structure solves both the problem of the low bending stiffness of the track and the problem of soil weakness underneath. Yet, almost no researches have been made to further study and analyze this track and no literature is built in that field. This contribution is to add to the literature and the study of this new track idea. To conduct this analysis, a comparison study is made between traditional ballasted tracks over soft clays, new Deck track concept and new modified tracks suggested in the study called the Inverted Deck track and Curved Deck track. The analysis was conducted using ABAQUS FEA (ABAQUS, 2000) software by building 3-D models representing the four structure types and studying their dynamic response over a moving load unit. Then results of the analysis were compared and observations on the best dynamic behavior were discussed.

Malaysian Journal of Civil Engineering 29(2):145-156 (2017) 147 2.0 Finite Element Modelling The four track models were set to 70 m in length. This was assumed as an initial estimate since only the response close to the track was considered; The three dimensional models, consisted of rails of UIC60 (International Union of railways standard rails), concrete mono block sleepers with dimensions (2.8, 0.28 and 0.2m) and are equally spaced in a 0.5 m discrete sleepers, the ballasted track only had the following layers: ballast layer, subballast layer, Fill layer and the Soft Clay layer. Yet the other tracks, the deck track, inverted and the curved tracks consisted of the concrete track lying directly on the soft clay layer. Figure 1 generally shows the four models. A fixed boundary was used in the bottom of the model. Infinite elements based on the previous work (Lysmer et al., 1969) are used on the X and Z direction boundaries to represent the infinite boundary condition to absorb Shear and Pressure waves and prevents reflections of these waves. The nodes at the bottom boundary were fixed in every direction to simulate bedrock. Both ends of the ground boundary were fixed in the out of plane direction in order to keep the ground in place at the ends of the finite element model. The elements used in the modeling are the 3D Linear Hexahedron element, C3D8R for all the elements except for the infinite elements which CIN3D8 Linear Hexahedron element is used (ABAQUS, 2000). All materials used for the track and rail in this study were assumed to be linear elastic except for the clay which is modeled as an elastic perfectly-plastic material which forms a combination behavior between Hook s law and the general form of Mohr Coulomb s failure criterion (Mohamed, 2008). The material properties of each component are summarized in Table 1. The loading is only considered a single bogie loading unit with a wheel load of 8 tons moving with four specific varying velocities of (100, 150, 200 and 250 kph) and The analysis type used to model the dynamic movement of the train loading unit is Dynamic Explicit Analysis in which is very suitable for detecting actions occurring within very short periods of time. The time period of the total analysis is calculated for each train speed model separately in order to allow the loading unit to reach from the beginning of the track structure all the way to the end of the 70 m track therefore four different time periods are given for each velocity The incrimination time is assumed automatic with a time scaling default factor of 1 for all of the ballasted tracks modeled. The interaction between the wheels and the rails is assumed to be surface to surface contact and with tangential friction coefficient of zero in order to allow the wheel to move freely and it was not intended to study the friction between the wheel and the rail in this matter, the normal contact between the wheel and the rail is assumed to be in hard contact. Other contacts between (Rails and Sleepers, Sleepers and Ballast, Ballast and

148 Malaysian Journal of Civil Engineering 29(2):145-156 (2017) Sub ballast, Sub ballast and Fill, and Fill and Clay) are assumed to be in surface to surface tied contact since these layers are infinite and not assumed to be relatively shifting from one another. (a) Ballasted track (b) Deck track (c) Inverted Deck track Figure 1: Track models (d) Curved Deck track Table 1: Ballasted track material properties Component ρ (kg/m 3 ) E (MPa) μ C (kpa) ϕ V s (m/s) Rail 7800 200000 0.3 - - 3392 Sleeper 2500 25000 0.2 - - 1826 Ballast 2200 200 0.2 - - 261 Subballast 1800 150 0.2 - - 230 Fill 1800 90 0.3 - - 138 Clay 1600 25 0.35 8 20 75 Where, ρ is density, E is Young s Modulus, μ is Poisson s ratio, C is soil cohesion, ϕ is the angle of internal friction and V s is shear wave velocity.

Malaysian Journal of Civil Engineering 29(2):145-156 (2017) 149 3.0 Finite Element Results In order to investigate the dynamic characteristics of the four previously defined track structures (Traditional Ballasted Track, Deck Track, Inverted Deck Track and the Curved Deck Track), the Dynamic Responses in the form of time histories for the vertical displacements and vertical accelerations of these structures is to be displayed and compared. Special observation points were selected at specific places for the four structures as shown in Figure 2. OP.1 is intended to be at the top of the Rail Head, this observation point is important and gives a better understanding of the behavior in which the train will experience, so it is very important to see clearly the vertical displacements and the vertical accelerations at this observation point. OP.2 on the other hand is located at the main structure or the superstructure and its importance comes where it shows the displacements and the accelerations that the structure itself will experience, OP.3 and OP.4 is much more important specially in our study, that is because these points are located in the clay layer beneath the track and these points will show how the clay layer will behave at various velocities of trains on the three main structures studied. OP.3 is located at the very top of the clay layer to display the maximum dynamic effect that this layer will suffer from. OP.4 is located 2 meters below OP.3 and will show what the clay layer itself will experience during the dynamic loading of the train at various velocities. Since it was difficult to display all the time history charts for all four structure at all the four observation points for the different four velocities, combined charts were considered with only the maximum lower displacements and the absolute maximum acceleration, these combined charts show the varying velocity on the x-axis and the dynamic response on the y-axis for any observation point. Figure 2: The observation points

150 Malaysian Journal of Civil Engineering 29(2):145-156 (2017) 3.1 Vertical Displacements The following graphs represent the maximum vertical displacements in meters for the three track structures in the study at the observation points defined previously (OP1, OP2, OP3 and OP4) with varying train velocities of (100,150,200 and 250 kph). Combined Vertical Displacements at OP.1. Combined Vertical Displacements at OP.2. Combined Vertical Displacements at OP.3. Combined Vertical Displacements at OP.4. Figure 3: Combined Vertical Displacements at OP.1., OP.2., OP.3. & OP.4.

Malaysian Journal of Civil Engineering 29(2):145-156 (2017) 151 There is an obvious important observation that can be made when previously displayed charts is studied, this observation is that the Curved deck track and the Inverted Deck Track had the best dynamic responses among all three structures displayed, they had a significant advantage over the ballasted track concerning the maximum vertical displacements and specially for the superstructure part, the Curved deck track and the Inverted Deck track had a maximum displacements of less than ¼ of the Ballasted tracks maximum vertical displacements, also the Curved deck track showed an advantage over the Deck track structure specially at the superstructure. Comparing the Inverted Deck track with the Deck track s behavior, at velocities of 100 through 150 kph the dynamic response of the Inverted Deck track was very much similar as the Deck track s response but as the velocity went higher and closer to a critical velocity condition the dynamic response behavior was getting very much in the Inverted Deck track s favor and the vertical displacement at 250 kph was ½ the value of the Deck Track s. The soft clay layer is telling the same story but with a different scenario, the overall advantage was in the favor of the Curved deck track and the Inverted Deck track over the two other systems also we can notice that as the velocity goes to 250 kph the vertical displacement of the Ballasted track gets lower and almost equals the Deck track s value but yet still higher than the Curved deck track and the Inverted Deck track. 3.2 Vertical Acceleration The following graphs represent the maximum vertical accelerations in m/s 2 for the three track structures in the study at the observation points defined previously (OP1, OP2, OP3 and OP4) with varying train velocities of (100,150,200 and 250 kph).

152 Malaysian Journal of Civil Engineering 29(2):145-156 (2017) Combined Vertical accelerations at OP.1. Combined Vertical accelerations at OP.2. Combined Vertical accelerations at OP.3. Combined Vertical accelerations at OP.4. Figure 4: Combined Vertical accelerations at OP.1., OP.2., OP.3. & OP.4. The first most obvious observation when we examine the previous charts is that we notice that the Deck track had overall the worst dynamic response of all the four structures analyzed even when compared with the traditional ballasted track specially at observation points 3 and 4 which indicates the acceleration transmitted into the clay layer. Also, The previous charts show clearly the significance of the curved deck track and the Inverted Deck track over the other track structures, at the rail head OP.1 it can be noticed that the three structure almost matched each other s behaviors and gave almost identical dynamic response, the maximum vertical acceleration gradually increased as the velocity increased. But the most important conclusion is clearly shown in the charts after that (OP.2, OP.3 and OP.4), these charts show the huge advantage of using the curved deck track and the Inverted Deck tracks for high speed trains on soft clays,

Malaysian Journal of Civil Engineering 29(2):145-156 (2017) 153 relatively small dynamic response is shown indicating that specifically the Inverted Deck track structure had the ability to absorb the dynamic energy and distribute it along the whole track which minimized the effect of vertical accelerations in the soft clay layer compared with the other systems to the point where it was almost zero at the observation point OP.4 two meters below the superstructure. 4.0 Observations The following tables show how the deck track and the inverted deck track and the curved deck track are relatively behaving over the traditional ballasted track. The ballasted track dynamic response data are assumed to be the basis of our observation and reduced values or increased values are calculated based upon them. Table 2: Relative Vertical Displacements at OP.1 100 Reduced by 57.79 % Reduced by 67.24 % Reduced by 83.93% 150 Reduced by 66.36 % Reduced by 74.59 % Reduced by 90.09% 200 Reduced by 57.85 % Reduced by 74.08 % Reduced by 88.74% 250 Reduced by 46.58 % Reduced by 68.75 % Reduced by 85.87% Table 3: Relative Vertical Displacements at OP.2 Curved deck track Velocity Deck track Inverted deck track 100 Reduced by 42.90 % Reduced by 55.5 9 % Reduced by 76.69% 150 Reduced by 54.91 % Reduced by 64.51 % Reduced by 83.75% 200 Reduced by 46.63 % Reduced by 65.53 % Reduced by 83.34% 250 Reduced by 24.24 % Reduced by 53.23 % Reduced by 78.50% Table 4: Relative Vertical Displacements at OP.3 100 Reduced by 15.19% Reduced by 45.37% Reduced by 71.42% 150 Reduced by 31.91% Reduced by 58.91% Reduced by 81.60% 200 Reduced by 28.98% Reduced by 65.15% Reduced by 83.06% 250 Increased by26.91% Reduced by 42.63% Reduced by 71.24%

154 Malaysian Journal of Civil Engineering 29(2):145-156 (2017) Table 5: Relative Vertical Displacements at OP.4 100 Reduced by 39.87 % Reduced by 40.40 % Reduced by 67.93% 150 Reduced by 57.95 % Reduced by 55.07 % Reduced by 78.85% 200 Reduced by 52.41 % Reduced by 61.98 % Reduced by 80.05% 250 Reduced by 26.60 % Reduced by 47.09 % Reduced by 71.08% Table 6: Relative Vertical accelerations at OP.1 100 Increased by84.16% Increased by99.10% Reduced by 0.74% 150 Increased by50.87% Reduced by 5.25% Increased by21.86% 200 Increased by31.75% Increased by15.36% Increased by22.75% 250 Reduced by 3.59% Reduced by 0.49% Increased by12.51% Table 7: Relative Vertical accelerations at OP.2 100 Reduced by 31.95% Reduced by 50.21%5 Reduced by 49.79% 150 Reduced by 85.51% Reduced by 92.09% Reduced by 82.51% 200 Reduced by 64.58% Reduced by 72.16% Reduced by 70.21% 250 Reduced by 36.41% Reduced by 70.13% Reduced by 41.19% Table 8: Relative Vertical accelerations at OP.3 100 Increased by87.25% Reduced by 56.85% Reduced by 62.33% 150 Increased by119.58% Reduced by 54.45% Reduced by 58.27% 200 Increased by149.11% Reduced by 55.52% Reduced by 67.3%5 250 Increased by134.83% Reduced by 55.96% Reduced by 79.95% Table 9: Relative Vertical accelerations at OP.4 100 Increased by38.98 % Reduced by 72.67 % Reduced by 42.95% 150 Increased by44.97 % Reduced by 73.46 % Reduced by 52.58% 200 Increased by21.58 % Reduced by 72.90 % Reduced by 34.08% 250 Increased by19.74 % Reduced by 72.90 % Reduced by 36.95%

Malaysian Journal of Civil Engineering 29(2):145-156 (2017) 155 As noticed from the behavior of the three structures over the ballasted track we can observe that the deck track and the inverted and the curved tracks was very efficient dynamically when considering vertical displacements they significantly reduced the displacement values on all velocities. It is also noticed that as the velocity is getting higher than 200 kph the vertical displacements on the ballasted track is been reduced and the improvements done by the other structures are getting smaller which indicates that maybe for higher speeds than 250 kph the ballasted track may give similar results as the deck and the inverted and the curved. But as we consider the accelerations, a different scenario is occurring; we can notice the significance of the inverted and curved deck tracks over the ballasted track especially in the soft clay zone. But as the improvements done by the deck track is compared, it can be noticed that it gave worse results than the traditional ballasted tracks, this may be due to the absorption mechanism of the soils used in ballasted tracks versus the stiff behavior of the deck structure itself and due to the small area of support of the deck track compared to the supporting area of the inverted and the curved deck tracks which acts as a magnifier to the accelerations occurring on the top part of the track as opposed to the inverted and the curved which lessen the effect of accelerations occurring at the top of the structure. 5.0 Conclusion The purpose of this paper was to investigate and study the dynamic response of Ballastless railway tracks on soft soil under high speed trains (100 to 250 kph) based on three dimensional finite element methods. This investigation is conducted as a comparative study between traditional ballasted tracks and three other ballastless tracks Deck track, Inverted deck track and curved deck track, different models were created and dynamic response output data were compared. Conclusions about the results are presented as follows: When results of the Deck track is compared with ones of the ballasted track it was clearly noticed a reduction in the vertical displacements by an average percentage of 40% was achieved but from an acceleration point of view the results was in the favor of the Ballasted tracks specially in the soft clay layer. Inverted deck track was a modification on the original deck track concept which was based on the idea of making a broader supporting area which will help in dissipating the energy induced by the speeding trains. By comparing results of this track it showed a huge advantage over the ballasted and the Deck track and it was able to reduce the vertical displacements compared with the ballasted track by an average percentage of 60% and the

156 Malaysian Journal of Civil Engineering 29(2):145-156 (2017) acceleration was reduced by 40% on average which is far more great advantage over the Deck track s results also. Another modified track was considered the Curved deck track in the study in order to optimize the best track to sustain under high speed trains over soft clays, the compared results of this track showed great significance over the ballasted track and the vertical displacements were reduced by 80% on average and vertical accelerations were reduced by 35% on average which in this case not as good as the Inverted track. But overall, it can be considered the best behaving track that could sustain high speed trains over soft clay soils. References ABAQUS (2000), Hibbit, Karlsson, Sorensen, User s manual Version 6.1. Adolfsson, K., Andreasson, B., Benktsson, P.E. and Zakrisson, P. (1999), High speed train X2000 on soft organic clay-measurements in Sweden. 12th European Conf. of Soil Mech. and Geot. Eng.. Amsterdam. Bos J.A.:(2000) Deck Track: Foundation for the railways of the Future, Holland Railconsult. Dingqing L., James H., Ted S. and Steven C. (2015), Railway Geotechnics, ISBN: 9780415695015, CRC Press, September. Esveld C. (2001)Modern railway track vol. Second Edition. Delft University of Technology: MRT-Productions. Ismail M.A (2016), A new railway deck-track in Sinai at East Port Said on very soft clay, Journal for New Generation Sciences, (accepted and in publication). Lysmer J, Kuhlemeyer RL. Finite dynamic model for infinite media. J Eng Mech Div, ASCE 1969;95(4):859 78. Madshus C. and Kaynia A. (2001), High speed railway lines on soft ground, dynamic behavior at critical speed. J Sound Vib; 231: 689 701. Madshus, C., Lacasse, S., Kaynia, A. And Harvik, L. (2004) Geodynamic challenges in high speed railways projects. ASCE Proc Geotechnical Engineering for Transportation Projects (GSP 126). Mohamed A.S (2008), Investigation into some design aspects of ballasted railway Track structure. Dep. of Civil Engineering, Curtin University of Technology, Perth, WA 6845, Australia. Peter K. W, Omar L. and Abdellah E.K. (2013). The Development And Mitigation Of Ground Mach Cones For High Speed Railways, 11th International Conference on Vibration Problems, Lisbon, Portugal, 9-12. Woldringh, R.F. and New, B.M (1999) Embankment design for high speed trains on soft soils. Geotechnical Engineering for Transportation Infrastructure, Barends et al (eds), Balkema, Rotterdam.