EXPERIENCE OF 29MW SGT-700 GAS TURBINE IN POWER GENERATION APPLICATIONS

Similar documents
REPORT ON THE FIRST OPERATIONAL EXPERIENCE OF THE NEWLY COMMERCIALIZED 29MW SGT-700 (GT10C) GAS TURBINE

THE SIEMENS SGT-750 GAS TURBINE: DEVELOPED FOR THE OIL AND GAS INDUSTRYAnders Hellberg Siemens Industrial Turbomachinary S Finspong Sweden

Industrial RB211 Gzero Gas Turbines

Meet the SGT-750. Proven technology. Perfected results. 37 MW. Answers for energy. Industrial Gas Turbines

We power the world with innovative gas turbines

SGT-2000E gas turbine series

Paper No: 05-IAGT-1.1 INDUSTRIAL APPLICATION OF GAS TURBINES COMMITTEE

SGT-2000E gas turbine series

1x New Siemens SGT MW 50 / 60Hz (DF) Gas Turbine Mobile Generator Set

Power Generation Services Solutions for challenging Markets

SGT-700 DLE combustion system extending the fuel flexibility

NGT Gasturbinentechnik Capabilities

GE s LM2500+G4 Aeroderivative Gas Turbine for Marine and Industrial Applications

DEVELOPMENT & OPERATING EXPERIENCE WITH SGT-800, A SIEMENS 45 MW INDUSTRIAL GAS TURBINE FOR VARIOUS APPLICATIONS

RIKT Isothermal Turbocompressors. With integrated cooling

Siemens SGT6-5000F Gas Turbine Technology Update

Siemens Industrial Gas Turbines 斯奥动力集团 SOAR POWER GROU P

H Class High Performance Siemens Gas Turbine (SGT-8000H)

12,9 MW Siemens - SGT 400, Gas Turbine (4 units), for sale:

Efficient, dependable and off the shelf. Pre-engineered gas-turbine driven pipeline compressor packages. Answers for energy.

Technology Application to MHPS Large Frame F series Gas Turbine

17-IAGT-104 Siemens introduces the SGT-A45 mobile unit: superior performance with trusted technology

RIKT 71 Isothermal Turbocompressor

Mature technology for 400 MW class CCPP

SeaFloat SCC-A65. Technical Solution Information. Unrestricted. Vers.

Extended fuel flexibility capabilities of the SGT-700 DLE combustion system

SGT5-8000H/SCC5-8000H 1S. First experience of Commercial Operation at Irsching 4. Russia Power Moscow, March

The SGT5-8000H proven in commercial operation

SGT-A05 (Industrial 501) Aeroderivative Gas Turbine. siemens.com

SGT-200 (Tornado) CAPABILITY OVERVIEW DMEnergy (Generation Service) Tel.: +7 (499) Web: dm.

MSD Axially Split Multistage Pump

The Enhanced Platform

51/60G. Four-stroke gas engine

Emerging Trends in Distributed Generation. Elton Hooper Global Marketing Manager Siemens PG DG

501-K Gas Turbines. Success through superior performance

LMS100 Gas Turbine System

Ignition Reliability in SGT-750 for Gas Blends at Arctic Conditions. Magnus Persson Combustion Expert / Distributed Generation / Sweden

SGT5-8000H - Product Validation at Irsching 4 Test Center. Dr. Roland Fischer Phil Ratliff Willibald Fischer. Siemens AG, Energy Sector Germany / USA

SeaGen-S 2MW. Proven and commercially viable tidal energy generation

Peaking plant Bayonne (NJ/USA) A flexible solution to support a volatile grid based on aero-derivative turbines

Flexible and Reliable Power Generation with Gas Turbines in Open Cycle and Combined Cycle Power Plants

USP&E Item # Manufacturer Model Year Hours Wattage(kW) Frequency Fuel Type Quantity Less Than Selling for Scope of Supply Notes

WET COMPRESSION. What it Is Not. What it Is. Is not traditional inlet air cooling, like a fogger or a chiller

MSD Axially Split Multistage Pump

USP&E Item # Manufacturer Model Year Hours Wattage(kW) Frequency Fuel Type Quantity Less Than Selling for Scope of Supply Notes

ABB life cycle services Uninterruptible power supplies

UREA AND AMMONIA PLANT COMPRESSORS NEW GENERATION PRACTICAL COMPREHENSIVE SOLUTIONS

Heavy-duty Gas turbines

SGT5-8000H / Irsching 4 Siemens H class gas turbine Pioneering efficiency with world class flexibility

Alternative Cooling and Mounting Concepts for Transition Duct in Industrial Gas Turbines

World s Largest Air-cooled Turbogenerator in operation

Western Alberta Transmission Line (WATL) HVDC Project

Gas turbine power stations based on gas turbines rated at 32 MW

Steam Turbine performance improvement solutions for Indian fleets

Bergen liquid fuel engines Sustainable and affordable power systems

Beyond 60% - Pioneering H-class Efficiency with World Class Flexibility

Bergen liquid fuel engines Sustainable and affordable power systems

Double Marine Gearboxes Type NDS(H)(Q)(L)

ARIEL CORPORATION API 618 MODERATE-SPEED PROCESS COMPRESSORS Blackjack Rd Mount Vernon, OH

Modern rotating equipment technologies for up- / mid- / downstream applications

Getting the Speed Right. Voith Variable Speed Fluid Couplings

RULE STATIONARY GAS TURBINES Adopted (Amended , ) INDEX

SGT5-2000E Latest Service Improvements for Optimized Operations, Maintenance and LNG Fuel Conversion Upgrade Grit Hennig

Pressurized Air Cooled Generators

Balancing and over-speed testing of flexible rotors

MEC-CM-E-2001 Lead Mechanical Engineer PERSONAL DATA EDUCATION LANGUAGES COMPUTER SKILLS TRAINING COURSES AND CERTIFICATIONS

ENERGY EFFICIENT DRIVE FOR COAL GRINDING MILLS

MAN Diesel's First VTA Application Achieves 10,000 Operating Hours

Day 1 Session 1 Gas Turbine Basics

STEAM TURBINE MODERNIZATION SOLUTIONS PROVIDE A WIDE SPECTRUM OF OPTIONS TO IMPROVE PERFORMANCE

HYDROVANE ROTARY VANE COMPRESSOR WITH REGULATED SPEED - THE 'RS' RANGE (7kW - 75kW)

COMPRESSOR STATION OPERATIONS

When should an Electric Adjustable Speed Drive be used instead of a Gas or Steam Turbine? Paul Blaiklock, Manish Verma, Stephan Bondy

Application Note Original Instructions Development of Gas Fuel Control Systems for Dry Low NOx (DLN) Aero-Derivative Gas Turbines

B. HOLMQVIST Nuclear Fuel Division, ABB Atom AB, Vasteras, Sweden

TCR Turbocharger. The cutting edge

Marine generators Proven generators for reliable power on board

MAN Diesel & Turbo. Benelux

AE94.3A Flexibility Upgrade

Latest Developments in Siemens Large Gas Turbine Portfolio. Matthias Fränkle 8000H Product Manager

Maxon Shut-Off and Vent Valves General Purpose

SIGENTICS HV Series S-modyn

DS V1. Rig Compressors. The most trusted brand in water-well drilling industry Rugged and Reliable

Chromalloy. Borescope and Test Report. Prepared for. Triumph Air Repair A Triumph Group Company

SOGIC May 8, 2018 Hyatt Regency, Calgary, Alberta

Brochure. Synchronous generators for steam and gas turbines Proven generators reliable power

Piston Engine Room Free Efficient Containership

Operation and Maintenance of different valve types


Training Title GAS TURBINE AND COMPRESSOR OPERATION, MAINTENANCE AND TROUBLESHOOTING

scania marine solution Engines for auxiliary power

EMERGENCY DIESEL GENERATOR SETS FOR NUCLEAR POWER PLANTS

Methods of combustion in combustion chambers that are specially adapted for generation of combustion products of high pressure or high velocity.

J920 FleXtra PowerPack

MT30. Powering the world s future fleets

NITIN CORPORATION 402, 4 th Floor, Bezzola Commercial Complex, Sion Trombay Road, Chembur, Mumbai , India.

With Rolls-Royce Aero Engine Technology. Engineered Solutions. siemens.com

Port of Long Beach. Diesel Emission Reduction Program

Steam Turbines and Gas Expanders. Reliability, Efficiency, Performance

Engineering Success by Application of STAR-CCM+ for Modern Gas Turbine Design

Transcription:

EXPERIENCE OF 29MW SGT-700 GAS TURBINE IN POWER GENERATION APPLICATIONS Anders Hellberg Product Manager SGT-700 Siemens Industrial Turbomachinery AB SE-612 83 Finspong, Sweden POWER-GEN International 2006 Orlando, FL November 28-30, 2006

Abstract This paper describes the testing and verification of Siemens gas turbine SGT-700 (formerly GT10C) and the first phase of operation experience from this. Erection, commissioning and the first 10 000 hours in commercial operation will be summarized. Introduction In 1997 the market requirement for a 30 MW industrial gas turbine was identified and an intensive development was started, targeting an uprate of the twin shaft SGT-600 (formerly GT10B) at 25 MW to create a gas turbine in the 30 MW range. The concept was based on the well-proven SGT-600 it but with third-generation DLE (Dry Low Emissions) combustion technology from the SGT-800. The commercial launch of the 30 MW unit took place in 1999 and the validation of the 30 MW unit started in 2001. Until today (September 2006) a total of15 units have been sold. Seven units have been delivered to site and all of them are now in commercial operation. Different applications are installed: power generation, mechanical drive, onshore and offshore as well as single and dual fuel. Commercial operation of the first units started in 2004. The two first sold SGT-700 s are owned by United Gas Derivatives Company (UGDC) in Egypt. The Egyptian SGT-700 s have met all requirements of the customer s specification and have been running with a very high reliability, above 99.5%, which, of course, is important for the success of our customer. Four SGT-700 have now passed their first 10 000 hours in commercial operation. The reason for the successful operation is the result of extensive development work and validation. There we have used all competence, technology and methods available in order verify the SGT-700. The efforts did not stop in the development phase: we have followed the gas turbine out in the field by having resident engineers in place to help and educate our customers and to be able to feed back information quickly to the development organization. The feedback from the field is the key to developing our processes and tools. Main Features The SGT-700 is derived from the SGT-600, see figure 1. The gas generator consists of inlet housing, compressor, combustion system, compressor turbine, rotors and bearings. Figure 1 SGT-700 versus SGT-600

The inlet housing consists of a casing, which directs the incoming air to the compressor first stage and which bears the guide vanes and the shroud ring carriers. The first two rows of guide vanes are variable, actuated by a control mechanism and an electric actuator. There are two compressor bleed valves at the second and the sixth stage. The compressor casing, covering the whole compressor section, is horizontally split to facilitate servicing and replacement of components. The compressor rotor is built up from a number of discs, electron beam welded together; the same technology and materials are used on both SGT-600 and SGT-800. A diffuser section at the compressor discharge decelerates the flow and directs the air into the combustion chamber. The SGT-700 gas generator rotor has the same overall length as the SGT-600, but with eleven stages, as opposed to ten. To increase power output the compressor flow has been increased from 79 kg/s to 90 kg/s compared with SGT-600, the area of the inlet and first two stages having been increased by about 15%. To increase efficiency a new compressor stage was added to raise the pressure ratio from 14.4 to 18, resulting in slightly modified channel height from stage 4 to 11 as compared to stages 3 to10 in SGT-600. The flow field in the new compressor is based on the SGT-600. However, the outlet velocity profile at the exit guide vane was straightened to improve the pressure recovery of the compressor diffuser. The profiles of the new compressor (based on SGT-800) have lower loss levels as well as a considerably wider working range than the old double circular arc (DCA) profiles. The surge margin of the SGT-700 compressor has been verified and is kept at the same level as with the SGT-600. The environmental performance of the SGT-700 is state-of-the-art with its dual fuel DLE combustor. The SGT-700 has the 3rd generation DLE, with the same burner as SGT-800. SGT-700 has 18 DLE-burners, i.e. the same number of burners as SGT-600. The combustor design is based on that of the SGT-600 DLE combustor. The annular combustor is made of Hastelloy-X sheet metal and has film-cooled liners with an impingement-cooled front panel. The experience from operation is that the SGT-700 can achieve NOx emissions below 15 ppmv (15% O2 dry) on gaseous fuel and 42 ppmv (15% O2 dry) on liquid fuel without any need for water or steam injection. The SGT-700, like the SGT-600, has a 2-stage air-cooled compressor turbine and a 2-stage uncooled power turbine. The two-stage bolted compressor turbine module form a single shaft together with the electron beam welded compressor rotor which rests in two standard hydrodynamic bearings of the tilting pad type lubricated by mineral oil. The separate high-speed (6500-rpm) two-stage power turbine also forms a single unit resting in two standard hydrodynamic bearings of the same type as the gas generator rotor. The power turbine is then coupled to a gear which is connected to the alternator. Modularization, few parts, long component life and easy inspection ensure long time between overhauls and low maintenance costs. To ensure this, operating experience gained from the SGT-600 has been incorporated into the development of the SGT-700. The main focus of this development has been concentrated on the core engine in order to improve performance and emissions further, while the design of auxiliary systems has, to a large extent, been kept. Compact package design for rapid installation The SGT-700 shares the package with the SGT-600 and the installation of the turbines, see figure 2, meets the market requirements for compactness, short erection and commissioning times and ease of maintenance. The turbine is skid-mounted, with the auxiliaries grouped in self-contained modules placed in the auxiliary room. The gas turbine driver layout is basically the same for all applications. The gas turbine driver skid is built from steel beams and carries the gas turbine, auxiliary systems and starter motor, with a total dry weight of approximately 78 metric tonnes. The gas turbine skid can then either be bolted to the gear and alternator skid or be kept as a single driver package. The whole package can also be designed to form a single-lift unit.

3 4 5 A 1 2 6 7 F E B C D G 8 9 10 11 H I 12 13 14 15 16 17 18 19 20 21 22 23 J K L M N O P 24 25 26 1. Control room 14. Oil mist filter 2. Ventilation air inlet 15. Lube oil filter 3. Air inlet filter 16. Compressor wash unit 4. Ventilation air outlet 17. External gas unit 5. Exhaust silencer 18. Air inlet plenum 6. Gear 19. Gas fuel unit 7. Gen. cooling, air outlet 20. Purge air unit 8. Batteries 21. Exhaust 9. Lube oil unit 22. Generator cooling, air inlet 10.Fire suppress unit 23. Generator cubical box 11.Generator 24. Lube oil cooler 12. Liquid fuel unit 25. Starter motor 13. Ignition gas bottles 26. Seal air cooler Figure 2 SGT-700 layout Maintenance The maintenance plan for the STG-700 and SGT-600 gas turbines is principally the same and well established. As a basis for the maintenance activities Equivalent Operating Hours (EOH) is calculated in the control system. The EOH is based on type of fuel, load and cycles. For a normal power plant operating on continuous load it is possible to gain hours. A boroscope inspection is done every 10,000 EOH and major overhauls at 40,000 and 80,000 EOH. A minor maintenance activity is carried out at intervals of 20,000 EOH. This basic maintenance plan should be adapted to a plant-specific operating profile, with regard to, for instance, load cycles and influences from fuel and environment. During a full 120,000 EOH cycle there is only 4% downtime for maintenance doing all maintenance at site. And this can be reduced further: we have developed a method that allows us to replace the gas generator in

24 hours, we can offer lease engines for planned maintenance and of course also time-saving alternative work schemes. In order to keep our customer s cost for maintenance low, Siemens normally provide only the necessary OEM specialists, while the customer himself supplies additional personnel. To fulfill individual customer requirements, Siemens offer a comprehensive range of Long Term Service Agreements (LTSA), from simple support agreements to agreements including both preventive and corrective maintenance. Constituent elements in these agreements are 24-hour emergency phone support, real-time remote connection to the customer s control system, Condition Monitoring System (CMS) and reduced fees for emergency spares and emergency lease units. The SGT-700 has a number of features that simplify maintenance and inspection. Boroscope ports are available on one side for inspection of the compressor stages, see figure 3. At the front of the air inlet plenum, a door is fitted allowing access to the compressor. To access the hot section and power turbine the gas generator can be rolled into the inlet, creating necessary space in between the compressor and power turbine for maintenance activities. The compressor casing has a horizontal split, allowing half of it to be removed for easy access to the rotor and stator parts and an overhead crane is included in the package. The combustion chamber can be inspected from boroscope access ports located at the end of the combustion chamber. The burners can easily be dismantled for inspection or visual inspection of the combustor chamber. The turbine can be inspected from the combustor and through three inspection ports. Figure 3 Maintenance of SGT-700 An overhead crane is installed inside the gas turbine enclosure to facilitate maintenance and enough space is available to allow operating personnel to walk around the machine. For flexibility, the gas turbine can be removed from either side (to be selected) of the installation.

Experience from operation In November 2001 the first engine was started and passed through the first part of the validation process. Complete disassembly and visual inspection of each component were standard procedure during this first year to validate the design. Clearance and dimensional checks were performed to verify the design. During disassembly/assembly the tools and working routines were also validated. The maintenance routines have been improved and important assembly steps have been highlighted. The SGT-700 passed a new milestone and entered commercial operation in 2004. 7 units around the globe are at the moment in commercial operation in different applications and to date 4 units have logged over 10, 000 hours of operation. Similar for the operation of each of seven units is that they are continuously operating units with few starts and stops. The power generation units are mainly running at base load (100%). The common profile for the operation of the mechanical drive units is that they are integrated in a larger infrastructure, which means that availability and reliability are prioritized and the mechanical drive s output margin included for the process, deterioration etc. resulting in an operation on approximately 80-85% load. Sochi, Russia Sochi, the site of the first two SGT-700 power generation sets, delivered to JSC City Energo, Moscow, is situated on the Russian coast of the Black Sea. The end customer is RAO UESR (Unified Energy System of Russia) in Sochi, and the SGT-700 s are now installed in a the new 76 MW combined heat and power plant, see figure 4, which provides power generation and district heating for the town of Sochi. Since Sochi is one of Russia's major resorts on the Black Sea Coast there are high demands on the environmental impact of the plant and, of course, the demand for uninterrupted power supply, which SGT-700 fulfils. The plant is crucial for the area s power supply, especially in the winter period. To ensure continuous operation the units are equipped with dual fuel technology (liquid fuel operation as back-up). This shows the importance of availability/reliability for the customer. Figure 4 Sochi power plant Together with the end user we have carried out planned extended inspections of the gas turbine. At the level-a boroscope inspection a level-c inspection was made in order to verify different components in the gas turbine. The results were very encouraging and no major issues were found.

Port Said site, Egypt Two identical trains for the United Gas Derivatives Company (UGDC) in Egypt were ordered in November 2002 for delivery to a natural gas liquids (NGL) plant in Port Said, Egypt, owned by UGDC, a specialpurpose company owned in equal parts by the Oil & Gas majors AGIP, BP Egypt and GASCO. Before delivery from the workshop, the package (including driven compressor also of Siemens manufacture) was string-tested in Finspong, Sweden. The plant is at sea level and its mechanical design is for an ambient temperature of 45 C. All equipment and instrumentation is protected against the highly corrosive marine climate by tropicalization of electric components. Because of the nature of the plant, environmental, health and safety considerations are paramount in all aspects of the site work. Installation is complete, and commissioning began in the summer of 2004. Both turbine-compressor sets have been in commercial operation since the end of 2004 and deliver according to committed contracts. During the one year warranty period, the average reliability was as high as 99.7% and the average availability was 98.3%. This data includes two planned A-inspections at 2500 and 5000 hours, outside the normal maintenance plan. Oxy site, offshore Qatar A platform with an SGT-700 installed for mechanical drive application has been built in Singapore and transported to an offshore site off Qatar. The site has tough requirements and the engine must be able to handle the hot and humid environment (+48 C) as well H2S in the fuel. Since December 2005 the unit is in production and has logged over 5000 hours. Eischleben site, Germany In December 2003 Siemens received an order from Wingas for two SGT-700 compressor trains for a pipeline compressor station in Eischleben, near Erfurt in Germany. This station is the terminus in Germany of the Yamal pipeline, which originates in the Yamal peninsula in Siberia, and travels through Belarus and Poland to Germany. From Eischleben the gas is distributed further to Germany and Western Europe through existing pipelines. The units are operated as 1+1, one is always standby, To date they have looged 5000 hours of operation Conclusion of operation statistics As of September 2006 approx. 55 000 running hours have been accumulated from the above-mentioned units. The fleet leader is at approximately 15 000 operation hours. Four units are above 10 000 hours and The SGT-700 has proven to be a reliable gas turbine producing power in various applications and under different ambient conditions. Summary The SGT-700 is derived from the SGT-600. Despite this, thorough tests have been performed in the test facility in Finspong, Sweden, in order to secure high reliability and availability for the customers. In addition to this, extra inspections of some of the units have been made after 2000-10 000 hours in order to be sure that no surprises have appeared. All inspections have shown that no unexpected issues have arisen the core engines are in very good condition. This is also shown by the high figures on availability and reliability where the values are extremely high for a new engine. The next step is to continue with the inspections as planned and use data from CMS (Condition Monitoring System) which will be collected on all the engines in order to follow the fleet and maintain high availability and reliability. SGT-700 has, in its first years of operation proved to be a reliable high efficient gas turbine in various applications.