RauVITHERM pre-insulated pipe. Valid from May 2013 Subject to Technical Alterations. Construction Automotive Industry

Similar documents
CALPEX Low Temperature System

Table of Contents 2.0 COOLFLEX CLX. 2.0 Table of Contents

Table of Contents COOLMANT. 2.0 Table of Contents

Table of Contents. EIGERFLEX -Clima. 2.0 Table of Contents

RAUVITHERM AND RAUTHERMEX PRE-INSULATED PIPES FOR DISTRICT HEATING PARTS LIST ENERGY EFFICIENCY. Building Solutions Automotive Industry

Table of Contents. CALPEX district heating pipe. 1.0 Table of Contents

Table of Contents. CALPEX district heating pipe

Table of Contents. CALPEX district heating pipe. 1.0 Table of Contents

Table of Contents 2.0 EIGERFLEX CPE. 2.0 Table of Contents

Table of Contents. CALPEX district heating pipe. 1.0 Table of Contents

Table of Contents. CALPEX district heating pipe. 1.0 Table of Contents

PSI Anti-Corrosion Tape

raugeo ground-source systems innovative heating & cooling solutions parts list /11 EN ENERGY EFFICIENCY Building Solutions Automotive Industry

4.0 Table of Contents. CASAFLEX district heating pipe CFL

PE-HDXc pipes (physically cross-linked polyethylene pipes)

PRODUCT CATALOGUE DOUBLE PREINSULATED PIPES

Table of Contents 6.0. PREMANT district heating pipe PRE. 6.0 Table of Contents

h Technical Product Data CC Pressure Pipe Systems

Table of Contents 6.0. PREMANT district heating pipe PRE. 6.0 Table of Contents

RAUGEO GROUND-SOURCE SYSTEMS INNOVATIVE HEATING & COOLING SOLUTIONS PARTS LIST /12 EN

Ecoflex potable PEX plus pre-insulated pipe system Installation guide

HKV 1 1/4 in. Brass Manifold Product instructions. Construction Automotive Industry

gabotherm gabotherm gabotherm Pipes PB Polybutene Pipes 13 PE-Xc Pipes 15 PE-RT Pipes 16 MV Pipes (Multilayer Composite Pipes) 17

LOGSTOR FlexPipe System

PSI CASING END SEALS FOR CASING PIPE CLOSURE FOR PROTECTION AGAINST MOISTURE AND DIRT ALSO FOR RETROFITTING INDIVIDUAL CUSTOMIZED SOLUTIONS

Ecoflex Systems. Installation and Technical Guide

Herz Valves UK Ltd. Pre-insulated Pipe Catalogue

PRO-BALANCE 1 1/4 IN. BRASS MANIFOLD. Product Instructions

HEATING & SANITARY PRE-INSULATED PIPES. INFLEX BHD uno INFLEX BHD duo INFLEX BHD quattro. ri e FLEXIBLE PREINSULATED PIPE SYSTEMS

The advantages of the pipe tracing systems are: Sensor. Insulation Heating cable Aluminium tape. Fig. 1 Fig. 2

TubeTrace Tubing Bundles

STAMANT-Safety Pipe. System Description SMR

MSC Manifolds - DIN for Steam Distribution and Condensate Collection Installation and Maintenance Instructions

M-8100EP. Installation Guide ENGINEERED PLASTIC MANIFOLD SERIES. Introduction. A. Assemble Manifold Components

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER E: THE REACTOR COOLANT SYSTEM AND RELATED SYSTEMS

Pre-Insulated Piping Systems Installation and Technical Guide. a PRIL 2014

2.- HANDLING OF VALVES BEFORE ASSEMBLY 3.- FITTING THE VALVE TO THE REST OF THE ASSEMBLY 5.- PERIODICAL INSPECTION OF THE VALVE AND MAINTENANCE

VALSIR SUPPLY SYSTEMS MIXAL

FOR HEATING & PLUMBING SYSTEMS

ABS lifting station Synconta

Table of contents. PREMANT DUO district heating pipe. 7.0 Table of contents

DOMESTIC USE. Anti-freeze for Piping CONSTANT POWER. Anti-freeze for Ramps. Stop Ice Constant power anti-freeze kit complete with thermostat and plug

FLUID POWER FLUID POWER EQUIPMENT TUTORIAL PIPE WORK. This work covers part of outcome 2 of the Edexcel standard module:

ZPU Międzyrzecz Sp. z o.o. ZPU MIĘDZYRZECZ SP. Z O.O. SYSTEM PREINSULATED PIPES FOR LOW TEMPERATURE UTILITIES FLEXIBLE PIPESYSTEMS

POLYETHYLENE High Density

1/2" AIR DRIVEN DIAPHRAGM PUMP

Starting up hydraulic systems

<THESE INSTRUCTIONS MUST BE GIVEN TO THE END USER> B&W

V-Rings around the clock... around the clock...

Manifold Isolation Valves

Uponor Infra Fintherm a.s. Pre-insulated pipes and accessories catalogue

Washtenaw County DESIGN PROCEDURES AND ENGINEERING STANDARDS FOR PRESSURE DISTRIBUTION NETWORKS

M Installation Guide. PRECISION Manifold Series. Introduction. A. Assemble Manifold Components

Technical Bulletin. Terrain FUZE HDPE Thermal Expansion L = L T. Bulletin P1

Heat-Shrinkable Tubing

LK Manifold RF. Design. Requirements. Documentation

Technical Bulletin. Terrain FUZE HDPE Thermal Expansion L = L T. Bulletin P1

IROn PIPe. McWane DUcTILe

PRODUCT CATALOGUE EFFECTIVE FROM 1 ST JANUARY 2013 MULTI-LAYER PIPE & PRESS FITTING SYSTEM

GRP backing flanges DIN 2501 Flange connecting dimension PN10 WORK STANDARD. GRP backing flanges made of Polyester resin.

iglidur G The General Purpose Bearing: most popular iglidur material worldwide


SYSTEM KAN-therm Push Platinum

Expansion Joint. Ball Joint Flexible Joint

Method. Remote solenoids. QuickInstall Guide

Nuheat WEATHER-READY HEAT TRACE PIPE FREEZE PROTECTION SYSTEM. Self-Regulating Heating Cable Installation Guide. UV Resistant Polyolefin Outer Jacket

5. Underground Requirements

PSI HEAT SHRINK PRODUCTS -

Gauges, Sight Glasses and Vacuum Breakers

Power Connection Kit installation instructions

PE 100-RC ball valve THE MAINTENANCE-FREE HIGH-PERFORMANCE VALVE

Cable-Tight Wire Management System

AIR COOLED CHILLERS WATER COOLED CHILLERS

RAUTOOL G2 BATTERY HYDRAULIC TOOL KIT PRODUCT INSTRUCTIONS. Construction Automotive Industry

SOLAR WORLD, INC. INSTALLATION MANUAL

Profile series I-40. System kit Profile series I-40

INSTALLATION GUIDELINES

The bonded pipe system Overview

CALEFFI. Pre-assembled distribution manifolds for. heating and air-conditioning systems. 663 series 01065/18 GB. replaces dp 01065/06 GB.

Transair: Advanced Pipe Systems Pocket Installation Guide [1/2"] [1"] [1 1/2"] [2"] [2 1/2"] [3"] [4"] [6"]

DryLin R Linear Plain Bearings, Fast and Quiet

OFFSHORE WIND FEASIBILITY STUDY APPENDICES Appendix C.2 Subsea Cable Data Sheets

Operating Instructions for Elevator Buffers type LP

ZPU MIĘDZYRZECZ Sp. z o. o. PREINSULATED PIPE SYSTEM TO BE USED IN BURIED THERMAL UTILITIES

TECHNICAL SPECIFICATIONS

NEW: quality. DuoSolar. DuoSolar. ARMAFLEX DUOSOLAR the easy-to-install pre-insulated tubing system for reducing the energy loss.

Lifting Station Type ABS Synconta 900B

DryLin R Linear Plain Bearings, Fast and Quiet

DryLin R Linear Plain Bearings, Fast and Quiet

DryLin R Linear Plain Bearings, Fast and Quiet

CONEX Works, Santry Avenue, Dublin 9, Ireland Tel: (0) Fax: (0)

Water Connection Repair Method and Techniques

Installation & Operation Manual

PNEUMATIC PIPE PLUGS

Y o u r V a l u e P a r t n e r THOMAS. Weholite LP Couplings

Application Techniques for Reflective Pressure-Sensitive Films

Underground Gas Polyethylene (PE) Piping

Geomembrane Test Methods

PIPE FREEZE PROTECTION AND FLOW MAINTENANCE XL-TRACE SYSTEM

GL0098P Beta+ Septic Tanks Installation & Operation Guidelines

Transcription:

RauVITHERM pre-insulated pipe technical and installation manual www.rehau.com Valid from May 2013 Subject to Technical Alterations Construction Automotive Industry

contents 1........ Introduction...3 1.1.... System Advantages...3 1.2.... Scope...3 1.3.... Applications...3 2........ Main Components...4 2.1.... RAUVITHERM Pipe...4 2.2.... REHAU Jointing Technique...4 2.2.1..... REHAU Compression Sleeve Joint...4 2.2.2..... REHAU T-shrouds and I-shroud...4 3........ Properties...................................... 5 3.1.... RAUVITHERM pipe...5 3.1.1..... Carrier Pipe...5 3.1.2..... Pipe Insulation...6 3.1.3..... RAUVITHERM Outer Pipe Jacket...6 3.2.... Jointing Technique...6 3.2.1..... EVERLOC Fittings...6 3.3.... RAUVITHERM Insulating Shroud System...7 3.4.... RAUVITHERM Pipe Sizes...8 5........ RAUVITHERM Installation Instructions...16 5.1.... Transport and Storage...16 5.1.1..... Storage Time...16 5.1.2..... Transportation....16 5.1.3..... Lifting with a Backhoe...16 5.1.4..... Lifting with a Forklift...17 5.1.5..... Storage....17 5.2.... Laying Pipes...17 5.3.... Jointing Pipes with the Compression Sleeve Technique...19 5.4.... Service Connection Pipes....23 5.4.1..... Connecting through the Foundation...23 5.4.2..... Prefabricated Bends...23 5.4.3..... Exposed Lengths with End Caps....23 5.5.... Linear Thermal Expansion during Installation....24 5.5.1..... Linear Thermal Expansion in Trenches...24 5.5.2..... Linear Thermal Expansion when Connecting to Buildings...24 5.6.... Installation Techniques....24 5.6.1..... Pipe in Sleeve System...24 5.6.2..... Installing During Land Development Phase...24 5.6.3..... Tapping into Existing Lines....24 4........ Design...9 4.1.... General Information...9 4.1.2..... Branch Layout...9 4.1.3..... Building-to-building ("Daisy Chain") Layout...9 4.1.4..... Branching Off a Plastic Jacketed Main Line...9 4.2.... Design Tips...10 4.3.... Pipe Sizing...10 4.4.... Pressure Loss...10 4.5.... Heat Loss...10 4.5.1..... Heat Losses in RAUVITHERM Pipes...10 4.6.... Pipe Laying Techniques...14 4.6.1..... Open-cut Technique...14 4.6.2..... Pull-through Technique...14 4.6.3..... Ploughing-in Technique...14 4.7.... Pipe Trenches...14 4.7.1..... Trench Widths...15 4.7.2..... Proximity to Other Services...15 4.7.3..... Protecting the Pipes in Special Installation Situations....15 6........ Commissioning / Standards and Guidelines...25 6.1.... Commissioning...25 6.2.... Other Applicable Standards and Guidelines...25 6.3.... Pressure Test Certificate...26 Appendix A: RAUVITHERM Pressure Loss Tables... 28 2

1 rauvitherm introduction In view of the increasing need to minimise CO 2 emissions as much as possible, local and district heating supply technology is becoming ever more important. With the number of new supply stations being set up, the requirements for a flexible and efficient local and district heating pipe system are also increasing. Pioneering technologies, combining optimum functionality with low energy losses, form the basis for the insulated pipe system RAUVITHERM from REHAU. 1.1 System Advantages --Flexible pipe system ensures cost-effective heat distribution --High operating safety because the RAUVITHERM pipes are made of corrosion-resistant material --Full range of system components for all applications --Longitudinal water tightness Fig. 1.1: Biogas plant 1.2 Scope This Technical Information applies to the planning/design, installation and use of the flexible RAUVITHERM pre-insulated heating pipe system, the REHAU EVERLOC and the REHAU insulating sleeve systems, T-couplings and jointing sleeves. 1.3 Applications RAUVITHERM is a pre-insulated pipe system used predominantly in below ground applications. --Snow and Ice Melting --District Heating --Cooling Technology --Biogas and Biomass Applications --Remote Manifold Supply --Heat Pump Applications --Remote boiler/chp units Fig. 1.2: Connection to wood chip burner Pay attention when you see this symbol! Important information for the safe and correct handling of this product Abbreviations used in this RAUVITHERM Technical Manual: PEXa = high pressure cross linked polyethylene PE-LD = Polyethylene - low density PE-HD = Polyethylene - high density EVOH = Ethylen-Vinyl-Alcohol-Copolymer PU = Polyurethane Fig. 1.3: Biomass plant 3

2 rauvitherm main components Fig. 2.1: RAUVITHERM pipe 2.1 RAUVITHERM Pipe (Fig. 2.1) RAUVITHERM district heating pipes consist of carrier pipes (PEXa) with a primer and oxygen diffusion barrier (EVOH), insulation made from crosslinked, closed-cell PE foam sheet (λ = 0.043 W/mK) and a PE foamed corrugated outer jacket to increase the ring stiffness and flexibility. In the case of DUO pipes, the location of the two carrer pipes in relation to each other is determined by extruded foam made of PE. Advantages --High flexibility --Quick installation --Small bending radius --Very good thermal insulation properties 2.2 REHAU Jointing Technique 2.2.1 REHAU EVERLOC (Fig. 2.2) EVERLOC was developed by REHAU for quick and safe connections between PEXa pipes. It comprises simply a fitting and the compression sleeve according to ASTM F2080. Fig 2.2: RAUVITHERM EVERLOC fitting systemt Additional sealing elements are not required, as the pipe itself acts as a seal. Four sealing ribs create a secure connection, which also withstands the tough application conditions on construction sites. Specially designed ribs on the compression sleeve prevent the connection coming loose during operation. Advantages --Secure --Virtually no bore reduction, as carrier pipes are expanded to make the connection. --Fast installation --Can be pressurised immediately --Installs in all weather conditions Fig. 2.3: RAUVITHERM insulating shroud system 2.2.2 REHAU T- shrouds and I-shrouds (Fig. 2.3) Joints in the ground, for example sockets or T-couplings, are to be insulated and sealed to an insulation quality equivalent to that of RAUVITHERM pipes. The insulating shroud system Generation I, which was specially developed for this application, comprises a plastic component with stepped ends for adjustment to the relevant outer jacket diameter. For sealing, two heat-shrink sleeves are used for the I-Shroud or three heat-shrink sleeves for the T-shroud. For insulation, high-quality PU foam is used. Advantages --Quick and easy assembly --Reliable sealing --Extremely good thermal insulation properties --Universal sleeve: only 4 products for branches and joints in all dimensions 4

3 rauvitherm Properties 3.1 RAUVITHERM Pipe The RAUVITHERM pipes are made of the following main components - carrier pipe (1) - pipe insulation (2) - pipe jacket (3) These sub-areas are explained in detail below. 3 2 1 Advantages of PEXa Carrier Pipes --Excellent chemical resistance --Extremely low friction coefficient (e = 0.007 mm at 60 C) --No incrustation --Permanently low pressure loss over entire service life --SDR 11 pipes with special, orange-coloured EVOH oxygen diffusion barrier --Corrosion-resistance --Good aging behavior --Creep resistant --Temperature resistance --Excellent noise supression --Low pressure resistance --Excellent notched impact strength Fig. 3.1: RAUVITHERM pipe with main components 3.1.1 Carrier Pipes The carrier pipe is made of high-pressure crosslinked polyethylene PEXa (produced in accordance with DIN 16892 and DIN 16893). The carrier pipes are crosslinked under high pressure and temperature. This process bonds the macromolecules so that they form a network, enhancing performance over regular polyethylene. Properties of PEXa Carrier Pipe Density 0.94 g/cm 3 Average thermal longitudinal 1.5 10-4 K -1 expansion coefficient in temperature range of 0 C to 70 C Thermal conductivity 0.38 W/mK Modulus of elasticity 600 N/mm 2 Surface resistance 10 12 Ω Construction material class (DIN B2 (normal flammability) 4102) Surface friction coefficient 0.007 mm Table 3.1: Properties of PEXa carrier pipe Chemical Resistance The RAUVITHERM PEXa carrier pipe demonstrates excellent resistance to chemicals. The safety factors and temperature resistances are dependent on the medium. The resistances mentioned in DIN 8075, Supplement 1, generally also apply to PEXa. Often, because of its crosslinking, PEXa is more resistant than non-cross linked PE. Fig. 3.2: Carrier pipes SDR 11 Pressure and Temperature Limits The following temperature and pressure limits apply in accordance with DIN 16892/93 at continuous operating temperatures for RAUVITHERM pipes. (Application: water; safety factor 1.25) RAUVITHERM Carrier Pipes SDR 11 The RAUVITHERM SDR 11 pipes are predominantly used in heating and cooling circulation systems. For this reason, they have an additional oxygen diffusion barrier made of EVOH in accordance with DIN 4726. The color of these pipes is orange. RAUVITHERM, SDR 11 40 C 11.9 bar 25 years 50 C 10.6 bar 25 years 60 C 9.5 bar 25 years 70 C 8.5 bar 25 years 80 C 7.6 bar 25 years 90 C* 6.9 bar 15 years 95 C* 6.6 bar 10 years * Elevated temperature application Table 3.2: Pressure and temperature limits SDR 11 5

For varying pressures and temperatures, the expected service life can be determined according to DIN 13760 Miner s rule. The carrier pipes are designed for maximum operating temperatures of 95 C, but can tolerate excess temperatures of up to 110 C for short periods. Approvals for RAUVITHERM pipe - WRAS Approved (up to 63mm UNO and DUO) 3.1.2 Pipe Insulation The insulation of the RAUVITHERM pipe SDR 11 consists of crosslinked PE foam sheets and in the case of DUO pipes and additional foamed PE moulding ("bones"). Fig. 3.4: Outer jacket 3.2 Jointing Technique In the case of below ground pipe joints, the system operator must be able to rely on the jointing technique. Watertightness of the pipe joints are carried out using the REHAU EVERLOC fitting system. Fig. 3.3: Exposed pipe layers Fig. 3.5: EVERLOC fitting Advantages --Very fine pores (closed cell up to 95 %) --High water resistance --Low thermal conductivity 3.2.1 EVERLOC Fittings EVERLOC fittings are made of special brass in accordance with DIN EN 1254/3 (E) Class A, gunmetal or ST 37.0. Compression sleeves are made of annealed standard brass CuZn39Pb3 / F43 in accordance with DIN 17671 or gunmetal. Properties of PU Pipe Insulation Heat conductivity 0.043 W/mK Density 30 kg/m 3 Compression grade 0.073 N/mm 2 Water absorption < 1 % Vol (DIN 53428) Long-term temperature resistance +95 C Table 3.3: Properties of PU pipe insulation RAUTOOL Tools There are various manual, hydraulic and electro-hydraulic tools available: RAUTOOL M1 Manual tool with double clamping jaw for 2 dimensions. Area of use is dimensions 16 mm 40 mm. The M1 clamping jaws must only be used with the RAUTOOL M1. (Fig. 3.6) 6 3.1.3 RAUVITHERM Outer Pipe Jacket RAUVITHERM pipes feature a corrugated outer pipe jacket. Primarily with the larger pipe jacket diameters > 200 mm the corrugation increases the static properties and the flexibility of the pipe. This makes the outer jacket highly robust thanks to its solid wall pipe design. Advantages --Seamless extruded around the PEX-foam --Ideal for making pipe connections --Highly robust due to its construction Fig. 3.6: RAUTOOL M1

RAUTOOL A3 Electric hydraulic tool with battery operated and clampling jaws for 2 Dimensions. The operation is carried out through a battery operated hydraulic power unit which is found directly on the tool cylinder. For dimensions 16 40. (Fig. 3.7) The T-Shroud set comprises of --1 T-shroud, large or small --3 heat-shrink sleeves --11 screws for T-shroud large --1 Vent plug --Installation instructions Fig. 3.7: RAUTOOL A3 Fig. 3.10: RAUVITHERM T-Shroud RAUTOOL G2 Tool for the dimensions 50mm 110mm (optionally also available for dimension 40 mm). It is driven via a hydraulic foot pump or via an electrohydraulic unit. (Fig. 3.8) RAUVITHERM I-Shroud The RAUVITHERM jointing sleeve is used to insulate couplings and end caps. The I-shroud set contains: --1 jointing sleeve, large or small --2 heat-shrink sleeves --1 Vent plug --Installation instructions Fig. 3.8: RAUTOOL G2 3.3 RAUVITHERM Insulating Shroud System The shroud is made of extremely robust and impact-resistant PE-HD. In addition, for high-quality insulating sleeve production, there is also abrasive strip, temperature gauges and Forstner bits available to create the foam hole. Fig. 3.11: RAUVITHERM I-shroud Properties of Sleeve Set System High-density polyethylene (PE-HD): Thermal conductivity 0.43 W/mK Crystallite melting range 105-110 C Density 0.93 N/mm 2 Modulus of elasticity 600 N/mm 2 Construction material class B2 (normal flammability) (DIN 4102) Fig. 3.9: Shroud system The shroud system Generation I is available in two different configurations as a T-coupling or as a jointing sleeve. Table 3.4: Properties of sleeve system 7

Heat-shrink Sleeves for Shroud Set The heat-shrink sleeving is coated inside with a hot melt adhesive to seal the sleeve to the RAUVITHERM pipe. 3.5 RAUVITHERM Pipe Sizes Material Properties of Heat-shrink Sleeve Tensile strength 14 MPa Max. expansion 300 % Density 1.1 g/cm 3 Water absorption < 0.1 % Adhesive softening temperature 80-90 C Construction material class (DIN B2 (normal flammability) 4102) Table 3.5: Material properties of heat-shrink sleeve Fig. 3.12 : RAUVITHERM outline diagram RAUVITHERM Dimensions Dimension Volume (l/m) Weight (kg/m) Max. ring Coil Length (m) 2.8 x 0.8m 2.8 x 1.2m UNO 25 0.33 0.98 207 300 32 0.54 1.07 207 300 40 0.83 1.22 207 300 50 1.3 1.75 138 240 63 2.07 2.08 138 140 75 2.96 2.99 95 140 90 4.25 3.64 95 110 110 6.36 4.60 87 110 125 8.20 6.10 59 100 DUO 25 2 x 0.33 1.66 138 240 32 2 x 0.54 1.87 138 240 40 2 x 0.83 2.24 138 240 50 2 x 1.31 3.31 84 140 63 2 x 2.07 4.77 59 100 Table 3.6: RAUVITHERM Dimensions 8

4 design 4.1 General Information With the flexible RAUVITHERM pipes, both district heating networks and connecting lines between two buildings can be achieved cost effectively. There are three different laying alternatives. Combinations are possible. 4.1.2 Branch Layout With this method, buildings are connected via branches from a main line. Advantages --Flexible in design --Easy installation even before buildings are constructed --Branches can be connected to the main line at a later stage Fig. 4.1: Branch piping 4.1.3 Building-to-building ("Daisy Chain") layout In many cases, the availability of long delivery lengths of RAUVITHERM pipes allows for the complete elimination of belowground connections or branches by laying the RAUVITHERM pipes from one building to the next and back. Advantages --No connections below ground 4.1.4 Branching off a plastic jacketed main line Existing district heating networks can either be extended or tapped into for connctions to future development of properties as long as the network can accomodate the increased load. Fig. 4.2: Building-to-building ("Daisy Chain") piping Advantages --If the operating temperatures of the main line are too high, a secondary network with RAUVITHERM pipes can be created via a network decoupling Fig. 4.3: Branching off from a main line 9

4.2 Design Tips From the heat demands plotted over one year, it is clear that full heat carrying capacity is only required on a few days a year. Investment and running costs (due to higher energy losses) of district heating networks rise proportionally with the nominal pipe diameter. Every piping system should be designed by a licensed engineer, but generally the smallest possible pipe diameters should be designed for the pipe network. The low additional costs required to compensate for the increased pressure loss at full capacity often outweigh the savings mentioned above. It may also be practical to use a second pump, which starts automatically when the primary pump is at full capacity and which otherwise serves as a back-up. To save energy on branch lines in particular, it may be a good idea to split the lines into three (two supply pipes and one return pipe) or into four pipes (two supply pipes and two return pipes). If the second lines are only switched on when the capacity of the first is exceeded, the network can indeed be operated with minimal energy losses for most of the year. 4.5 Heat Loss 4.5.1 Heat Loss in RAUVITHERM Pipes With a soil temperature of 10 C, soil conductivity of 1.2 W/mK, depth of 0.6 m from the surface and (when using two UNO pipes) pipe spacing of 0.1 m, the following heat losses per meter of pipe can be expected at the average water supply temperature. The indicated heat losses apply to 1 m of trench considering flow and return pipe (2 Uno or 1 Duo). Assumptions UNO pipe: 2 pipes in trench below ground DUO pipe: 1 pipe in trench below ground For UNO pipes: a = 0.1 m Depth from surface: h = 0.6 m Ambient soil temperature: δ E = 10 C Soil conductivity: λ E = 1.2 W/mK Cond. of PE-Xa-foams: λ PU = 0.043 W/mK Cond. of PE-Xa-pipes: λ PE-Xa = 0.38 W/mK Cond. of PE-pipe jacket: λ PE = 0.09 W/mK Heat Losses During Operation Q = U (δ B - δ E ) [W/m] U = thermal heat transfer coefficient [W/mK] δ B = average water supply temperature [ C] δ E = ambient soil temperature [ C] Fig. 4.4: Annual time curve 4.3 Pipe Sizing The hydraulic performance of RAUVITHERM pipes is considerably greater than that of steel pipes due to the lower pipe friction coefficient with the same inner diameter. For this reason, pressure loss tables for steel pipes cannot be used for the pressure-loss calculation of RAUVITHERM pipes. When sizing RAUVITHERM pipes, we recommend comparing the energy losses and pump capacities. Since full pump capacity is usually only required on a few days of the year, reducing the pipe dimensions can lead to considerable savings in terms of energy loss and material used. FIg. 4.5: RAUVITHERM UNO SDR 11 a=0.1m E E h=0.6m For sizing, the maximum carrying capacities must be calculated for the piping. The charts on the following pages can be used for estimating pressure loss. Tables, diagrams and example calculations are available for the pressure loss calculation. h=0.6m 10 4.4 Pressure Loss See appendix for pressure loss tables. Fig. 4.6: RAUVITHERM DUO SDR 11 E E

Heat Heat losses for flow supply and return [W/m] [W/m] 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Fig. 4.7: Heat loss UNO pipe 0 10 20 30 40 50 60 70 80 90 Temperature Difference Difference [K] [K] 125/210 110/190 90/175 75/175 63/150 50/150 40/120 32/120 25/120 Heat losses DUO pipe SDR 11 (Supply and Return) 35 Heat losses for supply and return [W/m] 30 25 20 15 10 5 63+63/210 50+50/175 40+40/150 32+32/150 25+25/150 0 0 10 20 30 40 50 60 70 80 90 Temperature Difference [K] Fig. 4.8: Heat losses DUO pipe 11

Heat Load Temperature Drop (rt) kw 5K 10K 15K 25K 30K 10 0.48 0.24 0.16 0.10 0.08 20 0.96 0.48 0.32 0.19 0.16 30 1.44 0.72 0.48 0.29 0.24 40 1.91 0.96 0.64 0.38 0.32 50 2.39 1.20 0.80 0.48 0.40 60 2.87 1.44 0.96 0.57 0.48 70 3.35 1.67 1.12 0.67 0.56 80 3.83 1.91 1.28 0.77 0.64 90 4.31 2.15 1.44 0.86 0.72 100 4.78 2.39 1.59 0.96 0.80 200 9.57 4.78 3.19 1.91 1.59 300 14.35 7.18 4.78 2.87 2.39 400 19.14 9.57 6.38 3.83 3.19 500 23.92 11.96 7.97 4.78 3.99 600 28.71 14.35 9.57 5.74 4.78 700 16.75 11.16 6.70 5.58 800 19.14 12.76 7.66 6.38 900 21.53 14.35 8.61 7.18 1000 23.92 15.95 9.57 7.97 1100 26.32 17.54 10.53 8.77 1200 28.71 19.14 11.48 9.57 1300 20.73 12.44 10.37 1400 22.33 13.40 11.16 1500 23.92 14.35 11.96 Table 4.1: Flow rates for various heat loads and varying temperature drop (rt), Flow rate in l/sec Instructions for Using Pipe Sizing and Energy Loss Tables a) Pipe Sizing - Using the heat load (kw) and temperature drop (rt) obtain flow in l/sec from table 4.1 - Use the flow rate in Table 4.2 to select a suitable pipe size b) Energy Loss and Temperature Drop - Using the selcted pipe size and the mean water temperature, obtain the energy loss and temperature drop over 100m pipe lengths using Table 4.3 & 4.4 Pressure losses are based on a mean temperature of 70 o C Flow rate 25 x 2.3 32 x 2.9 40 x 2.9 50 x 2.9 63 x 2.9 (L/sec) m/sec Pa/m m/sec Pa/m m/sec Pa/m m/sec Pa/m m/sec 0.1 64 0.31 0.2 218 0.61 65 0.37 0.3 135 0.56 0.4 227 0.74 79 0.48 0.5 118 0.60 0.6 164 0.72 0.7 216 0.84 73 0.5 0.8 276 0.96 93 0.6 0.9 115 0.7 1.0 139 0.8 1.5 291 1.1 95 0.72 12 2.5 241 1.20

Flow rate 75 x 6.8 90 x 8.2 110 x 10 125 x 11.4 160 x 14.6 (L/sec) m/sec Pa/m m/sec Pa/m m/sec Pa/m m/sec Pa/m m/sec 3 141 1.0 3.5 187 1.2 4 240 1.4 4.5 298 1.5 123 1.06 5 149 1.18 5.5 178 1.29 6 209 1.41 6.5 242 1.53 7 277 1.65 104 1.10 7.5 118 1.18 8 133 1.26 8.5 148 1.34 9 165 1.41 9.5 182 1.49 98 1.16 10 200 1.57 107 1.22 15 228 1.83 20 116 1.49 25 175 1.86 30 247 2.23 Table 4.2: Pipe sizing and pressure loss table Pipe Size Mean Water Temperature ( o C) and Temperature Drop (rt) (mm) 40 o C rt 50 o C rt 60 o C rt 70 o C rt 80 o C rt 90 o C rt 25 x 2.3 0.49 kw 0.6 C 0.66 kw 0.8 C 0.82 kw 1.0 C 0.98 kw 1.2 C 1.15 kw 1.4 C 1.31 kw 1.6 C 32 x 2.9 0.57 kw 0.4 C 0.77 kw 0.5 C 0.96 kw 0.6 C 1.15 kw 0.7 C 1.34 kw 0.8 C 1.53 kw 0.9 C 40 x 3.7 0.67 kw 0.2 C 0.89 kw 0.3 C 1.12 kw 0.4 C 1.34 kw 0.5 C 1.56 kw 0.5 C 1.79 kw 0.6 C 50 x 4.6 0.68 kw 0.1 C 0.90 kw 0.2 C 1.13 kw 0.2 C 1.35 kw 0.2 C 1.58 kw 0.3 C 1.80 kw 0.3 C 63 x 5.8 0.83 kw 0.1 C 1.11 kw 0.1 C 1.39 kw 0.1 C 1.66 kw 0.2 C 1.94 kw 0.2 C 2.22 kw 0.2 C 75 x 6.8 0.85 kw 0.1 C 1.14 kw 0.1 C 1.42 kw 0.1 C 1.71 kw 0.1 C 1.99 kw 0.1 C 2.27 kw 0.2 C 90 x 8.2 1.02 kw 0.0 C 1.36 kw 0.1 C 1.69 kw 0.1 C 2.03 kw 0.1 C 2.37 kw 0.1 C 2.71 kw 0.1 C 110 x 10 1.23 kw 0.0 C 1.63 kw 0.0 C 2.04 kw 0.1 C 2.45 kw 0.1 C 2.86 kw 0.1 C 3.26 kw 0.1 C 125 x 11.4 1.27kW 0.0 C 1.69kW 0.0 C 2.12kW 0.0 C 2.54kW 0.0 C 2.96kW 0.1 C 3.39kW 0.1 C Table 4.3: RAUVITHERM UNO Energy Loss and Temperature Drop for 100m pipe length Pipe Size Mean Water Temperature ( o C) and Temperature Drop (rt) (mm) 40 o C rt 50 o C rt 60 o C rt 70 o C rt 80 o C rt 90 o C rt 25 x 2.3 0.73 kw 0.9 C 0.98 kw 1.2 C 1.22 kw 1.5 C 1.47 kw 1.8 C 1.71 kw 2.0 C 1.96 kw 2.3 C 32 x 2.9 0.78 kw 0.5 C 1.04 kw 0.6 C 1.30 kw 0.8 C 1.56 kw 1.0 C 1.82 kw 1.1 C 2.08 kw 1.3 C 40 x 3.7 0.96 kw 0.3 C 1.28 kw 0.4 C 1.61 kw 0.6 C 1.93 kw 0.7 C 2.25 kw 0.8 C 2.57 kw 0.9 C 50 x 4.6 1.01 kw 0.2 C 1.34 kw 0.2 C 1.68 kw 0.3 C 2.01 kw 0.4 C 2.35 kw 0.4 C 2.69 kw 0.5 C 63 x 5.8 1.15 kw 0.1 C 1.54 kw 0.2 C 1.92 kw 0.2 C 2.31 kw 0.2 C 2.69 kw 0.3 C 3.07 kw 0.3 C Table 4.4 RAUVITHERM DUO Energy Loss and Temperature Drop for 100m pipe length 13

4.6 Pipe Laying Techniques Thanks to the flexibility of RAUVITHERM pipes, various pipe laying techniques can be used. The pipe laying technique must be adapted to suit the local conditions. To reduce the risk of injury to installation personnel, make sure all trenches are properly shored in accordance with federal, state, provincial and local regulations (including OSHA 2226 Excavations) and good trenching practices 4.6.1 Open-cut Technique This is the most common laying method. RAUVITHERM pipe trenches can be very narrow. Sufficient working space only has to be available at joints. Advantages --Flexible lay out without special tools --Simple and cost-effective --Additional connections can be made at any time 4.7 Pipe Trenches The dimensions of the pipe trench influence the level and distribution of the soil and traffic loads and therefore the load-bearing capacity of the pipeline. The width at the bottom of the trench depends on the outer diameter of the pipe and also whether or not additional accessible working space is required to lay the pipes. Sections underneath roads must comply with loading classifications SWL 30 or SWL 60 in accordance with DIN 1072. For loads greater than SLW 30 (e.g. SLW 60), a load-distributing surface structure in accordance with RStO 75 is necessary. Fig. 4.9: Open-cut technique 4.6.2 Pull-through Technique With the pull-through method, RAUVITHERM pipes can be installed in abandoned channels, already laid pipes or in plastic pipe jackets requiring renovation. Advantages --Defective pipelines can be renovated easily --Cost-effective laying through empty pipes that already exist or have been installed using horizontal directional drilling. For RAUVITHERM pipes, accessible working space is only required in jointing areas, as stipulated in DIN 4124. The minimum pipe cover for RAUVITHERM pipes is 60 cm. The maximum cover is 2.6 m. More or less cover must be confirmed by means of a static load calculation. The trench bottom is to be constructed in such a way that it fulfils the width and depth specifications and the pipeline is in contact with it over its entire length. Fig. 4.10: Pull-through technique 4.6.3 Ploughing-in Technique In the ploughing-in technique, the pipes are laid quickly and without any great effort. The ploughing-in method can be used for soils that are free of stones or when the ploughing-in method can guarantee that the pipe will be laid in a bed of sand. Advantages - No need for pipe trenches - High installation efficiency Fig. 4.12: Ground works The trench bottom should not be aerated. Before the pipes are laid, any aerated, cohesive soil is to be removed down to where the aerated soil begins and this is to be replaced with non-cohesive soil or a special pipe support. Aerated, non-cohesive soil is to be packed again. 14 Fig. 4.11: Ploughing-in technique Fig. 4.13: Trench base

4.7.1 Trench Widths The diagrams below show the required trench widths. Only sand of grade 0/4 is to be used around the pipes and must be compacted manually in layers. Identification tape 4.7.2 Proximity to Other Services Minimum distances from other services must be observed (see Table 4.5). Drinking-water services adjacent to district heating pipes are to be separated by the minimum distance to prevent them from warming up above the temperature specified by the applicable standards. If this cannot be guaranteed by the distance, the drinking-water lines are to be insulated. 600 mm 100 mm 100 mm 300 mm Other service Parallel line <5 m or crossover Parallel line>5 m 1-kV-, signal/measuring cables 0,3 m 0,3 m 100 mm 100 mm 10-kV- or 30-kV-cable 0,6 m 0,7 m Fig. 4.14: DUO pipe trenches more than 1 x 30-kV-cable or cable over 60 kv Gas and water connections 1,0 m 1,5 m 0,2 m 0,4 m Identification tape Table 4.5: Distances from other services 600 mm 100 mm 100 mm 300 mm 100 mm Fig. 4.15: Pipe system with UNO pipe 100 mm Identification tape 100 50 100 600 300 100 100 100 Fig. 4.16: Pipe system with UNO pipes laid above one another Identification tape 600 300 100 100 100 mm 4.7.3 Protecting the Pipes in Special Installation Situations Boggy Conditions and Marshland If pipes are laid in boggy soil or marshland with a varying water table or underneath roads, solid obstructions that can affect the pipe support must be removed to a sufficient depth under the pipes. In cases where the bottom of the trench is unstable or the soil is highly saturated, or where there are different soil layers of varying levels of stability, the pipes have to be secured through adequate construction measures, e.g. using non-woven fabric. Nonwoven fabric Gravel Fig. 4.18: Trench bottom Sloped Trenches On slopes, cross brackets are required to prevent the bedding from beingwashed away. In some cases, drainage may be needed. Concrete bracket 100 100 100 100 100 Fig. 4.17: Pipe system with UNO pipes laid next to one another Fig. 4.19: Ground work 15

5 rauvitherm INSTALLATION INSTRUCTIONS Fig. 5.2: Transportation Fig. 5.1 RAUVITHERM pipe 5.1 Transport and Storage Incorrect transportation or storage can result in damage to RAUVITHERM pipes, accessories and fittings, which could affect the operational safety, particularly the excellent thermal insulation properties. Pipes and pipework components should be checked for any transportation and/or storage damage before being placed in the trench. Damaged pipes and pipework components must not be installed. 5.1.3 Lifting with a Backhoe When lifting a pipe coil, ensure that the lower part of the coil, which is still touching the ground and carrying part of the total weight, is not dragged across the ground or load area. Take extra care when putting down the pipe coils: do not use ropes for lifting, only transport straps at least 50 mm wide. 5.1.1 Storage Time To protect the pipes from dirt and the carrier pipe from UV radiation, the ends of the RAUVITHERM pipes must be kept clean. Contact with potentially damaging substances (see Supplement 1 to DIN 8075) should be avoided. RAUVITHERM pipes with a pipe jacket made of HDPE may not be stored outdoors fore more than an accumulated time of one year, including installation time. During outdoor storage, ends of pipe must be covered with black, UV blocking caps or bags to protect the RAUPEX carrier pipes from UV exposure. During construction, keep these caps in place until it is time to make a connection, and replace them on remainng pipe ends dueing construction. Fig. 5.3: Lifting with a digger If covering with tarps, the UV resistance of the pipes must be taken into account and good ventilation of the pipes must be ensured to prevent any build-up of heat. Unlimited storage is possible if the pipes are protected from any light. 5.1.2 Transportation Pipe coils are to be transported horizontally, lying completely flat on a load area, and must be secured to prevent shifting. The load area must be cleaned before loading up the pipe coils. 16

5.1.4 Lifting with a Forklift When using a forklift, ensure that the forks are covered with a soft material (cardboard or plastic pipes). Note: When using plastic pipes, make sure they are secured properly to prevent them from slipping off. 5.2 Laying Pipes Cutting the Straps RAUVITHERM pipes are supplied in coils with an outer diameter of up to 210 mm. When undoing the coil bindings, it is important to note that pipe ends can spring out. Fig. 5.4: Lifting with a forklift 5.1.5 Storage We recommend storing pipe coils horizontally on wooden planks. This will largely avoid any pipe damage and allow easy lifting of the pipe coils when moved at a later stage. Under no circumstances are pipe coils to be stored on top of sharp-edged objects. Pipe coils should not be stored upright due to the risk of them falling. Fig. 5.6 Attention: Injury Risk! The small contact area between the ground and the coil would also allow objects to easily penetrate the outer jacket. Fig. 5.7: Cutting the coil straps When opening the bundled coil bindings, pipe ends can spring out! Always open bindings layer by layer. Do not stand in the danger zone Fig. 5.5: Storage Unwind Coils Layer by Layer Ensure that the uncoiled pipe section does not twist, as otherwise kinks may form. Another reason for cutting the straps layer by layer. Fig. 5.8: Opening the coil layer by layer 17

Uncoiling For pipes with an outer diameter of up to 150 mm, the coils are usually uncoiled in an upright position. For larger pipe sizes, we recommend using a mechanical pipe unwinder. The coils can then, for example, be positioned horizontally on the pipe unwinder and uncoiled by hand or with a slow-moving vehicle. In view of the reduced pipe flexibility at low temperatures around freezing, the coil can be warmed up for a few hours in a heated building or a heated tent to facilitate installation. In the case of Duo pipes, install the flow and return pipes on top of one another, so that branches cas easily be added to the side connections. Fig. 5.11: RAUVITHERM pipes Fig. 5.9: Uncoiling Backfilling with Sand Fill pipe trench up to 100 mm over the top of the pipes using sand of grade 0/4 and compact it by hand. Bend Radius The high flexibility of the RAUVITHERM pipes allows easy and quick laying. Obstacles can be bypassed and changes of direction in trenches are possible without the need for fittings. However, based on the pipe temperature, the minimum bending radius specified in the following table must be observed. Fig. 5.12: Backfilling trenches with sand Fig. 5.10: Laying a bend area Bending Radius If the bending radius has to be achieved at lower outdoor temperatures, the bend area should be pre-heated with heatgun. For installation in frost conditions, the bend area of the pipe must always be pre-heated! Identification Tape For better identification during future excavation work, identification tape should be laid 40 cm above the pipes. The identification tape should be labelled Caution District Heating Pipeline. For easier location of the installed pipeline, identification tape with metallic strips can be used. RAUVITHERM outer diameter D Minimum bending radius at 10 C pipe jacket temperature 120 mm 0.9 m 150 mm 1.0 m 175 mm 1.1 m 190 mm 1.2 m 210 mm 1.4 m Table 5.1: Minimum bending radius for RAUVITHERM 18 Fig. 5.13: Identification tape

5.3 Jointing Pipes with the Compression Sleeve Technique 1 Cut pipe. RAUVITHERM pipe could spring back! 2 Expose lengths according to outer diameter of carrier pipe 1 2 If the end of the pipe is not square, an extra 2-4cm (approx.) should also be stripped so that the carrier pipe can be cut (see point 5) Carrier Pipe Outer Diameter Exposed Length L 20-40 mm 120 mm + 40 50 140 mm + 40 63-125 mm 160 mm + 40 Table 5.2: Exposing lengths 3 Cut the pipe jacket all the way round with a saw or pipe cutter and peel it off. Take care not to damage the carrier pipe! 4 Remove the foam 3 4 Take care not to damage the oxygen diffusion barrier! 5 Cut the carrier pipe square, if required (see point 2). Please note: When installing an EVERLOC sleeve, slide a shrink hose over each end of the carrier pipe, before connecting the carrier pipe!. 5 6 Slide sleeve on the pipe. Ensure that the outer milled ring faces towards the insulation of the pipe and the chamfered end faces towards the pipe end. 7 Expand pipe twice, offset in an expander by approx. 30 between expanses. Do not use expander in the area of the compression sleeve. Slide the compression sleeve right back to the insulation. 6 7 19

8 Next, insert the EVERLOC fitting. Position the clamping jaws over the tool and clamp on to the joint. Note: For diameters above 63 mm, use REHAU lubricant on the carrier pipe in the area of the compression sleeve. Before using the tool, read the operating instructions supplied with the tool very carefully!! If required for additional compression sleeve connection, cut out a recess to make room for the clamping tool. The insulation should then be removed as specified in the table. Please ensure shrink sleeves are in position before completing the joint! 9 If required, cut out a recess for tool (per Table 5.3). 8a Carrier Pipe- Outer Diameter l Tool A1 or M1 l Tool G1 20-40 mm 170 mm ------ 40-110 mm -------- 270 mm Table 5.3: Cutting a recess for tool 8b 10 Slide shrink hose over pipe ends. 11 saw off shroud sides at the markeings according to the OD of the outer pipe (see OD marking on shell). 12 Slide the top of the T-Shroud over RAUVITHERM Pipe. 10 13 Repeat the procedure with the other pipes according to steps 1-10. 12 13 20

14 Slide the RAUVITHERM Shroud downward over the two other connection pipes. 14 15 Align the shroud sides over each other. Remove sealing tape cover on one side and position the tape between the two shroud sides. 15 Sealing tape needs to be positioned in such a manner that approx. 2mm of the tape overlap outside of the shell. 16 Remove sealing tape cover completely and push both shroud sides together. Puncture sealing tape in preparation for the screw connection. Ensure that the shroud sides are aligned. 16 21

17 Seal the bottom of the shroud using the screws (part of the package). Press overlapping sealing tape remains, tight against the shroud. 18 Drill at the highest position at one of the three marked places a ventilation hole in the shroud. Us a center bit (d=25mm) 17 18 19 Clean the surface of the shell from dirt and grease 20 Gently heat shrink the sleeves over the two lower ends of the T-Shroud (only one shrink sleeve for I-Shroud) with a low flame or heat gun. Watch for the marking on the shell. Start with shrinking the hose over the shell area. Let the area cool down and continue by shrinking the remaining hose over the pipe surface 19 20 21 Seal the gap between the shroud and RAUVITHERM pipe at the higher side of the T-Shroud with a wider tape. 22 Fill cavity with polyurethane spray foam. 21 23 Remove foam residuals. Push plug halfway in using a hammer. 24 Shrink the remaining shrink hose over the upper end of T-shroud (see step 20) 23 25 Installation finished. 22

5.4 Service Connection Pipes 5.4.1 Connecting through the foundation The RAUVITHERM pipes should be routed in straight lines. If the RAUVITHERM pipeline runs parallel to the building, the bend for entry into the building must have a bending radius of at least 2.5 x the value specified in Table 5.1. This protects the pipe from unnecessary stress where it penetrates the wall. If the spatial proportions are too small, prefabricated bends may also be used as a fall-back option. In order to realize the connection inside the building, the pipes must project into the building by the amount specified in Table 5.5. 5.4.3 Exposed lengths with end caps End caps are used to close off the pipes where they penetrate the building wall. If the end cap should be installed inside a wall, the pipe jacket must be cut back before the RAUVITHERM pipes are positioned in the trench. In this case, heat-shrink end caps must also be placed on the pipe ends beforehand. Otherwise, the pipes can be routed in first and outer jacket removed afterwards. To carry out an EVERLOC joint with end caps, depending on the type of cap (heat-shrink end caps or push-on end caps), the exposed lengths shown in Table 5.4 are required. 5.4.2 Prefabricated bends The pre-fabricated RAUVITHERM bends are used where the possible bending radius for routing into the building is smaller than required under Table 5.1. This is usually the case when installing pipes going into a building without a basement. RAUVITHERM UNO Installation --Install wall seal and position pre-fabricated bend in the foundations --The vertical end must be secured before the ground plate/foundations are laid Do not remove the protective end caps until the final connections have been made. If there is a danger of the unprotected carrier pipe ends becoming dirty or damaged by UV radiation, they must be protected with UV-resistant plastic film/tape. Fig. 5.15: Exposed lengths RAUVITHERM DUO Installing a heat-shrink end cap Expose RAUVITHERM pipe in accordance with Table 5.4 --Rough up the heat-shrink area with an abrasive cloth and preheat it to over 60 C with a low flame or heat gun. Use temperature indicator strips to check the pre-heating temperature! --Slide on heat-shrink end cap and shrink on using a soft flame --Then complete the compression sleeve joint Fig. 5.14: Prefabricated bends for UNO and DUO pipes 23

Heat-shrink end cap dimensions Dimensions RAUVITHERM UNO Carrier Pipe OD 25 to 40 mm 50 to 110 mm 125 mm A 150 mm 175 mm 200 mm Fixed point x Inside Outside Fixed point x Inside Outside RAUVITHERM DUO Carrier Pipe OD B 20 to 40 mm 50 and 63 mm 150 mm 175 mm Table 5.4: Exposed lengths, heat-shrink end caps (A, B) Fig. 5.17: Fixed point in trench Fig. 5.18: Fixed point through building 5.5 Linear thermal expansion during installation 5.5.1 Linear thermal expansion in trenches Expansion bellows or compensators are not required for RAUVITHERM pipes when installed in trenches. As in the case of RAUVITHERM this concerns a slip pipe system, fixed points are to be set after all house connections (see Fig. 5.17 and 5.18). 5.5.2 Linear thermal expansion when connecting to buildings To keep the thermal expansion within acceptable limits when connecting to a building, RAUVITHERM pipes should not extend more than the distances specified in Table 5.5 beyond the inner building wall into the building itself. If the push-on or heat-shrink end caps are inside the wall or extend into the core drill hole, the dimensions x can be reduced by 60 mm. The carrier pipe requires fixing brackets suitable for the forces listed in the table. Fixing brackets may be attached to the fitting body, but not to the compression sleeve. Carrier Pipe OD x s [mm] Max. distance to wall from - to x [mm]* Max. anchor forces per pipe [kn] 25 x 2.3 220-270 0.93 32 x 2.9 220-270 1.50 40 x 3.7 220-270 2.40 50 x 4.6 220-270 3.70 63 x 5.7 260-300 5.80 75 x 6.8 260-300 8.20 90 x 8.2 260-300 11.90 110 x 10 260-300 17.70 20 x 2.8 220-270 1.00 25 x 3.5 220-270 1.70 32 x 4.4 220-270 2.10 40 x 5.5 220-270 3.30 50 x 6.9 220-270 5.20 63 x 8.7 260-300 8.20 * To enable a fitting to be pressed in Table 5.5: Fixed points: distance to the wall and occurring forces 5.6 Installation techniques Fig. 5.16: Heat-shrink end caps for UNO and DUO pipes 5.6.1 Pipe in sleeve system For crossing underneath buildings or for areas with difficult access, a pipein-sleeve installation is possible with RAUVITHERM. The inner diameter of the sleeve pipe must be at least 2 cm bigger than the outer diameter of the RAUVITHERM pipe jacket. The RAUVITHERM pipe can be pulled in using a winching cable and towing sock, ensuring the maximum winching forces are not exceeded. A lubricant applied to the RAUVITHERM pipe jacket minimizes the pipe friction. Changes in direction should only be made with the open-cut installation technique. 5.6.2 Installing during land development phase To develop plots for connection to a heating network where buildings will be erected at a later date, dead legs can be laid and closed off with isolating valves (available on request). The ball valves can be insulated with the REHAU insulation kit for end caps. 24 5.6.3 Tapping into existing lines The flexibility of the RAUVITHERM pipes allows the subsequent installation of T-joints. The network section must be taken offline for this and the heating water must be cooled to 30 C.

6 commissioning / standards & guidelines 6.1 Commissioning 6.2. Other applicable standards and guidelines General Information The RAUVITHERM pipes and joints must be pressure-tested before they are insulated or the trench is backfilled. The pressure test can be carried out immediately after completing the compression sleeve joints. Pressure test with water Test Procedure - Visually inspect the District Heating pipe work to ensure that there is no post installation damage - Flush the district heating circuit and allow for water to run clear of air bubbles and any dirt/chippings that may have got into the pipeline - Pressurize the system to test pressure of 6 bar (or) 1.5 x operating pressure, whichever is greater. Close the isolation valve on the inlet and outlet. Ensure there are no leaks from the connections - The above step may need to be repeated several times before the pressure within the system stabilizes at the test pressure. This is due to the inherent flexible properties of PEXa. - When the pressure is stabilized in accordance to the graph below, remove the pressure pump and the pressure test is successful. Test Pressure [bar] 1 Dp 1 < 0.6 bar Fig 6.1: Pressure test diagram in accordance with DIN 1988 1 - Repumping A - Pressure drop due to expansion of the pipe B - Main Test Dp 2 < 0.2 bar A B Preliminary Test Main Test + [min] 10 20 30 60 120 180 [min] As-installed drawings The actually installed pipe lengths are to be recorded and entered into an asinstalled drawing as per DIN 2425-2. Corrosion Inhibitors Note: When using corrosion inhibitors or flow conditioners, confirmation of their compatibility with PEXa and the fitting materials used is to be obtained from the manufacturer. The requirements of VDI 2035 relating to the quality and treatment of the feed water should also be observed. --DIN 2424 Part 2 Plans for public supplies, for water engineering and for transmission lines; plans for pipe-systems for distant-heating --DIN EN 15632: 2009 --District Heating pipes - Factory insulated flexible pipe systems --DIN 16892: 2000 Crosslinked polyethylene (PEX) pipes) - General requirements, testing --DIN 16893: 2000 Crosslinked polyethylene (PEX) pipe - Dimensions --DIN 13760 Miner s Rule --DIN 4726 Warm water floor heating systems and radiator pipe connecting Piping of plastic materials - General requirements -- DIN 4729 Crosslinked polyethylene pipes for warm water floor heating system - - General requirements -- DVGW Worksheet W531 -- Manufacture, quality assurance and testing of pipes made of PEXa for drinking-water installation DVGW Worksheet W534 Compression joints for pipes made of PEXa -- DVGW Worksheet W534(E) Pipe connectors and pipe connections --VDI 2035 Prevention of damage in water heating installations - WRAS Approved up to 63mm for UNO and DUO pipe 25

6.3 Pressure Test Certificate 1. Project Name 2. Installation Date Max. Operating Pressure Max. Operating Temperature Test Pressure: Ambient Temperature: 3. Pressure Test Completed a) Flush and fill the circuit b) Pressurize to 6 bar (or) 1.5 times operating pressure whichever is greater c) Pressurize several times again in accordance with the pressure test diagram (Pipe expansion causes initial pressure loss) d) Test Period for 3 hours e) Pressure test is successful, if-there are no leaks within the circuits - pressure has not fallen by more than 0.1 bar per hour 4. Confirmation The Pressure Testing was carried out in accordance with the above recommendations. No leaks were deducted and no component showed a permanent deformation. Location: Date: M & E Contractor/ Installer: 26

27

Table 4.1 RAUVITHERM Carrier Pipe with 100% Water Flow Rate GPM Flow Velocity ft/sec 100 F (38 C) Water pressure loss in psi per 100 ft of pipe 140 F (60 C) Water 180 F (82 C) Water 25 32 40 50 25 32 40 50 25 32 40 50 25 32 40 50 2 1.25 0.76 0.49 0.31 0.47 0.14 0.05 0.02 0.42 0.13 0.05 0.02 0.39 0.12 0.04 0.01 3 1.87 1.14 0.73 0.47 0.95 0.29 0.10 0.04 0.87 0.26 0.09 0.03 0.81 0.24 0.09 0.03 4 2.50 1.52 0.98 0.63 1.59 0.48 0.17 0.06 1.45 0.44 0.15 0.05 1.35 0.41 0.14 0.05 5 3.12 1.90 1.22 0.78 2.36 0.71 0.25 0.09 2.17 0.65 0.23 0.08 2.03 0.61 0.21 0.07 6 3.74 2.28 1.47 0.94 3.27 0.99 0.35 0.12 3.02 0.90 0.31 0.11 2.83 0.84 0.29 0.10 7 4.37 2.66 1.71 1.09 4.32 1.30 0.45 0.16 4.00 1.19 0.41 0.14 3.76 1.11 0.39 0.13 8 4.99 3.04 1.96 1.25 5.50 1.65 0.58 0.20 5.10 1.52 0.53 0.18 4.81 1.42 0.49 0.17 9 5.62 3.42 2.20 1.41 6.81 2.04 0.71 0.24 6.34 1.88 0.65 0.22 5.98 1.76 0.61 0.20 10 6.24 3.80 2.45 1.56 8.26 2.46 0.86 0.29 7.69 2.28 0.79 0.27 7.28 2.14 0.73 0.25 11 6.86 4.18 2.69 1.72 9.83 2.93 1.02 0.35 9.18 2.71 0.93 0.32 8.70 2.55 0.87 0.29 12 7.49 4.55 2.94 1.88 11.5 3.43 1.19 0.40 10.8 3.18 1.09 0.37 10.2 2.99 1.02 0.34 13 8.11 4.93 3.18 2.03 13.4 3.96 1.37 0.47 12.5 3.68 1.26 0.43 11.9 3.47 1.19 0.40 14 8.74 5.31 3.43 2.19 15.3 4.53 1.57 0.53 14.4 4.22 1.45 0.49 13.7 3.98 1.36 0.46 15 9.36 5.69 3.67 2.35 17.4 5.14 1.77 0.60 16.3 4.79 1.64 0.55 15.6 4.53 1.54 0.52 16 10.0 6.07 3.92 2.50 19.6 5.78 1.99 0.67 18.4 5.39 1.85 0.62 17.6 5.11 1.74 0.58 17 6.45 4.16 2.66 6.46 2.23 0.75 6.03 2.06 0.69 5.72 1.94 0.65 18 6.83 4.41 2.82 7.18 2.47 0.83 6.71 2.29 0.77 6.36 2.16 0.72 19 7.21 4.65 2.97 7.93 2.72 0.92 7.42 2.53 0.85 7.04 2.39 0.79 20 7.59 4.90 3.13 8.71 2.99 1.01 8.16 2.78 0.93 7.75 2.62 0.87 22 8.35 5.39 3.44 10.4 3.56 1.20 9.75 3.31 1.11 9.27 3.13 1.04 24 9.11 5.88 3.75 12.2 4.17 1.40 11.5 3.89 1.30 10.9 3.68 1.22 26 9.87 6.37 4.07 14.1 4.83 1.62 13.3 4.51 1.50 12.7 4.28 1.42 28 10.6 6.86 4.38 16.2 5.53 1.85 15.3 5.18 1.72 14.6 4.91 1.62 30 7.35 4.69 6.28 2.10 5.88 1.95 5.59 1.84 32 7.84 5.00 7.07 2.36 6.64 2.20 6.31 2.08 34 8.33 5.32 7.91 2.64 7.43 2.46 7.08 2.33 36 8.82 5.63 8.79 2.93 8.27 2.73 7.88 2.59 38 9.31 5.94 9.72 3.23 9.15 3.02 8.73 2.86 40 9.80 6.26 10.7 3.55 10.1 3.32 9.62 3.15 42 10.3 6.57 11.7 3.89 11.0 3.64 10.5 3.45 44 6.88 4.23 3.97 3.77 46 7.19 4.59 4.31 4.10 48 7.51 Shown is pressure 4.97 To express 4.66 4.44 50 7.82 loss in units of 5.36 pressure loss in 5.03 4.79 52 8.13 psi per 100 ft 5.76 terms of 5.42 5.16 54 8.45 of pipe. 6.18 feet of head, 5.81 5.54 56 Flow Velocity above 8.76 6.61 multiply the value 6.22 5.93 58 8 feet per second may be 9.07 Example: for 200 7.05 listed by 2.307. 6.64 6.34 60 considered excessive and 9.38 lineal ft of pipe, 7.51 7.08 6.76 62 may result in excessive 9.70 double the value 7.98 Example: 1 psi = 7.53 7.19 64 pressure loss. 10.0 listed in this table. 8.47 2.307 ft of head 7.99 7.64 28

Table 4.1 RAUVITHERM Carrier Pipe with 100% Water (cont.) Flow Rate Flow Velocity pressure loss in psi per 100 ft of pipe GPM ft/sec 100 F (38 C) Water 180 F (82 C) Water 63 75 90 110 125 160 63 75 90 110 125 160 63 75 90 110 125 160 2 0.20 0.14 0.10 0.06 0.05 0.03 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 4 0.39 0.28 0.19 0.13 0.10 0.06 0.02 <.01 <.01 <.01 <.01 <.01 0.02 <.01 <.01 <.01 <.01 <.01 6 0.59 0.41 0.29 0.19 0.15 0.09 0.04 0.02 <.01 <.01 <.01 <.01 0.03 0.01 <.01 <.01 <.01 <.01 8 0.79 0.55 0.38 0.26 0.20 0.12 0.07 0.03 0.01 <.01 <.01 <.01 0.05 0.02 <.01 <.01 <.01 <.01 10 0.99 0.69 0.48 0.32 0.25 0.15 0.10 0.04 0.02 <.01 <.01 <.01 0.08 0.03 0.01 <.01 <.01 <.01 12 1.18 0.83 0.58 0.39 0.30 0.18 0.13 0.06 0.02 <.01 <.01 <.01 0.11 0.05 0.02 <.01 <.01 <.01 14 1.38 0.97 0.67 0.45 0.35 0.21 0.18 0.07 0.03 0.01 <.01 <.01 0.15 0.06 0.03 0.01 <.01 <.01 16 1.58 1.11 0.77 0.51 0.40 0.24 0.22 0.09 0.04 0.02 <.01 <.01 0.19 0.08 0.03 0.01 <.01 <.01 18 1.77 1.24 0.87 0.58 0.45 0.27 0.27 0.12 0.05 0.02 0.01 <.01 0.23 0.10 0.04 0.02 <.01 <.01 20 1.97 1.38 0.96 0.64 0.50 0.30 0.33 0.14 0.06 0.02 0.01 <.01 0.28 0.12 0.05 0.02 0.01 <.01 22 2.17 1.52 1.06 0.71 0.55 0.34 0.39 0.17 0.07 0.03 0.01 <.01 0.34 0.14 0.06 0.02 0.01 <.01 24 2.37 1.66 1.15 0.77 0.60 0.37 0.46 0.20 0.08 0.03 0.02 <.01 0.40 0.17 0.07 0.03 0.01 <.01 26 2.56 1.80 1.25 0.84 0.65 0.40 0.53 0.23 0.09 0.04 0.02 <.01 0.46 0.19 0.08 0.03 0.02 <.01 28 2.76 1.94 1.35 0.90 0.70 0.43 0.61 0.26 0.11 0.04 0.02 <.01 0.52 0.22 0.09 0.03 0.02 <.01 30 2.96 2.07 1.44 0.97 0.75 0.46 0.69 0.29 0.12 0.05 0.03 <.01 0.60 0.25 0.10 0.04 0.02 <.01 35 3.45 2.42 1.68 1.13 0.87 0.53 0.91 0.38 0.16 0.06 0.03 0.01 0.79 0.33 0.14 0.05 0.03 <.01 40 3.94 2.76 1.92 1.29 1.00 0.61 1.16 0.49 0.20 0.08 0.04 0.01 1.01 0.42 0.18 0.07 0.04 0.01 45 4.44 3.11 2.16 1.45 1.12 0.69 1.43 0.61 0.25 0.10 0.05 0.02 1.26 0.53 0.22 0.08 0.04 0.01 50 4.93 3.46 2.40 1.61 1.25 0.76 1.74 0.73 0.30 0.12 0.06 0.02 1.53 0.64 0.26 0.10 0.05 0.02 55 5.42 3.80 2.64 1.77 1.37 0.84 2.07 0.87 0.36 0.14 0.07 0.02 1.83 0.76 0.31 0.12 0.06 0.02 60 5.92 4.15 2.88 1.93 1.50 0.91 2.42 1.02 0.42 0.16 0.09 0.03 2.15 0.90 0.37 0.14 0.07 0.02 65 6.41 4.49 3.12 2.09 1.62 0.99 2.81 1.18 0.49 0.19 0.10 0.03 2.50 1.04 0.43 0.16 0.09 0.03 70 6.90 4.84 3.36 2.25 1.75 1.07 3.22 1.35 0.56 0.21 0.11 0.04 2.87 1.19 0.49 0.18 0.10 0.03 75 7.39 5.18 3.60 2.41 1.87 1.14 3.66 1.53 0.63 0.24 0.13 0.04 3.27 1.36 0.56 0.21 0.11 0.03 80 7.89 5.53 3.84 2.57 2.00 1.22 4.12 1.73 0.71 0.27 0.15 0.04 3.69 1.53 0.63 0.23 0.13 0.04 85 8.38 5.87 4.09 2.74 2.12 1.29 4.61 1.93 0.80 0.30 0.16 0.05 4.13 1.71 0.70 0.26 0.14 0.04 90 8.87 6.22 4.33 2.90 2.24 1.37 5.12 2.14 0.88 0.33 0.18 0.06 4.61 1.91 0.78 0.29 0.16 0.05 95 9.37 6.57 4.57 3.06 2.37 1.45 5.66 2.37 0.98 0.37 0.20 0.06 5.10 2.11 0.86 0.32 0.17 0.05 100 9.86 6.91 4.81 3.22 2.49 1.52 6.23 2.60 1.07 0.40 0.22 0.07 5.62 2.32 0.95 0.35 0.19 0.06 110 10.8 7.60 5.29 3.54 2.74 1.68 7.44 3.11 1.28 0.48 0.26 0.08 6.74 2.78 1.13 0.42 0.23 0.07 120 8.29 5.77 3.86 2.99 1.83 3.65 1.50 0.56 0.30 0.09 3.28 1.33 0.50 0.27 0.08 130 8.99 6.25 4.18 3.24 1.98 4.23 1.74 0.65 0.35 0.11 3.81 1.55 0.58 0.31 0.09 140 9.68 6.73 4.50 3.49 2.13 4.86 1.99 0.75 0.40 0.12 4.39 1.78 0.66 0.35 0.11 150 10.4 7.21 4.83 3.74 2.28 5.53 2.26 0.85 0.46 0.14 5.00 2.02 0.75 0.40 0.12 160 7.69 5.15 3.99 2.44 2.55 0.96 0.51 0.16 2.29 0.85 0.45 0.14 170 8.17 5.47 4.24 2.59 2.85 1.07 0.57 0.17 2.56 0.95 0.51 0.15 180 8.65 5.79 4.49 2.74 3.17 1.19 0.64 0.19 2.86 1.06 0.56 0.17 190 9.13 6.11 4.74 2.89 3.51 1.31 0.70 0.21 3.16 1.17 0.62 0.19 200 9.61 6.44 4.99 3.05 3.86 1.44 0.77 0.23 3.49 1.29 0.69 0.20 225 10.8 7.24 5.61 3.43 4.81 1.79 0.96 0.29 4.36 1.61 0.85 0.25 250 8.04 6.23 3.81 Shown is pressure 2.18 1.17 0.35 To express 1.96 1.04 0.31 275 8.85 6.86 4.19 loss in units of 2.60 1.39 0.42 pressure loss in 2.35 1.25 0.37 300 9.65 7.48 4.57 psi per 100 3.06 1.64 0.49 terms of 2.77 1.47 0.43 350 11.3 8.73 5.33 ft of pipe. 4.08 2.18 0.65 feet of head, 3.71 1.96 0.58 400 Flow Velocity above 9.98 6.09 2.79 0.83 multiply the value 2.53 0.74 450 8 feet per second may be 11.2 6.85 Example: for 200 3.48 1.04 listed by 2.307. 3.17 0.93 500 considered excessive and 7.61 lineal ft of pipe, 1.26 1.13 600 may result in excessive 9.1 double the value 1.77 Example: 1 psi = 1.60 700 pressure loss. 10.7 listed in this table. 2.36 2.307 ft of head 2.14 29

Table 4.2 RAUVITHERM Carrier Pipe with 80% Water / 20% Propylene Glycol Flow Rate GPM Flow Velocity ft/sec 100 F (38 C) 20% Glycol pressure loss in psi per 100 ft of pipe 140 F (60 C) 20% Glycol 180 F (82 C) 20% Glycol 25 32 40 50 25 32 40 50 25 32 40 50 25 32 40 50 2 1.25 0.76 0.49 0.31 0.56 0.17 0.06 0.02 0.49 0.15 0.05 0.02 0.44 0.13 0.05 0.02 3 1.87 1.14 0.73 0.47 1.13 0.35 0.12 0.04 0.99 0.30 0.11 0.04 0.90 0.27 0.10 0.03 4 2.50 1.52 0.98 0.63 1.86 0.57 0.20 0.07 1.64 0.50 0.18 0.06 1.50 0.45 0.16 0.05 5 3.12 1.90 1.22 0.78 2.75 0.84 0.30 0.10 2.44 0.74 0.26 0.09 2.24 0.68 0.24 0.08 6 3.74 2.28 1.47 0.94 3.79 1.16 0.41 0.14 3.39 1.02 0.36 0.12 3.11 0.93 0.33 0.11 7 4.37 2.66 1.71 1.09 4.98 1.51 0.53 0.18 4.47 1.35 0.47 0.16 4.12 1.23 0.43 0.15 8 4.99 3.04 1.96 1.25 6.32 1.92 0.67 0.23 5.68 1.71 0.60 0.20 5.25 1.57 0.54 0.19 9 5.62 3.42 2.20 1.41 7.80 2.36 0.83 0.28 7.03 2.11 0.74 0.25 6.51 1.94 0.67 0.23 10 6.24 3.80 2.45 1.56 9.42 2.84 1.00 0.34 8.51 2.55 0.89 0.30 7.90 2.35 0.81 0.28 11 6.86 4.18 2.69 1.72 11.2 3.37 1.18 0.40 10.1 3.02 1.05 0.36 9.41 2.79 0.96 0.33 12 7.49 4.55 2.94 1.88 13.1 3.94 1.38 0.47 11.9 3.54 1.23 0.42 11.1 3.27 1.13 0.38 13 8.11 4.93 3.18 2.03 15.1 4.54 1.59 0.54 13.7 4.09 1.42 0.48 12.8 3.78 1.30 0.44 14 8.74 5.31 3.43 2.19 17.3 5.18 1.81 0.62 15.7 4.68 1.62 0.55 14.7 4.33 1.49 0.50 15 9.36 5.69 3.67 2.35 19.6 5.87 2.04 0.70 17.9 5.30 1.83 0.62 16.7 4.92 1.69 0.57 16 10.0 6.07 3.92 2.50 22.0 6.59 2.29 0.78 20.1 5.96 2.06 0.70 18.9 5.54 1.90 0.64 17 6.45 4.16 2.66 7.35 2.55 0.87 6.66 2.30 0.78 6.19 2.12 0.71 18 6.83 4.41 2.82 8.14 2.83 0.96 7.39 2.55 0.86 6.88 2.36 0.79 19 7.21 4.65 2.97 8.98 3.12 1.06 8.16 2.81 0.95 7.60 2.60 0.87 20 7.59 4.90 3.13 9.85 3.42 1.16 8.96 3.08 1.04 8.36 2.86 0.96 22 8.35 5.39 3.44 11.7 4.05 1.38 10.7 3.67 1.24 9.97 3.40 1.14 24 9.11 5.88 3.75 13.7 4.74 1.61 12.5 4.29 1.45 11.7 3.99 1.33 26 9.87 6.37 4.07 15.9 5.48 1.85 14.5 4.97 1.67 13.6 4.63 1.54 28 10.6 6.86 4.38 18.2 6.26 2.12 16.7 5.69 1.91 15.6 5.30 1.77 30 7.35 4.69 7.09 2.40 6.46 2.17 6.03 2.01 32 7.84 5.00 7.97 2.69 7.27 2.43 6.79 2.26 34 8.33 5.32 8.90 3.00 8.13 2.72 7.60 2.53 36 8.82 5.63 9.88 3.33 9.03 3.02 8.46 2.81 38 9.31 5.94 10.9 3.67 9.98 3.33 9.35 3.10 40 9.8 6.26 12.0 4.02 11.0 3.66 10.3 3.41 42 10.3 6.57 13.1 4.40 12.0 4.00 11.3 3.73 44 6.88 4.78 4.36 4.06 46 7.19 5.18 4.73 4.41 48 7.51 Shown is pressure 5.60 To express 5.11 4.77 50 7.82 loss in units of 6.03 pressure loss in 5.51 5.15 52 8.13 psi per 100 ft 6.48 terms of 5.92 5.54 54 8.45 of pipe. 6.94 feet of head, 6.35 5.94 56 Flow Velocity above 8.76 7.41 multiply the value 6.79 6.36 58 8 feet per second may be 9.07 Example: for 200 7.90 listed by 2.307. 7.24 6.79 60 considered excessive and 9.38 lineal ft of pipe, 8.41 7.71 7.24 62 may result in excessive 9.70 double the value 8.93 Example: 1 psi = 8.19 7.69 64 pressure loss. 10.0 listed in this table. 9.46 2.307 ft of head 8.69 8.16 30

Table 4.2 RAUVITHERM Carrier Pipe with 80% Water / 20% Propylene Glycol (cont.) Flow Rate Flow Velocity pressure loss in psi per 100 ft of pipe GPM ft/sec 100 F (38 C) 20% Glycol 180 F (82 C) 20% Glycol 63 75 90 110 125 160 63 75 90 110 125 160 63 75 90 110 125 160 2 0.20 0.14 0.10 0.06 0.05 0.03 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 4 0.39 0.28 0.19 0.13 0.10 0.06 0.02 0.01 <.01 <.01 <.01 <.01 0.02 <.01 <.01 <.01 <.01 <.01 6 0.59 0.41 0.29 0.19 0.15 0.09 0.05 0.02 <.01 <.01 <.01 <.01 0.04 0.02 <.01 <.01 <.01 <.01 8 0.79 0.55 0.38 0.26 0.20 0.12 0.08 0.03 0.01 <.01 <.01 <.01 0.06 0.03 0.01 <.01 <.01 <.01 10 0.99 0.69 0.48 0.32 0.25 0.15 0.11 0.05 0.02 <.01 <.01 <.01 0.09 0.04 0.02 <.01 <.01 <.01 12 1.18 0.83 0.58 0.39 0.30 0.18 0.16 0.07 0.03 0.01 <.01 <.01 0.13 0.05 0.02 <.01 <.01 <.01 14 1.38 0.97 0.67 0.45 0.35 0.21 0.21 0.09 0.04 0.01 <.01 <.01 0.17 0.07 0.03 0.01 <.01 <.01 16 1.58 1.11 0.77 0.51 0.40 0.24 0.26 0.11 0.05 0.02 <.01 <.01 0.21 0.09 0.04 0.01 <.01 <.01 18 1.77 1.24 0.87 0.58 0.45 0.27 0.32 0.14 0.06 0.02 0.01 <.01 0.26 0.11 0.05 0.02 <.01 <.01 20 1.97 1.38 0.96 0.64 0.50 0.30 0.38 0.16 0.07 0.03 0.01 <.01 0.31 0.13 0.06 0.02 0.01 <.01 22 2.17 1.52 1.06 0.71 0.55 0.34 0.46 0.19 0.08 0.03 0.02 <.01 0.37 0.16 0.07 0.03 0.01 <.01 24 2.37 1.66 1.15 0.77 0.60 0.37 0.53 0.23 0.10 0.04 0.02 <.01 0.44 0.19 0.08 0.03 0.02 <.01 26 2.56 1.80 1.25 0.84 0.65 0.40 0.61 0.26 0.11 0.04 0.02 <.01 0.50 0.21 0.09 0.03 0.02 <.01 28 2.76 1.94 1.35 0.90 0.70 0.43 0.70 0.30 0.13 0.05 0.03 <.01 0.58 0.24 0.10 0.04 0.02 <.01 30 2.96 2.07 1.44 0.97 0.75 0.46 0.79 0.34 0.14 0.05 0.03 <.01 0.65 0.28 0.12 0.04 0.02 <.01 35 3.45 2.42 1.68 1.13 0.87 0.53 1.04 0.44 0.19 0.07 0.04 0.01 0.86 0.37 0.15 0.06 0.03 <.01 40 3.94 2.76 1.92 1.29 1.00 0.61 1.32 0.56 0.24 0.09 0.05 0.02 1.10 0.47 0.19 0.07 0.04 0.01 45 4.44 3.11 2.16 1.45 1.12 0.69 1.63 0.69 0.29 0.11 0.06 0.02 1.37 0.58 0.24 0.09 0.05 0.02 50 4.93 3.46 2.40 1.61 1.25 0.76 1.97 0.84 0.35 0.13 0.07 0.02 1.66 0.70 0.29 0.11 0.06 0.02 55 5.42 3.80 2.64 1.77 1.37 0.84 2.34 0.99 0.42 0.16 0.09 0.03 1.98 0.83 0.34 0.13 0.07 0.02 60 5.92 4.15 2.88 1.93 1.50 0.91 2.74 1.16 0.49 0.19 0.10 0.03 2.32 0.98 0.40 0.15 0.08 0.03 65 6.41 4.49 3.12 2.09 1.62 0.99 3.17 1.34 0.56 0.21 0.12 0.04 2.69 1.13 0.47 0.18 0.10 0.03 70 6.90 4.84 3.36 2.25 1.75 1.07 3.63 1.54 0.64 0.24 0.13 0.04 3.09 1.29 0.53 0.20 0.11 0.03 75 7.39 5.18 3.60 2.41 1.87 1.14 4.11 1.74 0.72 0.28 0.15 0.05 3.51 1.47 0.61 0.23 0.12 0.04 80 7.89 5.53 3.84 2.57 2.00 1.22 4.62 1.95 0.81 0.31 0.17 0.05 3.96 1.66 0.68 0.26 0.14 0.04 85 8.38 5.87 4.09 2.74 2.12 1.29 5.17 2.18 0.91 0.35 0.19 0.06 4.44 1.85 0.76 0.29 0.16 0.05 90 8.87 6.22 4.33 2.90 2.24 1.37 5.73 2.42 1.01 0.38 0.21 0.06 4.93 2.06 0.85 0.32 0.17 0.05 95 9.37 6.57 4.57 3.06 2.37 1.45 6.33 2.67 1.11 0.42 0.23 0.07 5.46 2.27 0.93 0.35 0.19 0.06 100 9.86 6.91 4.81 3.22 2.49 1.52 6.95 2.93 1.22 0.46 0.25 0.08 6.01 2.50 1.03 0.39 0.21 0.06 110 10.8 7.60 5.29 3.54 2.74 1.68 8.28 3.49 1.44 0.55 0.30 0.09 7.19 2.99 1.22 0.46 0.25 0.08 120 8.29 5.77 3.86 2.99 1.83 4.09 1.69 0.64 0.35 0.11 3.51 1.44 0.54 0.29 0.09 130 8.99 6.25 4.18 3.24 1.98 4.73 1.96 0.74 0.40 0.12 4.08 1.67 0.63 0.34 0.10 140 9.68 6.73 4.50 3.49 2.13 5.42 2.24 0.85 0.46 0.14 4.69 1.91 0.72 0.38 0.12 150 10.4 7.21 4.83 3.74 2.28 6.15 2.54 0.96 0.52 0.16 5.33 2.18 0.81 0.44 0.13 160 7.69 5.15 3.99 2.44 2.86 1.08 0.58 0.18 2.45 0.92 0.49 0.15 170 8.17 5.47 4.24 2.59 3.19 1.21 0.65 0.20 2.75 1.03 0.55 0.17 180 8.65 5.79 4.49 2.74 3.54 1.34 0.72 0.22 3.06 1.14 0.61 0.18 190 9.13 6.11 4.74 2.89 3.91 1.48 0.80 0.24 3.38 1.26 0.67 0.20 200 9.61 6.44 4.99 3.05 4.30 1.62 0.87 0.27 3.72 1.39 0.74 0.22 225 10.8 7.24 5.61 3.43 5.34 2.01 1.08 0.33 4.65 1.72 0.92 0.28 250 8.04 6.23 3.81 Shown is pressure 2.44 1.31 0.40 To express 2.10 1.12 0.34 275 8.85 6.86 4.19 loss in units of 2.90 1.56 0.47 pressure loss in 2.51 1.34 0.40 300 9.65 7.48 4.57 psi per 100 3.40 1.83 0.55 terms of 2.95 1.58 0.47 350 11.3 8.73 5.33 ft of pipe. 4.52 2.43 0.73 feet of head, 3.95 2.10 0.63 400 Flow Velocity above 9.98 6.09 3.10 0.93 multiply the value 2.70 0.80 450 8 feet per second may be 11.2 6.85 Example: for 200 3.86 1.16 listed by 2.307. 3.37 1.00 500 considered excessive and 7.61 lineal ft of pipe, 1.41 1.21 600 may result in excessive 9.1 double the value 1.97 Example: 1 psi = 1.71 700 pressure loss. 10.7 listed in this table. 2.61 2.307 ft of head 2.28 31

Table 4.3 RAUVITHERM Carrier Pipe with 70% Water / 30% Propylene Glycol Flow Rate GPM Flow Velocity ft/sec 100 F (38 C) 30% Glycol pressure loss in psi per 100 ft of pipe 140 F (60 C) 30% Glycol 180 F (82 C) 30% Glycol 25 32 40 50 25 32 40 50 25 32 40 50 25 32 40 50 2 1.25 0.76 0.49 0.31 0.62 0.19 0.07 0.01 0.53 0.16 0.06 0.02 0.47 0.14 0.05 0.02 3 1.87 1.14 0.73 0.47 1.24 0.38 0.14 0.05 1.06 0.33 0.12 0.04 0.95 0.29 0.10 0.04 4 2.50 1.52 0.98 0.63 2.04 0.63 0.22 0.08 1.76 0.54 0.19 0.07 1.58 0.48 0.17 0.06 5 3.12 1.90 1.22 0.78 3.00 0.92 0.33 0.11 2.61 0.79 0.28 0.10 2.36 0.71 0.25 0.09 6 3.74 2.28 1.47 0.94 4.13 1.27 0.45 0.16 3.60 1.09 0.38 0.13 3.27 0.99 0.34 0.12 7 4.37 2.66 1.71 1.09 5.42 1.65 0.58 0.20 4.74 1.43 0.50 0.17 4.31 1.30 0.45 0.15 8 4.99 3.04 1.96 1.25 6.85 2.09 0.74 0.25 6.02 1.82 0.64 0.22 5.49 1.65 0.57 0.20 9 5.62 3.42 2.20 1.41 8.44 2.57 0.91 0.31 7.43 2.24 0.78 0.27 6.80 2.03 0.71 0.24 10 6.24 3.80 2.45 1.56 10.2 3.09 1.09 0.37 8.99 2.70 0.94 0.32 8.24 2.46 0.85 0.29 11 6.86 4.18 2.69 1.72 12.1 3.66 1.29 0.44 10.7 3.21 1.12 0.38 9.81 2.92 1.01 0.34 12 7.49 4.55 2.94 1.88 14.1 4.26 1.50 0.51 12.5 3.75 1.31 0.45 11.5 3.42 1.18 0.40 13 8.11 4.93 3.18 2.03 16.3 4.91 1.72 0.59 14.5 4.33 1.51 0.51 13.3 3.96 1.37 0.46 14 8.74 5.31 3.43 2.19 18.6 5.60 1.96 0.67 16.5 4.94 1.72 0.59 15.3 4.53 1.56 0.53 15 9.36 5.69 3.67 2.35 21.0 6.34 2.22 0.76 18.8 5.60 1.94 0.66 17.4 5.13 1.77 0.60 16 10.0 6.07 3.92 2.50 23.6 7.11 2.49 0.85 21.1 6.29 2.18 0.74 19.6 5.77 1.99 0.67 17 6.45 4.16 2.66 7.92 2.77 0.95 7.02 2.43 0.83 6.45 2.22 0.75 18 6.83 4.41 2.82 8.77 3.06 1.05 7.79 2.70 0.92 7.16 2.46 0.83 19 7.21 4.65 2.97 9.66 3.37 1.15 8.59 2.97 1.01 7.91 2.72 0.92 20 7.59 4.90 3.13 10.6 3.69 1.26 9.43 3.26 1.10 8.69 2.98 1.01 22 8.35 5.39 3.44 12.6 4.37 1.49 11.2 3.87 1.31 10.4 3.55 1.19 24 9.11 5.88 3.75 14.7 5.11 1.74 13.1 4.53 1.53 12.2 4.16 1.40 26 9.87 6.37 4.07 17.0 5.90 2.01 15.2 5.24 1.77 14.1 4.82 1.62 28 10.6 6.86 4.38 19.4 6.73 2.29 17.4 5.99 2.02 16.2 5.52 1.85 30 7.35 4.69 7.62 2.59 6.79 2.29 6.27 2.10 32 7.84 5.00 8.56 2.90 7.64 2.57 7.06 2.36 34 8.33 5.32 9.54 3.23 8.53 2.87 7.89 2.63 36 8.82 5.63 10.6 3.58 9.48 3.18 8.77 2.92 38 9.31 5.94 11.7 3.95 10.5 3.51 9.70 3.23 40 9.8 6.26 12.8 4.33 11.5 3.85 10.7 3.55 42 10.3 6.57 14.0 4.72 12.6 4.21 11.7 3.88 44 6.88 5.13 4.58 4.23 46 7.19 5.56 4.97 4.59 48 7.51 Shown is pressure 6.01 To express 5.37 4.96 50 7.82 loss in units of 6.46 pressure loss in 5.78 5.35 52 8.13 psi per 100 ft 6.94 terms of 6.21 5.75 54 8.45 of pipe. 7.43 feet of head, 6.66 6.17 56 Flow Velocity above 8.76 7.93 multiply the value 7.12 6.60 58 8 feet per second may be 9.07 Example: for 200 8.45 listed by 2.307. 7.59 7.04 60 considered excessive and 9.38 lineal ft of pipe, 8.99 8.08 7.50 62 may result in excessive 9.70 double the value 9.54 Example: 1 psi = 8.58 7.97 64 pressure loss. 10.0 listed in this table. 10.1 2.307 ft of head 9.10 8.45 32

Table 4.3 RAUVITHERM Carrier Pipe with 70% Water / 30% Propylene Glycol (cont.) Flow Rate Flow Velocity pressure loss in psi per 100 ft of pipe GPM ft/sec 100 F (38 C) 30% Glycol 180 F (82 C) 30% Glycol 63 75 90 110 125 160 63 75 90 110 125 160 63 75 90 110 125 160 2 0.20 0.14 0.10 0.06 0.05 0.03 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 4 0.39 0.28 0.19 0.13 0.10 0.06 0.03 0.01 <.01 <.01 <.01 <.01 0.02 <.01 <.01 <.01 <.01 <.01 6 0.59 0.41 0.29 0.19 0.15 0.09 0.05 0.02 <.01 <.01 <.01 <.01 0.04 0.02 <.01 <.01 <.01 <.01 8 0.79 0.55 0.38 0.26 0.20 0.12 0.09 0.04 0.02 <.01 <.01 <.01 0.07 0.03 0.01 <.01 <.01 <.01 10 0.99 0.69 0.48 0.32 0.25 0.15 0.13 0.05 0.02 <.01 <.01 <.01 0.10 0.04 0.02 <.01 <.01 <.01 12 1.18 0.83 0.58 0.39 0.30 0.18 0.17 0.07 0.03 0.01 <.01 <.01 0.13 0.06 0.02 <.01 <.01 <.01 14 1.38 0.97 0.67 0.45 0.35 0.21 0.22 0.10 0.04 0.02 <.01 <.01 0.18 0.07 0.03 0.01 <.01 <.01 16 1.58 1.11 0.77 0.51 0.40 0.24 0.28 0.12 0.05 0.02 0.01 <.01 0.22 0.09 0.04 0.02 <.01 <.01 18 1.77 1.24 0.87 0.58 0.45 0.27 0.35 0.15 0.06 0.02 0.01 <.01 0.27 0.12 0.05 0.02 0.01 <.01 20 1.97 1.38 0.96 0.64 0.50 0.30 0.42 0.18 0.08 0.03 0.02 <.01 0.33 0.14 0.06 0.02 0.01 <.01 22 2.17 1.52 1.06 0.71 0.55 0.34 0.50 0.21 0.09 0.03 0.02 <.01 0.39 0.17 0.07 0.03 0.01 <.01 24 2.37 1.66 1.15 0.77 0.60 0.37 0.58 0.25 0.10 0.04 0.02 <.01 0.46 0.19 0.08 0.03 0.02 <.01 26 2.56 1.80 1.25 0.84 0.65 0.40 0.67 0.29 0.12 0.05 0.03 <.01 0.53 0.22 0.09 0.04 0.02 <.01 28 2.76 1.94 1.35 0.90 0.70 0.43 0.76 0.32 0.14 0.05 0.03 <.01 0.60 0.26 0.11 0.04 0.02 <.01 30 2.96 2.07 1.44 0.97 0.75 0.46 0.86 0.37 0.15 0.06 0.03 0.01 0.69 0.29 0.12 0.05 0.03 <.01 35 3.45 2.42 1.68 1.13 0.87 0.53 1.13 0.48 0.20 0.08 0.04 0.01 0.91 0.38 0.16 0.06 0.03 0.01 40 3.94 2.76 1.92 1.29 1.00 0.61 1.43 0.61 0.26 0.10 0.05 0.02 1.15 0.49 0.20 0.08 0.04 0.01 45 4.44 3.11 2.16 1.45 1.12 0.69 1.76 0.75 0.32 0.12 0.07 0.02 1.43 0.60 0.25 0.10 0.05 0.02 50 4.93 3.46 2.40 1.61 1.25 0.76 2.13 0.91 0.38 0.15 0.08 0.02 1.73 0.73 0.30 0.12 0.06 0.02 55 5.42 3.80 2.64 1.77 1.37 0.84 2.52 1.07 0.45 0.17 0.09 0.03 2.06 0.87 0.36 0.14 0.07 0.02 60 5.92 4.15 2.88 1.93 1.50 0.91 2.95 1.25 0.52 0.20 0.11 0.03 2.42 1.02 0.42 0.16 0.09 0.03 65 6.41 4.49 3.12 2.09 1.62 0.99 3.40 1.45 0.60 0.23 0.13 0.04 2.80 1.18 0.49 0.19 0.10 0.03 70 6.90 4.84 3.36 2.25 1.75 1.07 3.89 1.65 0.69 0.26 0.14 0.04 3.21 1.35 0.56 0.21 0.11 0.04 75 7.39 5.18 3.60 2.41 1.87 1.14 4.41 1.87 0.78 0.30 0.16 0.05 3.65 1.53 0.63 0.24 0.13 0.04 80 7.89 5.53 3.84 2.57 2.00 1.22 4.95 2.10 0.88 0.33 0.18 0.06 4.11 1.72 0.71 0.27 0.15 0.04 85 8.38 5.87 4.09 2.74 2.12 1.29 5.52 2.34 0.98 0.37 0.20 0.06 4.60 1.93 0.80 0.30 0.16 0.05 90 8.87 6.22 4.33 2.90 2.24 1.37 6.13 2.60 1.08 0.41 0.22 0.07 5.11 2.14 0.88 0.33 0.18 0.05 95 9.37 6.57 4.57 3.06 2.37 1.45 6.76 2.86 1.19 0.45 0.25 0.08 5.66 2.36 0.97 0.37 0.20 0.06 100 9.86 6.91 4.81 3.22 2.49 1.52 7.42 3.14 1.31 0.50 0.27 0.08 6.22 2.60 1.07 0.40 0.22 0.07 110 10.8 7.60 5.29 3.54 2.74 1.68 8.82 3.73 1.55 0.59 0.32 0.10 7.43 3.10 1.28 0.48 0.26 0.08 120 8.29 5.77 3.86 2.99 1.83 4.37 1.81 0.69 0.37 0.11 3.64 1.50 0.56 0.30 0.09 130 8.99 6.25 4.18 3.24 1.98 5.05 2.10 0.80 0.43 0.13 4.23 1.73 0.65 0.35 0.11 140 9.68 6.73 4.50 3.49 2.13 5.78 2.40 0.91 0.49 0.15 4.85 1.99 0.75 0.40 0.12 150 10.4 7.21 4.83 3.74 2.28 6.55 2.72 1.03 0.56 0.17 5.52 2.26 0.85 0.46 0.14 160 7.69 5.15 3.99 2.44 3.05 1.16 0.63 0.19 2.55 0.95 0.51 0.16 170 8.17 5.47 4.24 2.59 3.41 1.29 0.70 0.21 2.85 1.07 0.57 0.17 180 8.65 5.79 4.49 2.74 3.78 1.43 0.77 0.24 3.17 1.18 0.64 0.19 190 9.13 6.11 4.74 2.89 4.17 1.58 0.85 0.26 3.50 1.31 0.70 0.21 200 9.61 6.44 4.99 3.05 4.58 1.73 0.94 0.29 3.85 1.44 0.77 0.23 225 10.8 7.24 5.61 3.43 5.68 2.15 1.16 0.35 4.80 1.79 0.96 0.29 250 8.04 6.23 3.81 Shown is pressure 2.60 1.40 0.43 To express 2.18 1.17 0.35 275 8.85 6.86 4.19 loss in units of 3.09 1.67 0.51 pressure loss in 2.60 1.39 0.42 300 9.65 7.48 4.57 psi per 100 3.62 1.95 0.59 terms of 3.06 1.63 0.49 350 11.3 8.73 5.33 ft of pipe. 4.80 2.58 0.78 feet of head, 4.08 2.17 0.65 400 Flow Velocity above 9.98 6.09 3.30 1.00 multiply the value 2.79 0.83 450 8 feet per second may be 11.2 6.85 Example: for 200 4.09 1.24 listed by 2.307. 3.48 1.03 500 considered excessive and 7.61 lineal ft of pipe, 1.50 1.26 600 may result in excessive 9.1 double the value 2.09 Example: 1 psi = 1.77 700 pressure loss. 10.7 listed in this table. 2.77 2.307 ft of head 2.36 33

Table 4.4 RAUVITHERM Carrier Pipe with 60% Water / 40% Propylene Glycol Flow Rate GPM Flow Velocity ft/sec 100 F (38 C) 40% Glycol pressure loss in psi per 100 ft of pipe 140 F (60 C) 40% Glycol 180 F (82 C) 40% Glycol 25 32 40 50 25 32 40 50 25 32 40 50 25 32 40 50 2 1.25 0.76 0.49 0.31 0.69 0.22 0.05 0.02 0.57 0.18 0.06 0.02 0.50 0.15 0.05 0.02 3 1.87 1.14 0.73 0.47 1.37 0.43 0.15 0.05 1.14 0.35 0.13 0.04 1.01 0.31 0.11 0.04 4 2.50 1.52 0.98 0.63 2.24 0.69 0.25 0.09 1.88 0.58 0.20 0.07 1.67 0.51 0.18 0.06 5 3.12 1.90 1.22 0.78 3.29 1.01 0.36 0.13 2.78 0.85 0.30 0.10 2.48 0.75 0.27 0.09 6 3.74 2.28 1.47 0.94 4.51 1.39 0.49 0.17 3.84 1.17 0.41 0.14 3.44 1.04 0.37 0.13 7 4.37 2.66 1.71 1.09 5.90 1.81 0.64 0.22 5.04 1.53 0.54 0.19 4.53 1.37 0.48 0.16 8 4.99 3.04 1.96 1.25 7.45 2.28 0.81 0.28 6.39 1.94 0.68 0.23 5.76 1.73 0.61 0.21 9 5.62 3.42 2.20 1.41 9.16 2.80 0.99 0.34 7.88 2.39 0.84 0.29 7.12 2.14 0.75 0.26 10 6.24 3.80 2.45 1.56 11.0 3.37 1.19 0.41 9.52 2.88 1.01 0.35 8.62 2.58 0.90 0.31 11 6.86 4.18 2.69 1.72 13.0 3.98 1.40 0.48 11.3 3.41 1.19 0.41 10.2 3.07 1.07 0.36 12 7.49 4.55 2.94 1.88 15.2 4.63 1.63 0.56 13.2 3.98 1.39 0.48 12.0 3.59 1.25 0.42 13 8.11 4.93 3.18 2.03 17.5 5.33 1.88 0.65 15.3 4.59 1.60 0.55 13.9 4.14 1.44 0.49 14 8.74 5.31 3.43 2.19 20.0 6.07 2.14 0.74 17.4 5.24 1.83 0.62 15.9 4.74 1.64 0.56 15 9.36 5.69 3.67 2.35 22.6 6.86 2.41 0.83 19.8 5.93 2.07 0.71 18.1 5.37 1.86 0.63 16 10.0 6.07 3.92 2.50 25.4 7.69 2.70 0.93 22.2 6.65 2.32 0.79 20.3 6.03 2.09 0.71 17 6.45 4.16 2.66 8.56 3.00 1.03 7.42 2.58 0.88 6.74 2.33 0.79 18 6.83 4.41 2.82 9.47 3.32 1.14 8.22 2.86 0.97 7.48 2.58 0.87 19 7.21 4.65 2.97 10.4 3.65 1.25 9.07 3.15 1.07 8.25 2.85 0.96 20 7.59 4.90 3.13 11.4 4.00 1.37 9.95 3.45 1.17 9.06 3.12 1.06 22 8.35 5.39 3.44 13.5 4.73 1.62 11.8 4.10 1.39 10.8 3.71 1.25 24 9.11 5.88 3.75 15.8 5.52 1.89 13.8 4.79 1.62 12.7 4.35 1.47 26 9.87 6.37 4.07 18.2 6.36 2.17 16.0 5.53 1.87 14.7 5.03 1.69 28 10.6 6.86 4.38 20.8 7.26 2.48 18.3 6.32 2.14 16.8 5.76 1.94 30 7.35 4.69 8.20 2.80 7.16 2.42 6.53 2.19 32 7.84 5.00 9.20 3.14 8.05 2.72 7.35 2.47 34 8.33 5.32 10.3 3.49 8.98 3.03 8.21 2.75 36 8.82 5.63 11.4 3.87 9.97 3.36 9.12 3.05 38 9.31 5.94 12.5 4.25 11.0 3.70 10.1 3.37 40 9.8 6.26 13.7 4.66 12.1 4.06 11.1 3.70 42 10.3 6.57 15.0 5.08 13.2 4.44 12.1 4.04 44 6.88 5.52 4.83 4.40 46 7.19 5.98 5.23 4.78 48 7.51 Shown is pressure 6.45 To express 5.65 5.16 50 7.82 loss in units of 6.94 pressure loss in 6.09 5.57 52 8.13 psi per 100 ft 7.45 terms of 6.54 5.98 54 8.45 of pipe. 7.97 feet of head, 7.00 6.41 56 Flow Velocity above 8.76 8.51 multiply the value 7.48 6.86 58 8 feet per second may be 9.07 Example: for 200 9.06 listed by 2.307. 7.97 7.31 60 considered excessive and 9.38 lineal ft of pipe, 9.63 8.48 7.79 62 may result in excessive 9.70 double the value 10.2 Example: 1 psi = 9.01 8.27 64 pressure loss. 10.0 listed in this table. 10.8 2.307 ft of head 9.54 8.77 34

Table 4.4 RAUVITHERM Carrier Pipe with 60% Water / 40% Propylene Glycol (cont.) Flow Rate Flow Velocity pressure loss in psi per 100 ft of pipe GPM ft/sec 100 F (38 C) 40% Glycol 180 F (82 C) 40% Glycol 63 75 90 110 125 160 63 75 90 110 125 160 63 75 90 110 125 160 2 0.20 0.14 0.10 0.06 0.05 0.03 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 4 0.39 0.28 0.19 0.13 0.10 0.06 0.03 <.01 <.01 <.01 <.01 <.01 0.02 <.01 <.01 <.01 <.01 <.01 6 0.59 0.41 0.29 0.19 0.15 0.09 0.06 0.03 0.01 <.01 <.01 <.01 0.04 0.02 <.01 <.01 <.01 <.01 8 0.79 0.55 0.38 0.26 0.20 0.12 0.09 0.04 0.02 <.01 <.01 <.01 0.07 0.03 0.01 <.01 <.01 <.01 10 0.99 0.69 0.48 0.32 0.25 0.15 0.14 0.06 0.03 <.01 <.01 <.01 0.10 0.04 0.02 <.01 <.01 <.01 12 1.18 0.83 0.58 0.39 0.30 0.18 0.19 0.08 0.03 0.01 <.01 <.01 0.14 0.06 0.03 <.01 <.01 <.01 14 1.38 0.97 0.67 0.45 0.35 0.21 0.25 0.11 0.05 0.02 <.01 <.01 0.19 0.08 0.03 0.01 <.01 <.01 16 1.58 1.11 0.77 0.51 0.40 0.24 0.31 0.13 0.06 0.02 0.01 <.01 0.23 0.10 0.04 0.02 <.01 <.01 18 1.77 1.24 0.87 0.58 0.45 0.27 0.38 0.16 0.07 0.03 0.01 <.01 0.29 0.12 0.05 0.02 0.01 <.01 20 1.97 1.38 0.96 0.64 0.50 0.30 0.46 0.20 0.08 0.03 0.02 <.01 0.35 0.15 0.06 0.02 0.01 <.01 22 2.17 1.52 1.06 0.71 0.55 0.34 0.54 0.23 0.10 0.04 0.02 <.01 0.41 0.18 0.07 0.03 0.02 <.01 24 2.37 1.66 1.15 0.77 0.60 0.37 0.63 0.27 0.11 0.04 0.02 <.01 0.48 0.21 0.09 0.03 0.02 <.01 26 2.56 1.80 1.25 0.84 0.65 0.40 0.72 0.31 0.13 0.05 0.03 <.01 0.56 0.24 0.10 0.04 0.02 <.01 28 2.76 1.94 1.35 0.90 0.70 0.43 0.82 0.35 0.15 0.06 0.03 <.01 0.64 0.27 0.11 0.04 0.02 <.01 30 2.96 2.07 1.44 0.97 0.75 0.46 0.93 0.40 0.17 0.07 0.04 0.01 0.72 0.31 0.13 0.05 0.03 <.01 35 3.45 2.42 1.68 1.13 0.87 0.53 1.22 0.52 0.22 0.08 0.05 0.01 0.95 0.40 0.17 0.06 0.04 0.01 40 3.94 2.76 1.92 1.29 1.00 0.61 1.54 0.66 0.28 0.11 0.06 0.02 1.21 0.51 0.21 0.08 0.04 0.01 45 4.44 3.11 2.16 1.45 1.12 0.69 1.90 0.81 0.34 0.13 0.07 0.02 1.50 0.63 0.26 0.10 0.05 0.02 50 4.93 3.46 2.40 1.61 1.25 0.76 2.29 0.98 0.41 0.16 0.09 0.03 1.81 0.77 0.32 0.12 0.07 0.02 55 5.42 3.80 2.64 1.77 1.37 0.84 2.72 1.16 0.49 0.19 0.10 0.03 2.15 0.91 0.38 0.14 0.08 0.02 60 5.92 4.15 2.88 1.93 1.50 0.91 3.17 1.35 0.57 0.22 0.12 0.04 2.52 1.07 0.44 0.17 0.09 0.03 65 6.41 4.49 3.12 2.09 1.62 0.99 3.66 1.56 0.65 0.25 0.14 0.04 2.92 1.23 0.51 0.19 0.11 0.03 70 6.90 4.84 3.36 2.25 1.75 1.07 4.18 1.78 0.75 0.29 0.16 0.05 3.35 1.41 0.58 0.22 0.12 0.04 75 7.39 5.18 3.60 2.41 1.87 1.14 4.73 2.01 0.84 0.32 0.18 0.05 3.80 1.60 0.66 0.25 0.14 0.04 80 7.89 5.53 3.84 2.57 2.00 1.22 5.31 2.26 0.95 0.36 0.20 0.06 4.28 1.80 0.74 0.28 0.15 0.05 85 8.38 5.87 4.09 2.74 2.12 1.29 5.92 2.52 1.05 0.40 0.22 0.07 4.78 2.01 0.83 0.32 0.17 0.05 90 8.87 6.22 4.33 2.90 2.24 1.37 6.56 2.79 1.17 0.45 0.24 0.07 5.31 2.23 0.92 0.35 0.19 0.06 95 9.37 6.57 4.57 3.06 2.37 1.45 7.23 3.07 1.28 0.49 0.27 0.08 5.87 2.46 1.02 0.39 0.21 0.06 100 9.86 6.91 4.81 3.22 2.49 1.52 7.93 3.37 1.41 0.54 0.29 0.09 6.45 2.71 1.12 0.42 0.23 0.07 110 10.8 7.60 5.29 3.54 2.74 1.68 9.42 4.00 1.67 0.64 0.35 0.11 7.70 3.22 1.33 0.50 0.27 0.08 120 8.29 5.77 3.86 2.99 1.83 4.67 1.95 0.74 0.40 0.12 3.78 1.56 0.59 0.32 0.10 130 8.99 6.25 4.18 3.24 1.98 5.40 2.25 0.86 0.47 0.14 4.39 1.81 0.68 0.37 0.11 140 9.68 6.73 4.50 3.49 2.13 6.17 2.57 0.98 0.53 0.16 5.03 2.07 0.78 0.42 0.13 150 10.4 7.21 4.83 3.74 2.28 6.99 2.91 1.11 0.60 0.18 5.72 2.35 0.88 0.48 0.14 160 7.69 5.15 3.99 2.44 3.27 1.24 0.67 0.21 2.64 0.99 0.54 0.16 170 8.17 5.47 4.24 2.59 3.64 1.39 0.75 0.23 2.96 1.11 0.60 0.18 180 8.65 5.79 4.49 2.74 4.04 1.54 0.83 0.26 3.29 1.23 0.66 0.20 190 9.13 6.11 4.74 2.89 4.45 1.69 0.92 0.28 3.63 1.36 0.73 0.22 200 9.61 6.44 4.99 3.05 4.89 1.86 1.01 0.31 3.99 1.50 0.81 0.24 225 10.8 7.24 5.61 3.43 6.05 2.30 1.24 0.38 4.97 1.86 1.00 0.30 250 8.04 6.23 3.81 Shown is pressure 2.78 1.50 0.46 To express 2.26 1.21 0.37 275 8.85 6.86 4.19 loss in units of 3.30 1.78 0.54 pressure loss in 2.69 1.44 0.43 300 9.65 7.48 4.57 psi per 100 3.86 2.09 0.64 terms of 3.17 1.70 0.51 350 11.3 8.73 5.33 ft of pipe. 5.11 2.76 0.84 feet of head, 4.22 2.26 0.68 400 Flow Velocity above 9.98 6.09 3.51 1.07 multiply the value 2.89 0.86 450 8 feet per second may be 11.2 6.85 Example: for 200 4.35 1.32 listed by 2.307. 3.60 1.07 500 considered excessive and 7.61 lineal ft of pipe, 1.60 1.31 600 may result in excessive 9.1 double the value 2.23 Example: 1 psi = 1.83 700 pressure loss. 10.7 listed in this table. 2.95 2.307 ft of head 2.44 35

Table 4.5 RAUVITHERM Carrier Pipe with 50% Water / 50% Propylene Glycol Flow Rate GPM Flow Velocity ft/sec 100 F (38 C) 50% Glycol pressure loss in psi per 100 ft of pipe 140 F (60 C) 50% Glycol 180 F (82 C) 50% Glycol 25 32 40 50 25 32 40 50 25 32 40 50 25 32 40 50 2 1.25 0.76 0.49 0.31 0.77 0.16 0.07 0.03 0.62 0.19 0.07 0.01 0.53 0.16 0.06 0.02 3 1.87 1.14 0.73 0.47 1.52 0.47 0.10 0.04 1.24 0.38 0.14 0.05 1.07 0.33 0.12 0.04 4 2.50 1.52 0.98 0.63 2.48 0.77 0.28 0.10 2.04 0.63 0.22 0.08 1.77 0.54 0.19 0.07 5 3.12 1.90 1.22 0.78 3.62 1.12 0.40 0.14 3.00 0.92 0.33 0.11 2.63 0.80 0.28 0.10 6 3.74 2.28 1.47 0.94 4.96 1.53 0.55 0.19 4.13 1.26 0.45 0.16 3.63 1.10 0.39 0.13 7 4.37 2.66 1.71 1.09 6.47 1.99 0.71 0.25 5.41 1.65 0.58 0.20 4.78 1.45 0.51 0.17 8 4.99 3.04 1.96 1.25 8.15 2.51 0.89 0.31 6.85 2.09 0.74 0.25 6.06 1.83 0.64 0.22 9 5.62 3.42 2.20 1.41 10.0 3.07 1.09 0.38 8.44 2.57 0.90 0.31 7.49 2.26 0.79 0.27 10 6.24 3.80 2.45 1.56 12.0 3.69 1.31 0.45 10.2 3.09 1.09 0.37 9.05 2.73 0.95 0.33 11 6.86 4.18 2.69 1.72 14.2 4.35 1.54 0.53 12.0 3.65 1.28 0.44 10.7 3.23 1.13 0.39 12 7.49 4.55 2.94 1.88 16.5 5.06 1.79 0.62 14.1 4.26 1.50 0.51 12.6 3.77 1.32 0.45 13 8.11 4.93 3.18 2.03 19.0 5.82 2.06 0.71 16.2 4.91 1.72 0.59 14.5 4.36 1.52 0.52 14 8.74 5.31 3.43 2.19 21.7 6.62 2.34 0.81 18.5 5.60 1.96 0.67 16.6 4.98 1.73 0.59 15 9.36 5.69 3.67 2.35 24.5 7.47 2.64 0.91 21.0 6.33 2.22 0.76 18.9 5.64 1.96 0.67 16 10.0 6.07 3.92 2.50 27.4 8.36 2.95 1.02 23.6 7.10 2.48 0.85 21.2 6.33 2.20 0.75 17 6.45 4.16 2.66 9.30 3.28 1.13 7.91 2.77 0.95 7.06 2.45 0.83 18 6.83 4.41 2.82 10.3 3.62 1.25 8.76 3.06 1.05 7.83 2.72 0.92 19 7.21 4.65 2.97 11.3 3.98 1.37 9.65 3.37 1.15 8.64 2.99 1.02 20 7.59 4.90 3.13 12.4 4.35 1.50 10.6 3.69 1.26 9.48 3.28 1.11 22 8.35 5.39 3.44 14.6 5.14 1.77 12.6 4.37 1.49 11.3 3.90 1.32 24 9.11 5.88 3.75 17.1 5.99 2.06 14.7 5.11 1.74 13.2 4.56 1.54 26 9.87 6.37 4.07 19.7 6.90 2.37 17.0 5.89 2.00 15.3 5.27 1.78 28 10.6 6.86 4.38 22.5 7.86 2.69 19.4 6.73 2.29 17.5 6.03 2.03 30 7.35 4.69 8.88 3.04 7.61 2.59 6.83 2.30 32 7.84 5.00 9.96 3.41 8.55 2.90 7.68 2.59 34 8.33 5.32 11.1 3.79 9.53 3.23 8.58 2.89 36 8.82 5.63 12.3 4.19 10.6 3.58 9.52 3.20 38 9.31 5.94 13.5 4.61 11.7 3.94 10.5 3.53 40 9.8 6.26 14.8 5.05 12.8 4.32 11.5 3.87 42 10.3 6.57 16.1 5.50 14.0 4.72 12.6 4.23 44 6.88 5.97 5.13 4.61 46 7.19 6.46 5.56 4.99 48 7.51 Shown is pressure 6.97 To express 6.00 5.40 50 7.82 loss in units of 7.50 pressure loss in 6.46 5.81 52 8.13 psi per 100 ft 8.04 terms of 6.93 6.24 54 8.45 of pipe. 8.59 feet of head, 7.42 6.69 56 Flow Velocity above 8.76 9.17 multiply the value 7.92 7.15 58 8 feet per second may be 9.07 Example: for 200 9.76 listed by 2.307. 8.44 7.62 60 considered excessive and 9.38 lineal ft of pipe, 10.4 8.98 8.11 62 may result in excessive 9.70 double the value 11.0 Example: 1 psi = 9.53 8.62 64 pressure loss. 10.0 listed in this table. 11.6 2.307 ft of head 10.1 9.13 36

Table 4.5 RAUVITHERM Carrier Pipe with 50% Water / 50% Propylene Glycol (cont.) Flow Rate Flow Velocity pressure loss in psi per 100 ft of pipe GPM ft/sec 100 F (38 C) 50% Glycol 180 F (82 C) 50% Glycol 63 75 90 110 125 160 63 75 90 110 125 160 63 75 90 110 125 160 2 0.20 0.14 0.10 0.06 0.05 0.03 0.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 4 0.39 0.28 0.19 0.13 0.10 0.06 0.02 0.01 <.01 <.01 <.01 <.01 0.02 <.01 <.01 <.01 <.01 <.01 6 0.59 0.41 0.29 0.19 0.15 0.09 0.06 0.03 <.01 <.01 <.01 <.01 0.04 0.02 <.01 <.01 <.01 <.01 8 0.79 0.55 0.38 0.26 0.20 0.12 0.10 0.05 0.02 <.01 <.01 <.01 0.07 0.03 0.01 <.01 <.01 <.01 10 0.99 0.69 0.48 0.32 0.25 0.15 0.15 0.07 0.03 0.01 <.01 <.01 0.11 0.05 0.02 <.01 <.01 <.01 12 1.18 0.83 0.58 0.39 0.30 0.18 0.21 0.09 0.04 0.02 <.01 <.01 0.15 0.06 0.03 0.01 <.01 <.01 14 1.38 0.97 0.67 0.45 0.35 0.21 0.27 0.12 0.05 0.02 0.01 <.01 0.20 0.08 0.04 0.01 <.01 <.01 16 1.58 1.11 0.77 0.51 0.40 0.24 0.34 0.15 0.06 0.02 0.01 <.01 0.25 0.11 0.04 0.02 <.01 <.01 18 1.77 1.24 0.87 0.58 0.45 0.27 0.42 0.18 0.08 0.03 0.02 <.01 0.31 0.13 0.06 0.02 0.01 <.01 20 1.97 1.38 0.96 0.64 0.50 0.30 0.50 0.22 0.09 0.04 0.02 <.01 0.37 0.16 0.07 0.03 0.01 <.01 22 2.17 1.52 1.06 0.71 0.55 0.34 0.59 0.26 0.11 0.04 0.02 <.01 0.44 0.19 0.08 0.03 0.02 <.01 24 2.37 1.66 1.15 0.77 0.60 0.37 0.69 0.30 0.13 0.05 0.03 <.01 0.51 0.22 0.09 0.04 0.02 <.01 26 2.56 1.80 1.25 0.84 0.65 0.40 0.79 0.34 0.14 0.06 0.03 <.01 0.59 0.25 0.11 0.04 0.02 <.01 28 2.76 1.94 1.35 0.90 0.70 0.43 0.90 0.39 0.16 0.06 0.03 0.01 0.67 0.29 0.12 0.05 0.03 <.01 30 2.96 2.07 1.44 0.97 0.75 0.46 1.01 0.44 0.18 0.07 0.04 0.01 0.76 0.32 0.14 0.05 0.03 <.01 35 3.45 2.42 1.68 1.13 0.87 0.53 1.33 0.57 0.24 0.09 0.05 0.02 1.00 0.43 0.18 0.07 0.04 0.01 40 3.94 2.76 1.92 1.29 1.00 0.61 1.68 0.72 0.30 0.12 0.06 0.02 1.27 0.54 0.23 0.09 0.05 0.01 45 4.44 3.11 2.16 1.45 1.12 0.69 2.06 0.89 0.37 0.14 0.08 0.02 1.57 0.67 0.28 0.11 0.06 0.02 50 4.93 3.46 2.40 1.61 1.25 0.76 2.49 1.07 0.45 0.17 0.09 0.03 1.90 0.81 0.34 0.13 0.07 0.02 55 5.42 3.80 2.64 1.77 1.37 0.84 2.94 1.26 0.53 0.20 0.11 0.03 2.26 0.96 0.40 0.15 0.08 0.03 60 5.92 4.15 2.88 1.93 1.50 0.91 3.43 1.47 0.62 0.24 0.13 0.04 2.64 1.12 0.47 0.18 0.10 0.03 65 6.41 4.49 3.12 2.09 1.62 0.99 3.95 1.69 0.71 0.27 0.15 0.05 3.05 1.29 0.54 0.20 0.11 0.03 70 6.90 4.84 3.36 2.25 1.75 1.07 4.51 1.93 0.81 0.31 0.17 0.05 3.50 1.48 0.61 0.23 0.13 0.04 75 7.39 5.18 3.60 2.41 1.87 1.14 5.10 2.18 0.91 0.35 0.19 0.06 3.96 1.67 0.70 0.26 0.14 0.04 80 7.89 5.53 3.84 2.57 2.00 1.22 5.72 2.44 1.02 0.39 0.21 0.07 4.46 1.88 0.78 0.30 0.16 0.05 85 8.38 5.87 4.09 2.74 2.12 1.29 6.37 2.72 1.14 0.44 0.24 0.07 4.98 2.10 0.87 0.33 0.18 0.06 90 8.87 6.22 4.33 2.90 2.24 1.37 7.06 3.01 1.26 0.48 0.26 0.08 5.53 2.33 0.97 0.37 0.20 0.06 95 9.37 6.57 4.57 3.06 2.37 1.45 7.77 3.31 1.39 0.53 0.29 0.09 6.11 2.57 1.07 0.40 0.22 0.07 100 9.86 6.91 4.81 3.22 2.49 1.52 8.52 3.63 1.52 0.58 0.32 0.10 6.72 2.82 1.17 0.44 0.24 0.07 110 10.8 7.60 5.29 3.54 2.74 1.68 10.1 4.30 1.80 0.69 0.38 0.12 8.00 3.36 1.39 0.53 0.29 0.09 120 8.29 5.77 3.86 2.99 1.83 5.03 2.10 0.80 0.44 0.14 3.94 1.63 0.62 0.33 0.10 130 8.99 6.25 4.18 3.24 1.98 5.80 2.42 0.93 0.50 0.16 4.57 1.89 0.71 0.39 0.12 140 9.68 6.73 4.50 3.49 2.13 6.62 2.77 1.06 0.58 0.18 5.23 2.16 0.82 0.44 0.13 150 10.4 7.21 4.83 3.74 2.28 7.50 3.13 1.20 0.65 0.20 5.94 2.45 0.92 0.50 0.15 160 7.69 5.15 3.99 2.44 3.51 1.34 0.73 0.22 2.76 1.04 0.56 0.17 170 8.17 5.47 4.24 2.59 3.91 1.49 0.81 0.25 3.08 1.16 0.63 0.19 180 8.65 5.79 4.49 2.74 4.34 1.65 0.90 0.28 3.42 1.29 0.69 0.21 190 9.13 6.11 4.74 2.89 4.78 1.82 0.99 0.30 3.78 1.42 0.77 0.23 200 9.61 6.44 4.99 3.05 5.24 2.00 1.08 0.33 4.15 1.56 0.84 0.26 225 10.8 7.24 5.61 3.43 6.48 2.47 1.34 0.41 5.16 1.94 1.04 0.32 250 8.04 6.23 3.81 Shown is pressure 2.98 1.61 0.49 To express 2.35 1.26 0.38 275 8.85 6.86 4.19 loss in units of 3.54 1.92 0.59 pressure loss in 2.80 1.51 0.46 300 9.65 7.48 4.57 psi per 100 4.14 2.24 0.68 terms of 3.29 1.77 0.53 350 11.3 8.73 5.33 ft of pipe. 5.46 2.95 0.90 feet of head, 4.37 2.35 0.71 400 Flow Velocity above 9.98 6.09 3.76 1.15 multiply the value 3.00 0.90 450 8 feet per second may be 11.2 6.85 Example: for 200 4.65 1.42 listed by 2.307. 3.73 1.12 500 considered excessive and 7.61 lineal ft of pipe, 1.71 1.36 600 may result in excessive 9.1 double the value 2.38 Example: 1 psi = 1.90 700 pressure loss. 10.7 listed in this table. 3.14 2.307 ft of head 2.53 37

further rehau product ranges RAUVITHERM Energy Transfer Piping RAUGEO PEXa Vertical Ground Loop Radiant Heating and Cooling RAUTOOLS RAUBIO Fermenter Heating REHAU ECOAIR Ground-Air Heat Exchanger For updates to this publication, visit na.rehau.com/resourcecenter The information contained herein is believed to be reliable, but no representations, guarantees or warranties of any kind are made as to its accuracy, suitability for particular applications or the results to be obtained therefrom. Before using, the user will determine suitability of the information for user s intended use and shall assume all risk and liability in connection therewith. REHAU 2013 www.rehau.com rehau.mailbox@rehau.com 463.600US en 05.2013