Thermal Considerations: Assuring Performance of Vicors Maxi, Mini, Micro Series High-Density DC-DC Converter Modules

Similar documents
VI Chip BCM Bus Converter Thermal Management

High Efficiency Battery Charger using Power Components [1]

Q (quad) Package type descriptive code LQFP100. LQFP (low profile quad flat package) Package body material type. P (plastic) IEC package outline code

AG903-07E TDFN Current Sensor Evaluation Board

Application Note 103 January LTM4600 DC/DC µmodule Regulator Thermal Performance Eddie Beville, Jian Yin AN103-1

ATN3580 Series: Fixed Attenuator Pads

LSI SAS e HBA Temperature and Airflow

MACP TB. 23 db Coupler MHz Rev. V1. Features. Functional Schematic. Description. Pin Configuration 4. Ordering Information 1,2

Power Distribution Units

Advance Data Sheet: idq Series Filter Module. idq Series Filter Module 75V Input, 10A Output

MI-ComPAC DC-DC Switchers

LM , LM mA and 500mA Voltage Regulators

LM , LM mA and 500mA Voltage Regulators

Power Distribution Units AP9560 & AP9561

S24SP15004 series 60W Single Output DC/DC Converter

3. Design Requirements

NOT RECOMMENDED FOR NEW DESIGNS

TN1250 Technical note

G3PE-Single-phase. Solid State Relays for Heaters

mm Square Sealed Panel Control

Replacement Part has been judged by Mini Circuits Engineering as a suitable replacement to Original Part a. Case Style DQ849 (No Change) Marking MN5A

LM ma Low Dropout Regulator

SinglFuse SF-1206HVxxM Series Features

A Review of DC/DC Converter De-rating Practices

THERMAL. MANAGEMENT SOLUTIONS FOR BGAs DESIGN ANALYSIS FABRICATION

Model Number Structure

MPT SERIES OPERATING MANUAL. Caution: To Operate this controller safely, use the Safe Operating Area Design Tool Online at

PMP40001 Test Results

China - Germany - Korea - Singapore - United States - smc-diodes.com

WHY5690 GENERAL DESCRIPTION: WHY5690 EVALUATION BOARD for WHY5640 Temperature Controller

AN RPM to TACH Counts Conversion. 1 Preface. 2 Audience. 3 Overview. 4 References

Mounting Instruction MiniSKiiP

HAE S 05 - P TH HS PART NUMBER STRUCTURE Page 1. P-DUKE Technology Co., Ltd.

6.0 SPECIFICATIONS CONTENTS. Calibration. According to factory procedureeeeeeeeeeeeeee Accuracy*

HAE S 05 W - P TH HS PART NUMBER STRUCTURE Page 1. P-DUKE Technology Co., Ltd.

HYBRID LINEAR ACTUATORS BASICS

American Power Design, Inc.

InMate. Design Guide. Socket Mount, Up to 100 A Using Vicor s Maxi, Mini, Micro Series Modules

Thermal Characterization and Modeling: a key part of the total packaging solution. Dr. Roger Emigh STATS ChipPAC Tempe, AZ

STC E-Series Electrically Actuated Ball Valves 316 Stainless Steel, 2-Way or 3-Way

Features. Description. Table of Contents

BZX84B4V7LT1, BZX84C2V4LT1 Series. Zener Voltage Regulators. 225 mw SOT 23 Surface Mount

HAE S 05 - P HS Series Name Input Output Output Ctrl and Assembly Option Voltage Quantity Voltage Pin Options

Flo-Way. Measure Granular or Powdered Material. Stand Alone or Connect to Other Devices for Blending. Used by Successful Producers World-Wide

AMS Amp LOW DROPOUT VOLTAGE REGULATOR. General Description. Applications. Typical Application V CONTROL V OUT V POWER +

HAE S 05 W - P HS Series Name Input Output Output Input Ctrl and Assembly Option Voltage Quantity Voltage Range Pin Options

SRP7030F Series - Shielded Power Inductors

Package Thermal Characterization

Infinitybox Express Road Race Car Kit Installation Guide

Data Bulletin. ALTIVAR FLEX58 Chassis Drive Controllers Class 8806 INTRODUCTION DESIGN CONCEPT. Bulletin No. 8806DB0102 August 2001 Raleigh, NC, USA

COVER PAGE FOR TEST REPORT

UniTorq UTQ Quarter-Turn Actuator Installation and Operation Manual

Is Now Part of. To learn more about ON Semiconductor, please visit our website at

NOTES TABLE OF CONTENTS

SEMITOP2,3,4 Press-Fit

BZX84BxxxLT1G. BZX84CxxxLT1G Series, SZBZX84BxxxLT1G. SZBZX84CxxxLT1G Series. Zener Voltage Regulators. 250 mw SOT 23 Surface Mount

FlowScanner 6000 SGIM-1 and SGIM-2 Strain Gauge Interfaces

Smart Battery Charger GPC-35-MAX GPC-45-MAX GPC-55-MAX GPC-75-MAX GPC-100-MAX. Owner s Manual

Maxi and Mini DC-DC Converter Evaluation Board

Applicable output load (See note 2.) Photocoupler Yes Yes 40 A at 110 to 220 VAC 5 to 24 VDC G3NB-240B 5 to 24 VDC G3NB-240B-UTU 5 to 24 VDC

BroadBand PowerShield. 20 AHr Battery. User Manual

USER'S MANUAL MODEL DPD60001 MICROSTEP DRIVER PACK

User s Manual TX MHz Powercaster TM Transmitter

NorthStar Battery Company DCN: SES DCR: 1548-S09 Date:

BZX84C2V4ET1 Series. Zener Voltage Regulators. 225 mw SOT 23 Surface Mount

SGM4056 High Input Voltage Charger

Type 947D Polypropylene, High Energy Density, DC Link Capacitors

800 Series Fuel Cell Module. Zero Emission. Quiet Operation. Compact Power Solution

PART NUMBER STRUCTURE. P-DUKE Technology Co., Ltd Page 1

BZX84CxxxET1G Series, SZBZX84CxxxET3G. Zener Voltage Regulators. 225 mw SOT 23 Surface Mount

PART NUMBER STRUCTURE. P-DUKE Technology Co., Ltd Page 1

Better Productivity by Standstill and Low-speed Monitoring

Micro Family 300V Input

3M Textool Test and Burn-In Sockets for 1.0 mm Area Array Packages Including Ball Grid Array and Land Grid Array

(typ.) (Range) Input Specifications Parameter Model Min. Typ. Max. Unit 12V Input Models Input Surge Voltage (100ms.

XLR Energy Storage Module

(typ.) (Range) ±18 330# 89 MPW MPW

Power Consumption Reduction: Hot Spare

Silvertel. Ag Features. Multi-Stage Charging. Battery Reversal Protection. Reduced Power Consumption. Wide DC or AC Input Voltage Range

R820 REV2 SERIES SCR POWER CONTROLS NOVEMBER 2017

YASKAWA AC Drives. Compressor Applications Application Overview

High Current Thermal Fuse

Automotive, Sulfur Resistant Lead (Pb)-Free Thick Film, Rectangular Chip Resistors

SynJet MR16 LED Cooler with Heat Sink

Table 1: 2-pin Terminal Block J1 Functional description of BSD-02LH Module Pin # Pin Description Table 2: 10-pin Header J2 Pin # Pin Description

1W, 10V - 200V Surface Mount Silicon Zener Diode

SDS05-48 S 05 W H Series Name Input Output Output Input Isolation Voltage Quantity Voltage Range Option PART NUMBER STRUCTURE

EPS/ELA-Series User Manual EPS/ELA 250W

CITILED CL-L270 lighting LED Datasheet

APPLICATION NOTE. Neglecting the regulator quiescent current. Kieran O Malley ON Semiconductor 2000 South County Trail East Greenwich, RI 02818

80PK-2A Type K Immersion Probe

SIGMATHERM 230 / PPG HI-TEMP 230

Ag Features. Multi-Stage Charging. Solar Panel or DC Input. Maximum Power Point Tracking (MPPT) Very Low Power Consumption

MS4515 SPECIFICATIONS FEATURES APPLICATIONS

Advanced Monolithic Systems

4707 DEY ROAD LIVERPOOL, NY PHONE: (315) FAX: (315) M.S. KENNEDY CORPORATION MSK Web Site:

LM3352 Regulated 200 ma Buck-Boost Switched Capacitor DC/DC Converter

DUAL POSITIVE/NEGATIVE, 3 AMP, LOW DROPOUT FIXED VOLTAGE REGULATORS

Efficiency (typ.) (Range) Output Voltage Current. Input Current Load VDC VDC ma ma ma(typ.) ma(typ.) ma(typ.

Mini Family 150V Input

Transcription:

APPLICATION NOTE AN:106 Thermal Considerations: Assuring Performance of Vicors Maxi, Mini, Micro Series High-Density DC-DC Converter Modules By Jeff Ham Sr. Application Engineer As the modular DC-DC converter industry realizes greater power densities, proper thermal management must be achieved in order to get the most usable power to the load. Efficiency, while an important element in thermal management, is not the only item to consider. Dealing with the heat generated by the conversion process should not be underestimated nor overlooked when designing or selecting a power supply. All power product manufacturers specify the maximum operating temperature of their products. Product reliability and operating life are inversely proportional to operating temperature. Assuring a robust design requires that the temperature limit not be exceeded under any operating conditions and that sufficient margin be built in. This requires careful analysis, understanding of the application and verification through experimentation that the chosen thermal management approach can deal effectively with the environmental and load induced demands. The first step in this process is to determine the worst-case power dissipation that the system is likely to develop. Use the following equations to determine the efficiency of the converter over the desired operating range and the maximum loading the device will deliver. Conversion efficiency Is defined as: η = P OUT (1) Where P OUT is the output power and P IN is the input power. The manufacturer of the device will normally publish efficiency values. However, one should not assume that the published efficiency specification applies at all operating conditions; ask the manufacturer to provide a plot of the efficiency as a function of the parameters specific to your application. Figure 1 shows a plot for Vicor DC-DC converter model V300A48C500B; a 300V DC nominal input, 48V DC at 500W output taken at room temperature. Figure 1 shows that the efficiency remains very flat over most of the operating range. Traditionally, DC-DC converter manufacturers provide efficiency information that applies at a specific line and load combination. Unfortunately, the device is usually not operated at only this one point; that is why it is important to look at the full efficiency map. For a good thermal management design, use the worst-case efficiency expected over your operating range in the calculation to determine the worst-case power dissipation. Figure 1 Efficiency vs. Input Voltage and Output Current for Vicor DC-DC Converter Model V300A48C500B AN:106 Page 1

From Figure 1, the efficiency at nominal line is 89% for most of the output range. We ll use this as the worst cast efficiency in our examples. If this converter were operating at full load (P OUT = 500W), the power dissipated ( ) as heat is: = P OUT η P OUT Therefore = 61.8W. Now we must determine the baseplate temperature rise over ambient caused by this power dissipation. All manufacturers publish thermal data for their converters. For the product in question, the maximum specified operating temperature, as measured at its baseplate, is l00 C (Tb). The published thermal impedance (θ) value in free air Is 4.9 C/W. Therefore, the temperature rise over ambient is simply: (2) T r = θ (3) or 302.8 C. In this case, considering the large temperature rise, the module could not be operated at full load in free air. Even if the module s efficiency were 92%, the temperature rise over ambient would be 213 C, far in excess of the l00 C baseplate rating. High efficiency alone will not solve this operating system problem. A heat sink or other means of reducing the thermal impedance of the baseplate is needed. To find a suitable heat sink, we need to find the allowable temperature rise in order to determine the thermal impedance required to keep the baseplate temperature within specification. The allowable temperature rise is the difference between the maximum baseplate temperature and the maximum expected ambient temperature. If the maximum ambient temperature were 55 C, for example, the allowable temperature rise for this Vicor product would be 45 C (= l00 C 55 C). The thermal impedance needed is the allowable temperature rise divided by the maximum power dissipated, (Equation 4). θ max = (4) T r_allowed In this example, the thermal impedance is calculated as 0.73 C/W. This is the maximum thermal impedance that can be tolerated, and will result in the module operating at its maximum specified temperature when delivering full rated load at the maximum expected ambient temperature. This thermal impedance is not just that of the heat sink but the sum total of all the individual interface impedances in the system. This has particular importance with respect to the selection of a thermal interface material. In all cases, the lower the thermal impedance of this interface, the better. Vicor offers a unique phase change material called ThermMate that offers a factor of 10 improvement over dry-style thermal pads. It is never good practice to design to the limits. Picture yourself in a manual transmission car and, rather than up-shifting, you run the engine to the red line to attain the speed you want and keep it like that for miles and miles. Even though the manufacturer says the rpm range is available. You instinctively know that this type of driving shouldn t be done. The same principle applies to power devices. For robustness and longevity, the cooler the device operates the better. A derating factor of 0.75 should be applied to the maximum thermal impedance needed whenever possible. Applying the derating factor results in a more desirable θ of 0.547 C/W. This low impedance is achieved by employing one of the following cooilng methods: Natural Convection Cooling - transfer of heat energy to a fluid, primarily air. Forced Convection Cooling - transfer of heat energy to a moving fluid. Conduction Cooling - transfer of heat through a solid medium. Natural convection cooling to air Is best realized by maximizing surface area, either In the form of a heat sink or mounting the module to a heat-conducttng surface. Many manufacturers offer heat sinks as an integral part of their product. Depending upon the application, forced air may be necessary to keep the device within its limits. Some manufacturers also provide heat sinks as accessory products. Other heat sink manufacturers will design a custom solution based on the information you provide. When conductton cooling is employed, the thermal energy is usually dissipated to the surrounding air through convection. AN:106 Page 2

Consider the following thermal circuit: Within a module, the heat generated by the switching elements is conducted to the module baseplate. It then conducts through a thermal interface material to a metal panel within a rack. The panel then dissipates the heat energy into the air via convection. A power supply mounted within a sealed NEMA enclosure is an ideal application for conduction cooling because the heat generated is transferred to the box itself and then to the surrounding air. When conduction cooling is employed, the user must ensure that the product remains within its limits. Because the surface to which the product is mounted may not dissipate the heat efficiently, the user will need to make a series of trade offs to successfully implement the thermal management scheme. Some of the variables will be the physical space available, airflow, and orientation of the product within the system. A conservative design philosophy, with whichever cooling method Is utilized, is recommended. Verification of the thermal management system by direct measurement is encouraged. Obstructions. eddies and installation errors can all serve to hinder airflow resulting in a significant loss of cooling capacity of an otherwise acceptable paper design. A couple of thermal examples are given below. Example 1 Example 2 Find the maximum ambient temperature at which a module can deliver 400W given the following information: Determine the maximum tolerable thermal impedance from the module baseplate to air for a system delivering 300W to a load given the following: h = 86% (0.86) θ max = 0.77 C/W Tb = l00 C Solution: Rearrange Equations 4 and 3; T ambient max = Tb - (θ max ) T ambient max = 49.86 C Tambient maximum = 60 C h =91% (0.91) Tb= l00 C Solution: Determine the power dissipated ( ) from Equation 3 = 29.67W Calculate the maximum allowable temperature rise from Equation 4: T r_allowable = Tb - Tambient maximum T r_allowable = 40 C Calculate the maximum thermal impedance: θ max = T r_allowable / θ max = 1.35 C/W Web-based calculators on the Vicor Internet site easily perform all these calculations; the user simply enters the known values and selects the parameter to calculate. If volume utilization is not critical to the application, the addition of a heat sink to lower the thermal impedance is relatively trivial. One simply chooses the largest heat sink and fin combination for the space available and attaches it to the module with the appropriate thermal interface material. What is more typical, however, is that there is barely enough room to squeeze in the power module. Many telecom applications have large rack-mounted units that contain multiple PCBs very close together. This inter -board spacing is referred to as pitch. In order to maximize the utility of their products, the more PCB cards they can get into a given space the better. This makes component height above the PCB an important issue. AN:106 Page 3

Figure 2 On-board Mounting (left) vs. In-board Mounting (right) As illustrated above, the height above the board advantage gained by recessing the belly of this module within the PCB is lost with the addition of a traditional heat sink. What is needed is a low profile heat sink that offers reasonable thermal characteristics. Fortunately, Vicor does offer such a product (Figure 3). Figure 3 Low-profile, Side-fin Heat Sinks Heat sink Baseplate Module Side-fin heat sinks (Part #s 30096, 32190, and 30095 for the Maxi, Mini, Micro Series family respectively) add only 0.125 inches to the module baseplate by shifting the cooling fins to the side of the module as opposed to the top. Having the fin tips in close proximity to the PCB forms a convenient duct through which directed forced air can flow. AN:106 Page 4

Limitation of Warranties Information in this document is believed to be accurate and reliable. HOWEVER, THIS INFORMATION IS PROVIDED AS IS AND WITHOUT ANY WARRANTIES, EXPRESSED OR IMPLIED, AS TO THE ACCURACY OR COMPLETENESS OF SUCH INFORMATION. VICOR SHALL HAVE NO LIABILITY FOR THE CONSEQUENCES OF USE OF SUCH INFORMATION. IN NO EVENT SHALL VICOR BE LIABLE FOR ANY INDIRECT, INCIDENTAL, PUNITIVE, SPECIAL OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR SAVINGS, BUSINESS INTERRUPTION, COSTS RELATED TO THE REMOVAL OR REPLACEMENT OF ANY PRODUCTS OR REWORK CHARGES). Vicor reserves the right to make changes to information published in this document, at any time and without notice. You should verify that this document and information is current. This document supersedes and replaces all prior versions of this publication. All guidance and content herein are for illustrative purposes only. Vicor makes no representation or warranty that the products and/or services described herein will be suitable for the specified use without further testing or modification. You are responsible for the design and operation of your applications and products using Vicor products, and Vicor accepts no liability for any assistance with applications or customer product design. It is your sole responsibility to determine whether the Vicor product is suitable and fit for your applications and products, and to implement adequate design, testing and operating safeguards for your planned application(s) and use(s). VICOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN LIFE SUPPORT, LIFE-CRITICAL OR SAFETY-CRITICAL SYSTEMS OR EQUIPMENT. VICOR PRODUCTS ARE NOT CERTIFIED TO MEET ISO 13485 FOR USE IN MEDICAL EQUIPMENT NOR ISO/TS16949 FOR USE IN AUTOMOTIVE APPLICATIONS OR OTHER SIMILAR MEDICAL AND AUTOMOTIVE STANDARDS. VICOR DISCLAIMS ANY AND ALL LIABILITY FOR INCLUSION AND/OR USE OF VICOR PRODUCTS IN SUCH EQUIPMENT OR APPLICATIONS AND THEREFORE SUCH INCLUSION AND/OR USE IS AT YOUR OWN RISK. Terms of Sale The purchase and sale of Vicor products is subject to the Vicor Corporation Terms and Conditions of Sale which are available at: (http://www.vicorpower.com/termsconditionswarranty) Export Control This document as well as the item(s) described herein may be subject to export control regulations. Export may require a prior authorization from U.S. export authorities. Contact Us: http://www.vicorpower.com/contact-us Vicor Corporation 25 Frontage Road Andover, MA, USA 01810 Tel: 800-735-6200 Fax: 978-475-6715 www.vicorpower.com email Customer Service: custserv@vicorpower.com Technical Support: apps@vicorpower.com 2017 Vicor Corporation. All rights reserved. The Vicor name is a registered trademark of Vicor Corporation. All other trademarks, product names, logos and brands are property of their respective owners. 08/17 Rev 1.2 Page 5