Pipe Strut vs. Laced Strut

Similar documents
1-3/8" inside-to-inside dimension. length of the leg. S162

Fabricated from grade S x400 steel box section the extensions are quickly assembled into the required

2. Runway & Crane System

BRACING STRUT SYSTEMS SECTION 4

Purlins and Girts. A division of Canam Group

Technical Data Sheet. British Standards Compliant. TECHNICAL DATA SHEET System 160 (British Standards)

Technical Data MM Channel

Plate Girder and Stiffener

Application nr. 1 (Global Analysis) Structure imperfection and member imperfection to EC.3-1-1

BRACING STRUT SYSTEMS SECTION 4

Multi anchored sheet pile wall in soft clay standing on rock

Design principles and Assumptions

Analysis Methods for Skewed Structures. Analysis Types: Line girder model Crossframe Effects Ignored

ESC H COMBINATION WALL

RAFTERS. Single and Continuous Spans

Technical Data Sheets

Supreme. Supreme Framing System. Product Catalog IAPMO UNIFORM ER #0313

IBC 2009/2012 COMPLIANT. Supreme Framing System. Product Catalog

groundworks technical reference section 4 : double acting hydraulic braces supplement supershaft plus technical details

2507 (IBC 2006 ONLY) 3054 (IBC 2006 ONLY) Supreme Framing System Product Catalog

Gantry Girders in India

Simulation and Validation of FMVSS 207/210 Using LS-DYNA

Bulb flats For plate stiffening

DeltaStud - Lightweight Steel Framing

BS EN Cold formed welded structural hollow sections of non alloyb and fine grain steels Tolerances, dimensions and sectional properties

4.5 COMPOSITE STEEL AND CONCRETE

DESIGN TABLE OF PURLIN, GIRT, EAVE BEAM, TIE RUNNER

ROOFING SOLUTIONS DESIGN GUIDE PURLINS AND GIRTS DESIGN GUIDE PURLINS AND GIRTS S&T029N

Overview. HDS replaces built-up curtain wall headers. HDS replaces load-bearing box beam headers

PIPINGSOLUTIONS, INC.

Steel technology Elastic properties of steel 1071 European standards for structural steels 1072

ArcelorMittal Europe - Long products Sections and Merchant Bars HISTAR. Innovative high strength steels for economical steel structures

Eurocode Compliant. supplement. groundworks technical reference section 4: double acting hydraulic braces. supershaft plus technical details

MGF TECHNICAL FILE MGF 600 SERIES STRUT. Description. Product Notes.

LIGHTWEIGHT STEEL FRAMING METRIC SECTION PROPERTIES

ROUGH OPENINGS PRODUCT CATALOG STRONGER THAN STEEL. INTERIOR AND EXTERIOR FRAMING

CABLE MANAGEMENT SOLUTIONS CATALOGUE2003/04 A COMPLETE CABLE MANAGEMENT SOLUTION FOR COMMERCIAL AND INDUSTRIAL APPLICATIONS.

Piling Product Guide Edition. Servicesteel.org

BUILDING PRODUCTS LCP PURLINS & GIRTS. Purlin and Girt Structural System. BC 1:2012 FPC Cert. No. ABS-BCI-SG-0001

LINTELS WITH TG. Single Spans. Lintels Supporting Truncated Girder Truss INCLUDES TG Set Back 2.4m Maximum 40 kg/m 2 90 kg/m 2

Cladding Profiles. Technical Specifications

STEEL FOR TOMORROW CONSTRUCTION MER LION METALS

TAS. Fire Design Example Based on European Standard ENV (Eurocode 9) TALAT Lecture pages. Advanced Level

BS EN :2006. Hot finished structural hollow sections of non alloy and fine grain steels

FRm ENGINEERING I:ABORATORY LIBRARY

Multideck 80-V2 Features and Applications

Restructuring of an Air Classifier Rotor by Finite Element Analysis

STANDARD SPECIFICATIONS

COMMENTS ABOUT THE DESIGN OF RUNWAY GIRDERS ACCORDNG TO NEW EN STANDARDS

Lightweight. Geislinger Gesilco

for Z & U Sheet Piles

UNIT IV DESIGN OF ENERGY STORING ELEMENTS. Prepared by R. Sendil kumar

Built-Up Columns with Components in Contact with Each Other

The FRACOF Composite Slab Test

Multideck 60-V2. Contents

ERW construction tubes and pipes

B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY

WARRANTY AND LIMITATIONS

Forced vibration frequency response for a permanent magnetic planetary gear

Expanding Your Solutions. Steel Framing and Accessories. ICC ESR and 2015 IBC, IRC

Series 2, 3, 4 Steel Cable Ladder Steel Cable Ladder, Series 2, 3, 4 & 5

The X-Rotor Offshore Wind Turbine Concept

CHAPTER 1 BALANCING BALANCING OF ROTATING MASSES

Feasibility of Ultra Long-Span Suspension Bridges Made of All Plastics

DESIGN CHART # 1: Lamit Basic S.I.P Properties

Some Information on Eurocode 4 part 1.2

Forklifts Standard line

CONSULTING Engineering Calculation Sheet. Reference Sheets - Pile Cap Capacity (Generic) Tables XX

01 CONTENTS. e-beam. e-beam. Technical Information 03

Multideck 50-V2 Features and Applications

STANDARD SPECIFICATION

Stress Analysis of 220cc Engine Connecting Rod

SEISMIC RESTRAINTS Multi-Directional Bracing For Electrical Conduit, Cable Tray And Mechanical Piping Systems

E/ECE/324/Rev.1/Add.57/Rev.2/Amend.4 E/ECE/TRANS/505/Rev.1/Add.57/Rev.2/Amend.4

The University of Melbourne Engineering Mechanics

COMPFIRE SCFT-FP_20_55_ November 2010 Fin Plate Connection to Square Concrete-Filled Tube Test Result

Bulb Flats. Light weight corrosion resistant solution for plate stiffening

Aircraft Design: A Systems Engineering Approach, M. Sadraey, Wiley, 2012 Chapter 11 Aircraft Weight Distribution Tables

LETTER OF TRANSMITTAL

Aerofoil Ventilation Fans. Fantek. Quality & Performance at Affordable Prices

MODEL : TM-1882 CRANE SPECIFICATIONS. MAXIMUM LIFTING CAPACITY lines)

R310EN 2302 ( ) The Drive & Control Company

REPORT HOLDER: CLARKDIETRICH BUILDING SYSTEMS 9050 CENTRE POINTE DRIVE, SUITE 400 WEST CHESTER, OHIO EVALUATION SUBJECT:

Microcellular polyurethane as steering coupling element

ME6401 KINEMATICS OF MACHINERY UNIT- I (Basics of Mechanism)

Table of Contents. PrimeJoist

Technical documentation Hilti System MQ channel installation hot-dip galvanised / stainless steel

07/ 2012 RPL 070/ 100 FRAME SCAFFOLDING

Tests on Plate Girders Containing Web Openings and Inclined Stiffeners

for Hat Sheet Piles 900mm wide

COMPFIRE. Reaction Frame. Camera 3. Macalloy Bars. Camera 2. Link Bar. Support Beam. Oven Bar. Camera 1. Jack Bar.

III B.Tech I Semester Supplementary Examinations, May/June

Hybox 355 technical guide Structural hollow sections

TEST REPORT. Ceram Reference: (QT21489/2/SL)/Ref: 1.0A. Tensile and Frictional Tests on the Fast Fit BeamClamp Systems.

HSR-M1. LM Guide High Temperature Type Model HSR-M1. Point of Selection. Point of Design. Options. Model No. Precautions on Use

Shaft Design. Dr. Mostafa Rostom A. Atia Associate Prof.

TYPICAL EXPERIMENTS Centers of gravity. Force triangle. Force polygon and Bow s Notation. Non- concurrent forces.

Celsius 355 NH technical guide Structural hollow sections

Dach profile TECHNICAL SPECIFICATIONS OF THE ALUMINIUM DACH PROFILE. s p J W EJ M max Symbols

Theory of Machines. CH-1: Fundamentals and type of Mechanisms

Transcription:

Pipe Strut vs. Laced Strut Chiew Sing-Ping School of Civil and Environmental Engineering NANYANG TECHNOLOGICAL UNIVERSITY 9 July 2015

Pipe Strut vs. Laced Strut Pipe Strut Laced Strut 2

PLAXIS Soil-Structure Interaction Analysis Wall (Beam element) Strut (Bar element) 3

PLAXIS Soil-Structure Interaction Analysis Wall deflection profile Distribution of wall bending moments d hmax = 68.9 mm Wall max BM = +82.6 knm/m and -107.8 knm/m 4

PLAXIS Soil-Structure Interaction Analysis Strut forces compression is -ve 5

Pipe Strut vs Laced Strut Part 1: What is Pipe Strut? Production Process: ERW, Spiral, UOE Press-Forming & Roll-Forming Part 2: Why use Pipe Strut? Design of Pipe Strut vs. Laced Strut Section Efficiency Study Part 3: How to use Pipe Strut? Pipe Connectors for Fixed and Free Ends 6

How to produce a pipe? What is Pipe Strut? ROLL-FORMING SPIRAL-WELDING UOE PRESS-FORMING ELECTRIC-RESISTANT WELDING 7

ERW Electric Resistant Welding 8

UOE Press-Forming 9

Spiral Welding 10

Why use Pipe Strut? Design of pipe strut according to EC3 1. Section classification 2. Non-dimensional slenderness 235 1 93.9 f y L cr i 1 1 3. Buckling curve 0.21 0.49 hot finished cold formed 4. Reduction factor 1 2 2 2 0.2 0.5 1 5. Buckling resistance N b, Rd Af y M 0 11

Design of Laced Strut 2 types of built-up struts Laced Strut Battened Strut Chord Lace Batten Module 12

Design of Laced Strut Efficient Laced Strut: z' I z z I yy z y (affected by module length a) Strong laced members y y z' 13

Design of Laced Strut Section properties of laced strut with two identical members Effective second moment of area: I 2 eff 0.5h0 A ch (EC3-1-1, 6.4.2.1) A ch Area of the chord h 0 distance between the centroids of chords 14

I Design of Laced Strut 2 2 ' ' 0.5h A z z 0 ch I yy Achiy I I ' z z yy ' 0.5h i 2 0 Ach 2 y Ach 2 0 2 y 0.5h i 1 h i y 0 2 radius of gyration about y-axis 15

Effect of Global Stiffness Buckling modes: h i y 0 2 h i y 0 2 Out-of-plane buckling In-plane buckling 16

Effect of Module Length a Buckling mode with inappropriate module length between lacing members: Local In-plane chord buckling 17

Effect of Laced Member Buckling modes with weak laced members: Laced member buckling Torsional buckling 18

Section Efficiency Study Strut Force h Strut Strut length L Strut force (kn/m) Strut spacing (m) Force (kn) 160 6 960 210 6 1260 250 6 1500 290 6 1740 700 6 4200 1000 6 6000 1300 6 7800 2000 6 12000 2300 6 13800 2500 6 15000 Strut spacing @ 6m c/c 19

Compressive Resistance 6000 kn Weight kg/m for pipe and laced struts for various length Grade S275 Strut L (m) Pipe λ Weight (kg/m) 12 711 12 0.56 207 15 762 12 0.65 222 20 813 12 0.81 237 25 914 12 0.90 267 30 965 12.7 1.03 298 35 1016 14.3 1.14 352 40 1067 14.3 1.24 370 45 1067 16 1.39 415 50 1168 16 1.42 455 55 1219 16 1.49 475 60 1219 20 1.63 591 Strut L (m) Laced λy Weight (kg/m) 12 610 229UB101 0.57 222.6 15 610 229UB113 0.7 248.6 20 610 229UB125 0.93 275.2 25 610 305UB149 1.12 328.2 30 686 254UB170 1.23 374.4 35 838 292UB176 1.22 387 40 914 305UB201 1.29 442 45 914 305UB224 1.43 493 50 1016 305UB249 1.48 548 55 1016 305UB272 1.58 598 60 1016 305UB314 1.73 691 20

Weight (kg/m) Compressive Resistance 6000 kn 800 700 600 500 400 300 Pipe Laced 200 100 0 10 20 30 40 50 60 70 Strut length (m) 21

Compressive Resistance 12000 kn Weight kg/m for pipe and laced struts for various length Grade S275 Strut L (m) Pipe λ Weight (kg/m) 12 1016 16 0.39 395 15 1016 16 0.49 395 20 1016 16 0.65 395 25 1168 14.3 0.71 406 30 1168 16 0.85 455 35 1168 19 0.99 540 40 1219 20 1.09 591 45 1320.8 19 1.13 611 50 1320.8 22.2 1.25 711.6 55 1320.8 27 1.39 860.6 60 1320.8 30.2 1.51 960.3 Strut L (m) Laced λ y Weight (kg/m) 12 838 292UB194 0.41 426.6 15 838 292UB194 0.51 426.6 20 914 305UB201 0.65 442 25 1016 305UB222 0.76 488.4 30 1016 305UB249 0.89 547.1 35 1016 305UB272 1.01 599 40 1016 305UB314 1.15 691.5 45 1016 305UB393 1.29 864 50 1016 305UB437 1.43 961 55 1016 305UB487 1.56 1071 60 3/1016 305UB393 1.72 1297 22

Weight (kg/m) Compressive Resistance 12000 kn 1500 1300 1100 900 700 pipe Laced 500 300 10 20 30 40 50 60 70 Strut length (m) 23

Resistance & Slenderness vs. Steel Grade Design resistance of strut = 1500kN Suitable pipe sections with unit-weight (kg/m) for various strut length are given below Strut L (m) Pipe Weight (kg/m) Slenderness λ Resistance (kn) S275 S355 S460 S275 S355 S460 4 323.9 6 47 0.41 0.47 0.53 1564 1986 2602 8 355.6 6.3 54.3 0.74 0.84 0.96 1570 1887 2396 12 406 7.1 70.3 0.98 1.11 1.27 1672 1864 2167 15 457 7.1 79 1.09 1.23 1.4 1678 1821 2032 20 457 10 110 1.46 1.66 1.89 1503 1557 1671 25 508 12 147 1.65 1.87 2.13 1630 1674 1775 30 508 16 194 1.99 2.25 2.57 1533 1560 1632 35 508 25 298 2.36 2.68 3.04 1708 1730 1794 40 508 32 376 2.73 3.1 3.53 1638 1655 1707 24

Resistance (kn) Slenderness Slenderness Resistance & Slenderness vs. Steel Grade When the slenderness is beyond the range of 1.0-1.5, the high strength steel contributes little to compression resistance. 3000 2500 2000 1500 1000 500 S275 S355 S460 Slend275 Slend355 Slend460 4 3.5 3 2.5 2 1.5 1 0.5 0 0 5 10 15 20 25 30 35 40 45 Strut length (m) 0 25

Influence of Steel Grade Design resistance =1500 kn Suitable pipe sections with different steel grade Strut L (m) Pipe S275 S355 S460 Weight (kg/m) Pipe Weight (kg/m) Pipe Weight (kg/m) 4 323.9 6 47 273 6 39.5 219.1 6.3 33 8 355.6 6.3 54.3 323.9 6.3 49.3 273 8 52.3 12 406 8 78.6 355.6 8 68.6 355.6 8 68.6 15 406 10 98 406 8 78.6 355.6 12 101 20 457 10 110 457 10 110 406 14 135 25 508 12 147 508 12 147 457 14.2 155 30 508 16 194 508 16 194 508 16 194 35 508 25 298 508 25 298 508 25 298 40 508 32 376 508 32 376 508 32 376 26

weight (kg/m) Influence of Steel Grade 400 350 S275 S355 S460 300 250 200 150 100 50 0 0 10 20 30 40 50 Strut Length (m) 27

Advantages of Pipe Strut Design of pipe strut is simpler; lesser chance of making a mistake Smaller diameter pipe strut will not be competitive Larger diameter pipe strut can span longer and/or take higher strut force without any intermediate restraint (i.e. no king post, runner beam or splay; hence, higher productivity) No clear advantage in using higher grade steel because design govern by buckling for long span strut 28

How to use Pipe Strut? Hydraulic Jack Free End for manual pre-loading Mast Section Connector Fixed End Automatic hydraulic system 29

Example of Free End Type 1 Common specification: Φ800*1450 mm Adjustable range: 0-30 cm 30

Example of Free End Type 1 Detachable End 31

Example of Free End Type 2 Steel wedge to lock the strut after pre-loading 32

Example of Free End Type 3 33

Example of Free End Type 3 Typical connection between Free End and Waler Steel pipe Detachable End Hydraulic Jack Steel wedge Filling pile Bolted connection Free End Hydraulic Jack Waler 34

Example of Fixed End 900mm Twin Waler 700mm 500mm 300mm 500mm 35

Flexible Cone Connectors Twin Waler Stiffener Flexible cone connector 36

Flexible Cone Connectors Stiffener 500mm φ 300mm φ 37

Connection between Mast Sections Bolted connections and connectors Connector Bolts 38

Concluding Remarks Use of laced struts in Singapore is highly developed and efficient because of our many years of experience of MRT construction. For pipe strut to be more competitive and productive, it has to space wider and span longer without any intermediate restraint. This will naturally lead to the use of larger diameter pipe struts. However, pre-loading and connection design will be more challenging. Some clever device for manual or automatic pre-loading and flexible connectors will have to be developed. 39