Exercise 3-1. Basic Hydraulic Circuit EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Complete hydraulic circuit

Similar documents
Exercise 3-1. Basic Hydraulic Circuit EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Complete hydraulic circuit

The Discussion of this exercise covers the following points:

Ex. 1-1 Nacelle Familiarization and Safety Discussion

Exercise 2-1. Hub and Low-Speed Shaft EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Blade pitch in the nacelle system

Job Sheet 5 Hydraulic Unit Circuit

Exercise 4-1. Nacelle Control System EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Control and simulation of environmental conditions

Exercise 1-1. Lockout/Tagout Procedure EXERCISE OBJECTIVE DISCUSSION. Become familiar with the Industrial Controls Training System.

Job Sheet 6 Pitch Control

The Discussion of this exercise covers the following points:

Job Sheet 2 Aerodynamics Power Control

BRAKE SYSTEM, HYDRAULICALLY ACTUATED - 631G TRACTOR Cat Tractors with standard shoe/drum brakes

Understand how soft starters operate.

Familiarize yourself with the pressure loss phenomenon. The Discussion of this exercise covers the following point:

Basic Thermal Energy Transfer with a Heat Exchanger

Lesson 5: Directional Control Valves

Hydraulic Maintenance & Troubleshooting. Content - Norman Kronowitz Presenter Jim Trinkle

Exercise 4-1. Friction Brakes EXERCISE OBJECTIVE DISCUSSION. Understand the construction and operation of friction brakes.

Exercise 5-1. Primary Resistor Starters EXERCISE OBJECTIVE DISCUSSION. Understand how primary resistor starters operate.

TECHNICAL PAPER 1002 FT. WORTH, TEXAS REPORT X ORDER

Exercise 1-3. Manual Starters EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Direct-on-line (DOL) starters. Reversing starters

Job Sheet 1 Electrical Panel Familiarization

Hydraulics. Part B, Section 1. This section covers the following unit configurations. 3700V

Troubleshooting the Transmission Hydraulic System

Exercise 4-1. Flowmeters EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Rotameters. How do rotameter tubes work?

Industrial Maintenance. Gear Drives 1. Courseware Sample F0

Troubleshooting The Transmission Hydraulic System

The Discussion of this exercise covers the following points: Centrifugal pumps in series Centrifugal pumps in parallel. Centrifugal pumps in series

Open Center Compact Valve Custom Installation Guide Rev A

Section 6.1. Implement Circuit - General System. General: TF Configuration TB Configurations Implement Control Valve:

MF100BH (BASIC HYDRAULICS TRAINER) PARTS LIST CATALOG APRIL 2013

OPERATION AND SERVICE MANUAL. McGILL UNIVERSITY PROJECT: MCS-3237 SUBJECT: HYDRAULIC POWER UNIT AND ROTARY ACTUATORS DECEMBER 2001

The Discussion of this exercise covers the following points:

Basic Hydraulics and Pneumatics

Job Sheet 6 Installing the Combiner Box

Job Sheet 1 Introduction to Fluid Power

FLUID POWER P&IDs. IDENTIFY the symbols used on engineering fluid power drawings for the following components:

RELEASING PRESSURE IN THE HYDRAULIC SYSTEM,

GPM Hydraulic Consulting, Inc. P.O. Box 689. Social Circle, GA Hydraulic Consulting, Inc

Check Valves Check Valves are the simplest form of directional control valves, but they can also be used as pressure controls.

N-02 MAINTENANCE MECHANIC TRAINING SKILL DEVELOPMENT GUIDE

B-03 ELECTRICIAN TRAINING SKILL DEVELOPMENT GUIDE

BOSS 107 Separator System Installation Manual

(770) Turning Parts Changers Into TROUBLESHOOTERS!

ADVANCED PID TROUBLESHOOTING

Filter. Table of Contents. Section 10. Filter NOTE: This section applies to applicators with an in-out filter.

JARVIS. Model HTC -80 Hog Toe Cutter

SPIN KLIN GALAXY. Service & Maintenance Manual

Filter. Table of Contents. Section 10. Filter NOTE: This section applies to applicators with a Universal in-out filter.

HYDRAULIC TABLE OF CONTENTS. CX Hammer with PLC EMERGENCY PUMP OPERATION

Operating instructions Form no safety definitions

HELPING HAND EXPERT 2000

Exercise 1-5. Current Protection Devices EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Circuit breakers

Courseware Sample F0

MP18 Stacking Valve System Technical Information Manual

Cla-Val. Service Training Manual. Simple solutions plus learning with a purpose

Signature Series. Duplex Softener Service Manual

Lab # 4 Parallel Circuits

FLUID POWER TUTORIAL HYDRAULIC PUMPS APPLIED PNEUMATICS AND HYDRAULICS H1

Instruction Manual. Series E7 Metering Pumps. For file reference, please record the following data:

W & Y Series Split Shaft Transmission Operation & Maint.

Job Sheet 1 Installing the Net Watt-Hour Meter

Reactor Startup Checklist

Appendix A. Standard Symbols for Hydraulic Components

Exercise 1-2. Introduction to Pneumatics EXERCISE OBJECTIVE

Industrial Maintenance. Basic Controls. Courseware Sample F0

HYDROMODEL-200. Implements and controls hydraulic and electro-hydraulic circuits. Transparent Hydraulics - Electro-hydraulics

OPERATION AND PARTS MANUAL

Compact LTC Oil Filtration System Manual

of Fire Pump Assemblies

ARKAL SCREEN LINE H - SERIES Hydraulically Operated Self-Cleaning Screen Filter SERVICE & MAINTENANCE MANUAL

ILT - Series. Troubleshooting: ILT Twinfold Dual Cylinder Folding Unit

Test Which component has the highest Energy Density? A. Accumulator. B. Battery. C. Capacitor. D. Spring.

Pump Acceptance Test Data

13. FUEL SYSTEM/CARBURETOR/

Installation Manual. Automated Fuel Maintenance System FTI-5A FUEL TECHNOLOGIES INTERNATIONAL

Courseware Sample F0

Troubleshooting, Service Tips, And Major Improvements For Hydrostatic Transmissions (Special Edition){3200}

Installation. Part A, Section 3. This section covers the following unit configurations. Voltage 1, 2, 3. Vista Standard (V) A3EN-04-[3V-A-AAXV]-11

ELECTRIC CURRENT. Name(s)

LESSON 2 BASIC CONSTRUCTION AND OPERATION OF HYDRAULIC ACTUATING DEVICES, FLOW CONTROL, AND DIRECTIONAL DEVICES. STP Tasks:

Relius UV-Cure Adhesive Coating Dispenser Manual

J1 Plug Pin Identification

BOSS 107 SEPARATOR SYSTEM INSTALLATION & APPLICATION MANUAL

Use an ink pen when completing entries in this document. Contact the manufacturing or engineering project managers with any questions.

GP-2000 : Trouble Shooting. Cause of problems

Troubleshooting Bosch Proportional Valves

Installation Operation Parts

LEAD FREE * LFF113RFP Flood Protection Shut Down Valve

Basic Electrically-Controlled Hydraulic System

Self Cleaning Hood System Installation, Operation, and Maintenance Manual

Industrial Maintenance. Basic Controls. Courseware Sample F0

Safety Considerations

Installation Instructions for Remote Mount HMI 211 Display Panel Kit A045J206

CAB TILT HYDRAULIC SYSTEM

TROUBLESHOOTING AND MAINTAINING ELECTRONIC KILN CONTROL SYSTEMS

HWH Online Technical School Lesson 10: Air Suspension and HWH (Filename: ML DOC Revised: 23APR16) Click Here for Printable PDF File

Click Here for Printable PDF File. CHAPTER 3 - BASIC INFORMATION for PERFORMING HYDRAULIC SYSTEM MAINTENANCE

FAST BRAKE INDEX. trouble-shooting guide

Installation Manual FTI-10A & FTI-20A SINGLE TANK. Automated Fuel Maintenance System FUEL TECHNOLOGIES INTERNATIONAL

Chapter 13: Application of Proportional Flow Control

Transcription:

Exercise 3-1 Basic Hydraulic Circuit EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the hydraulic schematic and components of the nacelle trainer. You will identify components, measure pressure, and change the state of some valves via the HMI. Finally, you will use your hands to change the hydraulic oil and filter. DISCUSSION OUTLINE The Discussion of this exercise covers the following points: Complete hydraulic circuit Components of the hydraulic circuit Manifold block. Pump and motor. Hand pump. Accumulator. Valves. Pressure gauges. Pressure transducers and pressure switch. Sections of the hydraulic circuit Power unit. Accumulation. Oil filtration. Backup power. Rotor brake and yaw brake. DEBUG mode DISCUSSION Complete hydraulic circuit Have a look at the complete hydraulic circuit for the nacelle trainer in Figure 3-22 below. It is broken down into sections to facilitate understanding. a A full-size version of the hydraulic circuit can be found in Appendix C. Festo Didactic 52070-00 135

Power unit Accumulation Oil filtration Backup power Rotor brake Yaw brake Manifold Figure 3-22. Entire nacelle hydraulic circuit. a The brakes are covered in Ex. 3-2. Components of the hydraulic circuit Manifold block Most of the hydraulic components are attached to the aluminum block depicted in Figure 3-23. The use of manifold and cartridge valves reduces the number of joints where leaks could develop and saves space, making the system more easily serviceable. 136 Festo Didactic 52070-00

Figure 3-23. Manifold block. Pump and motor An external gear pump supplies hydraulic power to the nacelle trainer. Such gear pumps are commonly used for high-pressure applications. They are compact, relatively inexpensive, and have few moving parts. They typically consist of two gears that mesh with each other inside a housing, as shown in Figure 3-24. Outlet Inlet Figure 3-24. Inside a gear pump. The driving gear is coupled to a motor. Figure 3-25 shows that when the driving gear rotates, it drives a second gear. With both gears rotating, fluid is drawn into the pump because of the vacuum created by the separation of the gears on the inlet side. This fluid is trapped between the housing and the rotating teeth of the gears, where it travels around the housing. It is then pushed out of the pump as the volume diminishes between the interlocking gears on the outlet side. Driving gear The theoretical displacement of the pump is 0.7 ml/rev (0.00018 gal/rev). Since the motor can rotate at 3450 RPM, the maximum pumped volume is 2.4 L/min (0.6 gal/min). Inlet Driven gear Figure 3-25. Model of a gear pump. Outlet Festo Didactic 52070-00 137

An external gear pump is a positive displacement rotary pump. This means that it pumps a given amount of fluid per revolution. Gear pumps, like all positive displacement pumps, can be damaged when operating against a closed discharge. Therefore, they require a pressure relief valve. Hand pump The hand pump provided with the system can be used to increase pressure in the hydraulic circuit when the electric motor is not running. You can think of the pump as a cylinder that fills up with oil as the lever is lifted. Pushing down the lever expels the oil to the pressure side of the circuit. The check valve arrangement ensures that the oil flows in only one direction. If the manual bypass valve is open, the hand pump becomes ineffective and pressure is released on its high-pressure side. Input check valve Output check valve Figure 3-26. Hand pump. Manual bypass valve Accumulator The system includes an accumulator to store energy in the form of fluid under pressure. This potential energy may then be converted into working energy to assist the pump. Our accumulator, depicted in Figure 3-27, is loaded with nitrogen and is of the diaphragm type. 138 Festo Didactic 52070-00

Figure 3-27. Diaphragm accumulator. Valves Valves regulate fluid flow and pressure in the system. In addition to the hydraulic schematic, Appendix C lists the different valves that are included in the system. Figure 3-28 to Figure 3-33 show all valves and their corresponding symbols. Figure 3-28. Check valves CV1 and CV2. Figure 3-29. Relief valves RV1 and RV2. Festo Didactic 52070-00 139

Figure 3-30. Directional valve MV1. Figure 3-31. Directional valve SV1. Figure 3-32. Directional valves SV2 and SV6. 140 Festo Didactic 52070-00

Figure 3-33. Directional valves SV3, SV4, and SV5. All of them are of the cartridge type. Valve MV1 is manually actuated (Figure 3-34). Figure 3-34. MV1 deactuated (left) and actuated (right). Valves SV1 through SV6 are actuated with a solenoid and pilot (Figure 3-35) or using a manual override. Three types of overrides exist on the system. Figure 3-36 shows their deactuated state in which they should normally be left while Figure 3-37 shows the actuated state for each of the three types. Pilot light Figure 3-35. Pilot light showing that the valve is actuated via the solenoid. Festo Didactic 52070-00 141

Figure 3-36. Three different types of manual overrides deactuated. 142 Festo Didactic 52070-00

Figure 3-37. Three different types of manual overrides actuated. Pressure gauges The two gauges shown in Figure 3-38 are used to measure pressure on the fittings located on the manifold. Figure 3-38. Pressure gauges. Festo Didactic 52070-00 143

Pressure transducers and pressure switch The nacelle trainer has two pressure transducers: PSP2 (accumulator) and PSB2 (rotor brake). They convert pressure into 4-20 ma signals. These transducers are connected to analog input cards on the I/O rack. Figure 3-39. Pressure transducer. The trainer also features a pressure switch, PSB1, which sends 24 V when pressure is high at the yaw brake and 0 V when pressure is low (Figure 3-40). Figure 3-40. Pressure switch. Sections of the hydraulic circuit Power unit What is coined by the term power unit consists of the motor, pump, and tank assembly. A strainer is located between the tank and the pump to prevent debris from entering the circuit. A check valve at the pressure (P) output prevents oil from coming back to the power unit. To limit the pressure in the system, a pressure relief valve returns the oil to the tank when pressure exceeds between 63 bar and 69 bar (925 psi and 1000 psi) at the pump output. 144 Festo Didactic 52070-00

Tank Motor Figure 3-41. Hydraulic unit, with the accumulator removed. P T Pump Pressure-relief valve Motor Oil inlet and strainer Return to tank Figure 3-42. Power unit, with the tank removed. Accumulation The oil flow pushed by the pump (or hand pump) is stored in the accumulator. The accumulation section of Figure 3-43 also features the following items: a pressure transmitter (PSP2) that informs the controller of the accumulator pressure. a fitting (GP2) to connect a manometer a check valve (CV1) to prevent oil from flowing back to the oil filtration section a valve (MV1) to permit discharging the accumulator a restriction (orifice) to restrict the flow rate of oil out of the accumulator when MV1 is actuated. Festo Didactic 52070-00 145

P Figure 3-43. Accumulation circuit. Oil filtration Oil is filtered for about ten seconds every time the hydraulic pump is actuated. When valve SV1 is actuated, oil circulates through the filtration circuit (Figure 3-44). 146 Festo Didactic 52070-00

From pressure port Back to the tank Valve SV1 is shown actuated Figure 3-44. Oil path during filtration. The filter needs to be changed when the filter clogging indicator is in the red zone during filtration (Figure 3-45). The oil may also need to be changed after a certain number of hours of operation or if analysis shows that the base oil is degraded or the additives are depleted. a Replace the filter as well if you ever need to change the oil. Figure 3-45. Clogging indicator. A filter wrench (Figure 3-46) is provided with the training system. It should only be used to remove the oil filter. The new spin-on filter can be screwed in by hand. Figure 3-46. Filter wrench. Festo Didactic 52070-00 147

Backup power Figure 3-47 shows that a hand pump is installed to provide hydraulic pressure when the hydraulic pump is off. Relief valve RV2 prevents the hand pump from increasing hydraulic pressure beyond 69 bars (1000 psi). Finally, check valve CV2 prevents system pressure from flowing back to the hand pump. To accumulator From tank Figure 3-47. Oil path through hand pump. Rotor brake and yaw brake The two brake sections are covered in Ex. 3-2. Nonetheless, in order for you to get a good understanding of the hydraulic circuit, Figure 3-48 depicts the two schematics. 148 Festo Didactic 52070-00

P T P T Figure 3-48. Rotor brake and yaw brake circuits. DEBUG mode Up until now, you could not simultaneously open the safety panels and do anything significant on the HMI because an alarm would instantly be triggered. However, you sometimes need to leave the hydraulic unit power on to troubleshoot the hydraulic circuit. This is when the DEBUG mode of the SERVICE Hydraulic screen comes into play (Figure 3-49). This mode disables the alarm caused by opening the safety panels and permits to open or close the valves SV1 to SV6 manually or from the HMI. a The DEBUG mode remains safe because you are locked into this screen and you cannot start the drive train until you turn it off. Festo Didactic 52070-00 149

Figure 3-49. DEBUG mode in the SERVICE-Hydraulic screen. 150 Festo Didactic 52070-00

Ex. 3-1 Basic Hydraulic Circuit Procedure Outline PROCEDURE OUTLINE The Procedure is divided into the following sections: Accessories needed Basic safety procedure Preparation questions Setting up the nacelle Checking oil tank level, quality, and possible leaks. Starting the trainer Analyzing pressure at GP1 and GP2 Hand pump test Lockout/tagout Identification of the hydraulic unit components Hydraulic unit oil and filter change Checking for leaks End of the procedure PROCEDURE Accessories needed For this exercise, you will need the following accessories: Lockout device (hasp) One padlock and one tag per student 1/4 hex key (hydraulic unit tank drain bolt) Two black plastic drain pans Plastic funnel Hydraulic oil (if you replace the oil) Rags (not included) Gloves (not included) Basic safety procedure Before using the training system, complete the following checklist: You are wearing safety glasses, safety shoes, and gloves. You are not wearing anything that might get caught such as a tie, jewelry, or loose clothes. If your hair is long, tie it out of the way. The working area is clean and free of oil or water. Preparation questions For the following questions, you need to refer to the hydraulic schematics. 1. What should the value be at GP2 if the pump is not running, the accumulator is charged to 62 bar (900 psi), and the valves are in the following positions? Festo Didactic 52070-00 151

Ex. 3-1 Basic Hydraulic Circuit Procedure Valve tag MV1 Hand Pump SV1 SV2 SV3 SV4 SV5 SV6 Position Deactuated Closed Deactuated Actuated Deactuated Deactuated Deactuated Deactuated 2. What is going to happen to oil pressure at GP2 if you actuate MV1? 3. Pressure at PSP2 is equal to which other pressure? GP1, GP2, GB1, or GB2? 4. Why is SV1 closed in its normal position? Setting up the nacelle 5. Make sure the main switch is off and everything is secure inside and around the nacelle. Checking oil tank level, quality, and possible leaks a The hydraulic unit should contain about four liters (1 gallon) of oil. 6. Actuate MV1 so that the oil in the accumulator drains into the tank. Wait approximately 10 seconds and deactuate MV1. 152 Festo Didactic 52070-00

Ex. 3-1 Basic Hydraulic Circuit Procedure 7. Remove the top plug (Figure 3-50). Figure 3-50. Removing the oil tank top plug. 8. Look inside the tank and check the oil level. Is the tank level at least half full? Yes No If not, ask your instructor if you should add oil before starting the nacelle trainer. 9. Put the oil tank top plug back in place. 10. Do you see any unusual oil leak in, around, or under the trainer? Yes No 11. If there is a leak, what is the possible origin of the leak? 12. If necessary, clean any spilled oil according to the procedure established in your classroom. 13. Connect the pressure gauges to ports GP1 and GP2 on the manifold. 14. Close all safety panels. Festo Didactic 52070-00 153

Ex. 3-1 Basic Hydraulic Circuit Procedure Starting the trainer 15. Notify all the people working around the nacelle that the system is about to be energized and ask your instructor for permission to power the nacelle training system. 16. Turn on the main power switch. Wait for the HMI to boot and log into Windows. The HMI should start automatically. 17. Press the safety reset button. 18. Press Start Trainer in the HMI MAIN screen. 19. At this moment, the hydraulic pump should start running and stop within a minute. Describe what you see and hear until pressures at GP1 and GP2 stabilize. b Think about the filtration process. 20. If the ALARMS button is flashing red at this point, press it. In the opening ALARMS screen, acknowledge each current alarm. Next, press RESET ALARMS, if necessary. 21. Press MANUAL in the HMI MAIN screen Analyzing pressure at GP1 and GP2 22. Start the DEBUG Mode in the Service Hydraulic screen and open the safety panels. The DEBUG Mode in the SERVICE- HYDRAULIC screen disables the alarm caused by opening the safety panels. 154 Festo Didactic 52070-00

Ex. 3-1 Basic Hydraulic Circuit Procedure 23. What pressure is indicated at GP1 and GP2 at this point? Explain why it is like this. 24. What is the PSP2 pressure according to the HMI screen? Is this value similar to what you read on the GP2 pressure gauge? 25. Turn OFF the hydraulic unit and actuate valve MV1. Considering your answer to step 2, is the GP2 pressure acting as expected? 26. If you refer to the hydraulic schematic, what is limiting the oil flow out of the accumulator? 27. Deactuate valve MV1 and turn ON the hydraulic unit. Look at GP1 and GP2 pressures as the pump starts and eventually stops. Explain what is happening and identify the source of the unpleasant whistling sound. 28. Actuate valve SV1. What happens to the pressures at GP1 and GP2? 29. Keep valve SV1 actuated to stay in the oil filtering process. Actuate valve MV1 to let the pressure drop until the pump restarts (then, deactuate MV1). At this point, check the clogging (red and green) indicator during the filtration process. Does the filter need to be replaced? Explain. 30. Deactuate valve SV1. Festo Didactic 52070-00 155

Ex. 3-1 Basic Hydraulic Circuit Procedure Hand pump test 31. Open the manual bypass valve on the hand pump by turning it counterclockwise (Figure 3-51). Figure 3-51. Actuating the manual bypass on the hand pump. 32. Try to increase pressure using the hand pump. What is happening? 33. Close the manual bypass valve on the hand pump by turning it clockwise. 34. Use the hand pump to increase pressure at GP2. Keep on pumping until pressure hits a maximum. What is the maximum pressure you can obtain and what is the limiting element? 35. Put the hand pump lever back into place, close the safety panels, and stop the DEBUG Mode. 36. Use the main power switch to turn all system power off. Lockout/tagout For the operations to follow, the nacelle needs to be secured first. 37. Install the lockout hasp in the main switch. Next, install the student padlocks and tags in the hasp. 156 Festo Didactic 52070-00

Ex. 3-1 Basic Hydraulic Circuit Procedure 38. Try to turn on the main switch to verify that the system is electrically isolated. Press the safety reset button to test whether the system can be energized. a At this point, the system can be considered secure. Identification of the hydraulic unit components 39. Open the safety panels. 40. Identify the following components and write the tag names inscribed on the manifold next to the ports they are connected to. Table 3-1. Tag identification. Component Tag(s) on the manifold Hand pump Oil filter Accumulator Rotor brake Yaw brake Hydraulic unit oil and filter change 41. If GP2 pressure is not zero, actuate valve MV1 for about 10 seconds to discharge the accumulator completely. a If the accumulator is not discharged, that portion of the oil will not be drained. 42. Deactuate valve MV1. 43. Position a plastic bucket under the drain plug at the bottom of the nacelle trainer (Figure 3-52). a Use a clean bucket if you plan on reusing the oil. Festo Didactic 52070-00 157

Ex. 3-1 Basic Hydraulic Circuit Procedure Figure 3-52. Positioning the bucket. 44. Remove the plug on top of the oil tank. 45. Unscrew the drain plug using a 1/4-inch hex key (Figure 3-53), let the oil drain, and continue with the next steps. Figure 3-53. Unscrewing the drain plug. 158 Festo Didactic 52070-00

Ex. 3-1 Basic Hydraulic Circuit Procedure 46. Put a second clean drain pan under the oil filter and use the filter wrench to unscrew the oil filter (Figure 3-54). Figure 3-54. Removing the oil filter. 47. Either keep the oil filter or replace it with a new one. In any case, apply a thin oil coat on the filter seal you are about to use (Figure 3-55). Oil will help screwing the filter smoothly and preserve its leak tightness. If you are reusing the same filter, make sure it is still in good condition (seal and body). Figure 3-55. Coating the filter seal with oil. 48. Screw the new oil filter in place using only your hands. 49. Take the drain plug, make sure the seal is in good condition, and screw it back into place. 50. Put the plastic funnel on top of the tank. Festo Didactic 52070-00 159

Ex. 3-1 Basic Hydraulic Circuit Procedure 51. Fill the tank with about four liters (one gallon) of oil (Figure 3-56). a Figure 3-56. Filling up the hydraulic oil tank. Be sure to use the four liters (one gallon) bucket to fill the tank. This way, you are sure the content of the tank will fit in the bucket next time you drain the oil. 52. Put the plug back on top of the oil tank. 53. Clean the area and close the safety panels. Checking for leaks 54. Ask everyone to remove their individual padlock and tag. Next, remove the hasp from the main switch. 55. Notify all the people working around the nacelle that the system is about to be energized and ask your instructor for permission to power the nacelle training system. 56. Turn on the main power switch. Wait for the HMI to boot and log into Windows. The HMI should start automatically. 160 Festo Didactic 52070-00

Ex. 3-1 Basic Hydraulic Circuit Conclusion 57. Press the safety reset button. 58. Press Start Trainer in the HMI MAIN screen. The hydraulic pump should start to raise system pressure. 59. Do you see any unusual oil leak in, around, or under the trainer following the oil and filter change (check specifically around the oil filter and the drain plug)? Explain. Yes No 60. If oil is leaking, talk to your instructor about it and make sure you take corrective action before the end of the lab. End of the procedure 61. Use the main power switch to turn all system power off. 62. Clean the accessories that were used for the oil change. CONCLUSION In this exercise, you became more familiar with the hydraulic unit and schematics. You identified components, measured pressure, and changed the state of some valves via the HMI. Finally, you did some maintenance work by changing the hydraulic oil and oil filter. REVIEW QUESTIONS 1. Name the main components that make up the power unit. 2. What component prevents excess pressure from developing in the power unit? 3. Why would you want to use a manifold block in a hydraulic system? Festo Didactic 52070-00 161

Ex. 3-1 Basic Hydraulic Circuit Review Questions 4. What is the system accumulator loaded with? 5. Which of the two system brakes requires oil pressure to be applied? 162 Festo Didactic 52070-00