Amalgamation Performance Analysis of LCI and VSI fed Induction Motor Drive

Similar documents
PERFORMANCE AND ENHANCEMENT OF Z-SOURCE INVERTER FED BLDC MOTOR USING SLIDING MODE OBSERVER

QUESTION BANK SPECIAL ELECTRICAL MACHINES

International Journal of Advance Research in Engineering, Science & Technology. Comparative Analysis of DTC & FOC of Induction Motor

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. (An ISO 3297: 2007 Certified Organization)

International Journal of Advance Research in Engineering, Science & Technology

Speed Control of 3-Phase Squirrel Cage Induction Motor by 3-Phase AC Voltage Controller Using SPWM Technique

International Journal of Advance Research in Engineering, Science & Technology

SENSORLESS CONTROL OF BLDC MOTOR USING BACKEMF BASED DETECTION METHOD

STUDY ON MAXIMUM POWER EXTRACTION CONTROL FOR PMSG BASED WIND ENERGY CONVERSION SYSTEM

Performance Analysis of 3-Ø Self-Excited Induction Generator with Rectifier Load

Keywords: DTC, induction motor, NPC inverter, torque control

Design and Modelling of Induction Generator Wind power Systems by using MATLAB/SIMULINK

A CURRENT-SOURCE-INVERTER-FED INDUCTION MOTOR DRIVE SYSTEM WITH REDUCED LOSSES

Synchronous Motor Drives

R13 SET - 1. b) Describe different braking methods employed for electrical motors. [8M]

A matrix converter based drive for BLDC motor Radhika R, Prince Jose

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad

Simulation of Indirect Field Oriented Control of Induction Machine in Hybrid Electrical Vehicle with MATLAB Simulink

Modeling and Simulation of Five Phase Inverter Fed Im Drive and Three Phase Inverter Fed Im Drive

Field Oriented Control of Permanent Magnet Synchronous Motor

General Purpose Permanent Magnet Motor Drive without Speed and Position Sensor

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Introduction to Electrical Machines

COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME : EE 1001 SPECIAL ELECTRICAL MACHINES

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Australian Journal of Basic and Applied Sciences. Resonant Power Converter fed Hybrid Electric Vehicle with BLDC Motor Drive

Modeling and Simulation of BLDC Motor using MATLAB/SIMULINK Environment

Performance analysis of low harmonics and high efficient BLDC motor drive system for automotive application

Development of Electric Scooter Driven by Sensorless Motor Using D-State-Observer

Model Predictive Control of Back-to-Back Converter in PMSG Based Wind Energy System

ECE1750, Spring Motor Drives and Other

Comparative Study of Maximum Torque Control by PI ANN of Induction Motor

ENHANCEMENT OF ROTOR ANGLE STABILITY OF POWER SYSTEM BY CONTROLLING RSC OF DFIG

Study of Motoring Operation of In-wheel Switched Reluctance Motor Drives for Electric Vehicles

LOAD SHARING WITH PARALLEL INVERTERS FOR INDUCTION MOTOR DRIVE APPLICATION

ISSN: X Tikrit Journal of Engineering Sciences available online at:

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

Analysis of Torque and Speed Controller for Five Phase Switched Reluctance Motor

Question Bank ( ODD)

A novel flux-controllable vernier permanent-magnet machine

Power Electronics & Drives [Simulink, Hardware-Open & Closed Loop]

POWER QUALITY IMPROVEMENT BASED UPQC FOR WIND POWER GENERATION

One-Cycle Average Torque Control of Brushless DC Machine Drive Systems

SPEED AND TORQUE CONTROL OF AN INDUCTION MOTOR WITH ANN BASED DTC

POWER ELECTRONICS & DRIVES

SDC,Inc. SCR-Regenerative Ac Drive

International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June ISSN

Control Scheme for Grid Connected WECS Using SEIG

CHAPTER 5 FAULT AND HARMONIC ANALYSIS USING PV ARRAY BASED STATCOM

A Novel DC-DC Converter Based Integration of Renewable Energy Sources for Residential Micro Grid Applications

Circuit Diagram For Speed Control Of Slip Ring Induction Motor

DESIGN AND ANALYSIS OF CONVERTER FED BRUSHLESS DC (BLDC) MOTOR

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

Electrical Drives I. Week 11: Three phase Induction Motor Starting

Asian Journal on Energy and Environment ISSN Available online at

Modeling of Wind Driven Induction Generator for Constant Power Applications Using Matlab

Grid Connected DFIG With Efficient Rotor Power Flow Control Under Sub & Super Synchronous Modes of Operation

e t Electronics Based Dump Load Controller (DLC) for an Grid Isolated Asynchronous Generator (GIAG)

Design And Analysis Of Artificial Neural Network Based Controller For Speed Control Of Induction Motor Using D T C

Speed Control of High-Speed BLDC with Pulse Amplitude Modulation Control

VARIABLE FREQUENCY DRIVE AND ITS INDUSTRIAL APPLICATIONS

COMPARISON OF PID AND FUZZY CONTROLLED DUAL INVERTER-BASED SUPER CAPACITOR FOR WIND ENERGY CONVERSION SYSTEMS

FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai

Introduction to Variable Speed Drives. Pekik Argo Dahono Electrical Energy Conversion Research Laboratory. Institute of Technology Bandung

PLUGGING BRAKING FOR ELECTRIC VEHICLES POWERED BY DC MOTOR

Laboratory Tests, Modeling and the Study of a Small Doubly-Fed Induction Generator (DFIG) in Autonomous and Grid-Connected Scenarios

FAULT ANALYSIS FOR VOLTAGE SOURCE INVERTER DRIVEN INDUCTION MOTOR DRIVE

Volume II, Issue VII, July 2013 IJLTEMAS ISSN

International Journal of Advance Engineering and Research Development A THREE PHASE SENSOR LESS FIELD ORIENTED CONTROL FOR BLDC MOTOR

Reduction of Harmonic Distortion and Power Factor Improvement of BLDC Motor using Boost Converter

A Comparative Study of Constant Speed and Variable Speed Wind Energy Conversion Systems

QUASI Z-SOURCE NETWORK BASEDCONTROL SCHEME FOR FSTP BLDC MOTOR

EXPERIMENTAL VERIFICATION OF INDUCED VOLTAGE SELF- EXCITATION OF A SWITCHED RELUCTANCE GENERATOR

SOLAR PHOTOVOLTAIC ARRAY FED WATER PUMP RIVEN BY BRUSHLESS DC MOTOR USING KY CONVERTER

Three-Phase Induction Motor With Frequency Inverter

A New Control Algorithm for Doubly Fed Induction Motor with Inverters Supplied by a PV and Battery Operating in Constant Torque Region

AC DRIVES. AC Drives. The word "drive" is used loosely in the industry. It seems that people involved

CHAPTER 4 MODELING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED WIND ENERGY CONVERSION SYSTEM

Variable Speed Drives in Electrical Energy Management. Course Content

Rotor Side Speed Control Methods Using MATLAB/Simulink for Wound Induction Motor

IMPROVING POWER FACTOR USING LANDSMAN CONVERTER IN PMBLDC MOTOR

Back EMF Observer Based Sensorless Four Quadrant Operation of Brushless DC Motor

Using energy storage for modeling a stand-alone wind turbine system

DUAL BRIDGE RECTIFIER FOR PMSG VARIABLE SPEED WIND ENERGY CONVERSION SYSTEMS

Development and Analysis of Bidirectional Converter for Electric Vehicle Application

Modeling and Control of Direct Drive Variable Speed Stand-Alone Wind Energy Conversion Systems

Dynamic Behaviour of Asynchronous Generator In Stand-Alone Mode Under Load Perturbation Using MATLAB/SIMULINK

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY MAMALLAPURAM, CHENNAI

SHRI ANGALAMMAN COLLEGE OF ENGINEERING AND TECHNOLOGY (An ISO 9001:2008 Certified Institution) SIRUGANOOR, TIRUCHIRAPPALLI

Simulation Modeling and Control of Hybrid Ac/Dc Microgrid

Inverter with MPPT and Suppressed Leakage Current

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

Journal of Asian Scientific Research. DESIGN OF SWITCHED RELUCTANCE MOTOR FOR ELEVATOR APPLICATION T. Dinesh Kumar. A. Nagarajan

Chapter 2 Literature Review

A NOVEL MULTIPHASE BIDIRECTIONAL FLY-BACK CONVERTER TOPOLOGY IS APPLIED TO INDUCTION MOTOR DRIVE

Implementation of Bidirectional DC-DC converter for Power Management in Hybrid Energy Sources

Analysis and Design of Improved Isolated Bidirectional Fullbridge DC-DC Converter for Hybrid Electric Vehicle

RECENTLY, it has been shown that a grid-connected

1.1 Block Diagram of Drive Components of Electric Drive & their functions. Power Processor / Modulator. Control. Unit


VECTOR CONTROL AND DIRECT POWER CONTROL METHODS OF DFIG UNDER DISTORTED GRID VOLTAGE CONDITIONS

Transcription:

Amalgamation Performance Analysis of LC and VS fed nduction Motor Drive Dilip Kumar 1, Dinesh Kumar 2, A. K. Srivastava 3, 1 Dilip Kumar is Assistant professor of Electrical & Electronics Engineering, Saroj Educational Group Lucknow, U.P, ndia 2 Dinesh Kumar is Assistant Professor of Electrical & Electronic Engineering, KNT, Sultanpur, U.P,ndia 3 A. K. Srivastava is Assistant Professor of Electrical & Electronic Engineering, KNT, Sultanpur, U.P,ndia Abstract n this paper combination of a load-commutated inverter (LC) and a voltage-source inverter (VS) are employed for performance analysis of induction motor drive. Performance of the drive has been evaluated through the different variation in reference speed and load torque. proposed LC-based induction motor drives include the following Advantages: 1) sinusoidal motor phase current and voltage based on the instantaneous motor speed control; 2) fast dynamic response by the VS operation; and 3) elimination of motor torque pulsation. LC system improves the quality of output current and voltage waveforms and provides the faster dynamic responses. Matlab/Simulation results show the validity of the employed drive system. ndex Terms- Diode rectifier, nduction motor, Load commutated inverter (LC), SVPWM technique, Voltage source inverter (VS).. NTRODUCTON The squirrel cage induction motor is basically a simple, less costly and reliable drive and can provide excellent characteristics at a constant shaft speed. Voltage source inverter fed induction motor drives are probably the cheapest and most reliable scheme of speed control [1].The voltage source inverter fed nduction motor drives most commonly controlled through the pulse width-modulation technique. The voltage source inverter ensures simple and effective motor control since the power circuit can be operated over wide ranges of load frequency and voltage [2]. Yet, the VS, based on fast-switching insulated-gate bipolar transistors (GBTs), has shown an intrinsic weakness for high-power applications due to substantial switching losses and high of the pulse width-modulation (PWM) operation, leading to hazardous over voltages[3]-[4]. Load-commutated inverter (LC)-based induction motor drives have been used in high-power applications, because of an economical and reliable current source inverter using GBT-diode and the rugged induction motors [5]. The LC-based drive employs converter grade thyristors and utilizes soft switching by natural commutation of the GBT-diode. Therefore, it provides simplicity, robustness, cost effectiveness, and very low switching losses, resulting in a favorable topology in high-power areas [6]- [8]. Moreover, has the current-source inverter (CS) topology, it has inherent advantages of CS, such as embedded shortcircuit protection, improved converter reliability, and instantaneous regeneration ability [9]. Due to all of these features the LC-based induction motor drive improves its performance, especially in medium-to-high-power applications [10]. The schematic circuit diagram of the LC and VS fed induction motor drive as shown below in Fig.1. Three Phase 220V,60Hz Diode Rectifier Load commutated inverter Voltage source inverter LC Filter THREE PHASE NDUCTON MOTOR Fig.1 Basic circuit configuration of LC and VS fed induction motor drive. 130

ref Ref. speed f P speed controller max sl min sl sl Three phase supply Rectifier L LC 3.. M. e LC filter V/f control C SVPWM Generator VS e sl e Pulse encoder r Fig.2. Schematic circuit diagram of LC and VS fed induction motor drive.. SYSTEM DESCRPTON The proposed drive system consisting of a diode rectifier, an LC, a VS, an LC filter and three phase induction motor are shown in Fig. 1. The VS is connected with the LC in parallel through capacitor DC link.lc and VS energized through the same DC link output but the different element. A large inductor DC link is employed for the load commutated inverter. LC, in order to convert uncontrolled DC voltage to controlled DC current. The DC-link current regulated by the inductor is supplied to the LC. As a result, both the VS and the LC can be fed from the single-diode rectifier. The VS generates sinusoidal phase voltage to the induction motor. The amplitude and frequency of the VS output voltage is continuously regulated by the motor speed control. n addition, the phase angle of the VS output voltage is set from adjusting the firing angle of the LC to provide a safe LC commutation angle. Therefore, the leading power factor for the LC operation is entirely obtained by the VS over the whole speed range of the induction motor. Based on the leading power factor by the VS, the presented system can operate the LC without the dc-commutation circuit as well as output capacitors. Therefore,the employed system can successfully solve all problems caused by the output capacitors and the forced dccommutation circuit of the conventional LC-based induction motor. Another advantage by bringing the VS is to generate sinusoidal motor currents for all speed regions to large induction motor drives. The parallel assembly of the LC and the relatively small-size VS is expected to fulfill the highpower applications, where a stand-alone VS cannot be utilized to generate sinusoidal motor currents. n addition, the sinusoidal motor voltages are also achieved through the LC filter.. CONTROL STRATEGY A controlled block diagram of the LC and VS fed induction motor drive is shown in Fig. 3. t is composed of a three-phase diode rectifier, a load commutated inverter followed by a DClink inductor, and a three-phase voltage source inverter. The voltage source inverter is connected with the load commutated inverter in parallel. Basically, the proposed system has a combined inverter topology of a load commutated inverter and a voltage source inverter. The load commutated inverter operates in the square-wave mode with converter-grade thyristors. Consequently GBT-diode in the load commutated inverter turn on and off only once per cycle of the output current and their switching loss is negligible. 131

The main function of the voltage source inverter is injecting sinusoidal phase voltages to the induction motor. The proposed scheme can generate sinusoidal motor voltages and currents, leading to a reduction in the low-order harmonics injected into the motor. The output power distribution between them, given a certain motor power requirement, is important. A rating factor η is defined as the ratio of the load commutated inverter rating and the voltage source inverter rating. Note that two inverters are connected with the same motor phase voltage in their output terminals; by assuming that voltage drop due to the Output LC filter for the VS is negligible. Therefore, the rating factor is directly proportional to the ratio of rms values of the VS output current and the LC output current. S S THREE PHASE SUPPLY VS LC DODE RECTFER DC LNK VS. rms LC. rms LOAD COMMUTATED NVERTER VOLTAGE SOURCE NVERTER OUTPUT LC FLTER SVPWM TECHNQUE (1) THREE PHASE NDUCTON MOTOR Fig.3 Control block diagram of LC and VS fed induction motor drive. Large power voltage source inverter required for the drive results in a very high system cost. Which will limit the proposed system? From cost point of view, the load commutated inverter is not comparable to the voltage source inverter. Since the motor currents are sinusoidal quantities and the load commutated inverter currents have no ripple components in the dc link, the LC output current and the motor output current are expressed by: ( t) cos( t ( )) o mo (2) The rating factor can be derived, using (1) and (2), by 3 mo 1 { (cos ) dc 3 4 mo dc (3) 132 n addition, is the lagging power factor angle of the induction motor, which is detectable. Then, the dc link current value which minimizes the voltage source inverter rating can be obtained by setting the derivative of with respective to the dc link current to zero, d 0 d dc (4) This yields an dc link current command dc * given by: dc mo cos( ) 2 3 Equation (5) allows the dc link current control to achieve the minimum voltage source inverter power based on the motor current and phase shift between the motor current and the LC output current. This dc link current control algorithm is implemented by the dc link inductor. (5) V. PERFORMANCE NVESTGATON OF THE DRVE The circuit model is developed to examine the amalgamation performance of the LC and VS fed induction motor drive as shown in Fig.2. A three-phase squirrel-cage induction motor rated 3 hp, 220 V, 60 Hz, 1725 rpm is fed by a load commutated inverter and voltage source inverter. The firing pulses to the inverter are generated by the SVPWM modulator block of the SPS library. The chopping frequency is set to 6000 Hz and the input reference vector to magnitude-angle. Speed control of the motor is performed by the constant V/Hz block. The magnitude and frequency of the stator voltages are governed by the speed set point. By varying the stator voltage magnitude in proportion with frequency, the stator flux is kept constant. The performance of the drive is investigated for the following loading conditions: Case 1: Starting (0-500rpm) Case 2: Speed acceleration (500 rpm - 1000rpm) Case 3: Speed acceleration (1000 rpm -1400rpm) Case 4: Speed acceleration (1400 rpm -1725rpm) Case 5: Speed deceleration (1725 rpm -1400rpm) Case 6: Speed deceleration (1400 rpm -1000rpm) Case 7: Speed deceleration (1000 rpm -500rpm) Case 8: Deceleration in load torque (11.9N-m - 0N-m) Case 9: Acceleration in load torque (0N-m -18N-m) Case 10: Deceleration in load torque (18N-m - 8N-m) Case 11: Acceleration in load torque (8N-m - 11.9N-m)

Fig 4.LC output (V) Fig. 6. Speed response of the drive for entire performance of rotor speed Fig 5.VS output (V) Fig. 7. Torque response of the drive for entire performance of load toque 133

Fig.8 - Rotor speed responses of the drive system for entire cases 134

Fig. 9- Torque responses of the drive system for entire cases Case 1: Starting (0 to 500 rpm) nitially the motor is at stand still. A step speed command of rated value (500rpm) from standstill is given to the drive system. P speed controller sets the rotor speed to reference speed (500 rpm) in 1.23 sec as shown in Fig. 8 (case 1). The electromagnetic torque corresponding to the reference speed (500 rpm) and the rated load torque (11.9 N-m) is found to be 11.87 N-m as shown in Fig 9 (case 1). Case 2: Speed acceleration (500rpm to 1000 rpm) at (500 rpm) is changed to (1000 rpm) instantly after 1.5 seconds and as a result the motor starts accelerating and settles to reference speed (1000 rpm) in 0.62 seconds as shown in Fig. 8(case 2). The electromagnetic torque corresponding to the reference speed (1000 rpm) and rated load torque (11.9 N-m) command is realized 12.06 N-m as shown in Fig.9(case 2) Case 3: Speed acceleration (1000rpm to 1400 rpm) at (1000 rpm) is changed to (1400 rpm) instantly after 3 seconds the motor starts accelerating and the motor settles to reference speed (1400 rpm) in 0.51 seconds as shown in Fig.8(case 3). The steady-state value of the electromagnetic torque corresponding to the reference speed (1400 rpm) and rated load torque (11.9 N-m) command is found to be 11.98 N-m as shown in Fig.9 (case 3). Case 4: Speed acceleration (1400rpm to 1725 rpm) at 1400 rpm is changed to 1725 rpm instantly after 4.5 seconds the motor starts accelerating and the motor settles to the reference speed (1725 rpm) in 0.72 seconds as shown in Fig.8(case 4). The steady-state value of the electromagnetic torque corresponding to the reference speed (1725 rpm) and rated load torque (11.9 N-m) command is observed 12.42 N-m as shown in Fig.9 (case 4). 135 Case 5: Speed deceleration (1725 rpm to 1400rpm) at 1725 rpm is changed to 1400 rpm instantly after 6 seconds the motor starts decelerating and settles to reference speed (1400 rpm) in 0.39 seconds as shown in Fig.8 (case 5). The electromagnetic torque corresponding to the reference speed (1400 rpm) and rated load torque (11.9 N-m) command is found to be 11.46 N-m as shown in Fig.9 (case 5). Case 6: Speed deceleration (1400 rpm to 1000 rpm) at 1400 rpm is changed to 1000 rpm instantly after 7.5 seconds the motor starts decelerating and settles to the reference speed (1000 rpm) in 0.42 seconds as shown in Fig. (case 6). The steady-state value electromagnetic torque corresponding to the reference speed command (1000 rpm) and rated torque (11.9 N-m) is observed 11.82 N-m as shown in Fig.9 (case 6). Case 7: Speed deceleration (1000 rpm to 500 rpm) at 1000 rpm is changed to 500 rpm instantly after 9 seconds the motor starts decelerating and settles to reference speed command of 500 rpm in 0.74 seconds shown in Fig. 8 (case 7). The steady-state value of the electromagnetic torque corresponding to the reference speed (500 rpm) and rated load toque (11.9 N-m) command is realized 11.8 N-m as shown in Fig..7(case 7) Case 8: Decrease in load torque (11.9 N-m to 0 N-m) The rated load torque (11.9 N-m) of the motor running at 500 rpm is now reduced from 11.9 N-m to 0 N-m immediately after 13.5 seconds. The rotor speed tends to increase and it settles to 521 rpm in 0.36 seconds as depicted in Fig.8 (case 8). The steady-state value of the electromagnetic torque corresponding to the reference speed (500 rpm) and reference load torque (0 N-m) is realized 0.063 N-m as shown in Fig.9 (case 8).

Case Case nternational Journal of Recent Development in Engineering and Technology Table. Performance Of The Drive For Each Alteration n Reference Speed Keeping Load Torque Tl=11.9 N-m Speed step from To Load torque (N-m) Rotor speed (rpm) Speed over shoot / under shoot Drive runni ng time (s) Drive settlin g time (s) 1 0 500 11.87 500 35.2 1.5 1.23 2 500 1000 12.06 1000 11.2 3.0 0.62 3 1000 1400 11.98 1400 2.7 4.5 0.51 4 1400 1725 12.42 1725-6.0 0.72 5 1725 1400 11.46 1400-7.5 0.39 6 1400 1000 11.82 1000-9.0 0.42 7 1000 500 11.8 500-10.5 0.74 Table. Performance Of The Drive For Each Alteration n Load Torque Keeping Rotor Speed = 500 rpm Torque step from to Load torqu e (N-m) Rotor speed (rpm) Speed over shoot / under shoot Drive runnin g time (s) Drive settlin g time(s ) 8 11.9 0 0.063 521 9.8 13.5 0.36 9 0 18 18.34 500 26.2 15.0 1.12 Case 9: ncrease in load torque (0 N-m to 18 N-m) The load torque of the motor running at 500 rpm is now increased from 0 N-m to 18 N-m immediately after 15 seconds the rotor speed tends to decrease but it again settles to 500 rpm in 1.12 seconds as shown in Fig.8 (case 9). t can be observed from Fig.28 that the electromagnetic torque corresponding to reference speed (500) rpm and reference load torque (18 N-m) is found to be 18.34 N-m as shown in Fig.9 (case 9). Case 10: Decrease in load torque (18 N-m to 8 N-m) The load torque of the motor running at 500 rpm is now reduced from 18 N-m to 8 N-m immediately after 16.5 seconds the rotor speed tends to increase but it again settles to 500 rpm in 0.34 seconds as depicted in Fig.8 (case 10). The steady-state value of the electromagnetic torque corresponding to reference speed (500) rpm and reference load torque (8 N-m) is found to be 7.735 N-m as shown in Fig.9 (case 10). Case 11: ncrease in load torque (8 N-m to 11.9 N-m) The load torque of the motor running at 500 rpm is now increased from 8 N-m to 11.9 N-m immediately after 18 seconds the rotor speed tends to decrease but it again settles to 500 rpm in 0.29 seconds as shown in Fig.8 (case 11). t can be observed from Fig.28 that the electromagnetic torque corresponding to reference speed (500 rpm) and reference load torque (11.9 N-m) is realized to (11.95 N-m) as shown in fig.9 (case 11). V. CONCLUSON n this paper an induction motor drive based on the parallel assembly of the LC and the VS has been discussed. The performance of the Load Commutated nverter fed induction motor drive has been investigated through the MATLAB/Simulation for the different alteration in reference speed and load torque. Simulation results shows that the presented drive system provides the more satisfactory results than the conventional CS and VS. 1 0 18 8 7.735 500 9.8 16.5 0.34 1 1 8 11. 9 11.95 500-18.0 0.29 136

V. APPENDX Name plate ratings of induction motor 3-hp, three-phase, 220 V, 60Hz, 4-pole, 1725 r.p.m. Star connected. nduction motor parameters Rs = 0.435, Rr = 0.816, Ls = 0.004 H Lr = 0.004H, Lm = 0.06931H, J = 0.089 Kg m². V. REFERENCES [1] Sangshin Kwak and Hamid A. Toliyat A Hybrid Converter System for High-Performance Large nduction Motor Drives EEE transactions on energy conversion, vol. 20, no. 3,pp.504-511, September 2005. [2] Andrzej M. Trzynadlowski and Niculina Patriciu A Hybrid, Current- Source/Voltage-Source Power nverter Circuit EEE transactions on power electronics, vol. 16, no. 6,pp.866-871,november 2001. [3]J. R. Espinoza and G. Joos, A current-source-inverter-fed induction motor drive system with reduced losses, EEE Trans. nd. Appl., vol.34, no. 4, pp. 796 805, Jul./Aug.1998. [4] S. D. Umans and H. L. Hess, Modeling and anaysis of the wanlass three phase induction motor configuration, EEE Trans. Power App. Syst., vol. PAS-102, no. 9, pp. 2912 2921, Sep. 1983. [5] H. L. Hess, D. M. Divan, and Y. Xue, Modulation strategies for a new SCR-based induction motor drive systems with a wide speed ranges, EEE Trans. nd. Appl., vol. 30, no. 6, pp. 1648 1655, Nov./Dec. 1994. [6]H. Mok, S. K. Sul, and M. H. Park, A load commutated inverter-fed induction motor drive system using a novel dc-side commutation circuit, EEE Trans. nd. Appl., vol. 30, no. 3, pp. 736 745, May/Jun. 1994. [7]B. Singh, K. B. Naik, and A. K. Goel, Steady state of an inverter-fed induction motor employing natural Commutation, EEE Trans. Power Electron., vol. 5, no. 1, pp. 117 123, Jan. 1990. [8]A. Toliyat, N. Sultana, D. S. Shet, and J. C. Moreira, Brushless permanent magnet (BPM) motor drive system using load-commutated inverter, EEE Trans. Power Electron., vol. 14, no. 5, pp. 831 837, Sep.1999. [9]S. Nishikata and T. Kataoka, Dynamic control of a self-controlled synchronous motor drive system, EEE Trans. nd. Appl., vol. A-20, no.3, pp. 598 604, May/Jun. 1984. 137