Multidisciplinary System Design Optimization (MSDO)

Similar documents
Multidisciplinary System Design Optimization (MSDO)

Integrated Concurrent Engineering

Fundamentals of Systems Engineering. Lecture 6 Design Definition and Multidisciplinary Design Optimization

Environmental issues for a supersonic business jet

Rotorcraft Gearbox Foundation Design by a Network of Optimizations

ADVENT. Aim : To Develop advanced numerical tools and apply them to optimisation problems in engineering. L. F. Gonzalez. University of Sydney

Fundamentals of Systems Engineering

UNCLASSIFIED FY 2017 OCO. FY 2017 Base

Systems Engineering. Chris Hall AOE 4065 Fall 2005

MSC/Flight Loads and Dynamics Version 1. Greg Sikes Manager, Aerospace Products The MacNeal-Schwendler Corporation

Evolution of MDO at Bombardier Aerospace

'A CASE OF SUCCESS: MDO APPLIED ON THE DEVELOPMENT OF EMBRAER 175 ENHANCED WINGTIP' Cavalcanti J., London P., Wallach R., Ciloni P.

Environmentally Focused Aircraft: Regional Aircraft Study

SILENT SUPERSONIC TECHNOLOGY DEMONSTRATION PROGRAM

GRID MODERNIZATION INITIATIVE PEER REVIEW GMLC Control Theory

Primary control surface design for BWB aircraft

FURTHER ANALYSIS OF MULTIDISCIPLINARY OPTIMIZED METALLIC AND COMPOSITE JETS

Five Cool Things You Can Do With Powertrain Blockset The MathWorks, Inc. 1

1) The locomotives are distributed, but the power is not distributed independently.

Automobile Body, Chassis, Occupant and Pedestrian Safety, and Structures Track

KISSsys application:

Using CREATE s Rapid Ship Design Environment to Perform Design Space Exploration for a Ship Design

w w w. o n e r a. f r

Development of an Extended Range, Large Caliber, Modular Payload Projectile

Formulating design problems

Designing evtol for the Mission NDARC NASA Design and Analysis of Rotorcraft. Wayne Johnson From VTOL to evtol Workshop May 24, 2018

Compatibility of STPA with GM System Safety Engineering Process. Padma Sundaram Dave Hartfelder

Dynamic Modelling of Commercial Aircraft Secondary Flight Control Systems

Industrial Use of EsDs ETP4HPC Workshop 22 June 2017 Frankfurt DLR CFD Solver TAU & Flucs for external Aerodynamic

Multidisciplinary Design Optimization of a Truss-Braced Wing Aircraft with Tip-Mounted Engines

Optimizing Performance and Fuel Economy of a Dual-Clutch Transmission Powertrain with Model-Based Design

Semi-Active Suspension for an Automobile

SUPERSONIC BUSINESS JET

Building Fast and Accurate Powertrain Models for System and Control Development

FLYING CAR NANODEGREE SYLLABUS

A Presentation on. Human Computer Interaction (HMI) in autonomous vehicles for alerting driver during overtaking and lane changing

Automatic Aircraft Configuration Redesign The Application of MDO Results to a CAD File

Aeroelastic Analysis of Aircraft Wings

A Importância da Modelagem Multifísica no Desenvolvimento de Veículos Dr. Cesareo de La Rosa Siqueira ESSS - Business Manager

Racing Tires in Formula SAE Suspension Development

Digital Future of Product Development and Validation- The Role of Experiments & Modelling Challenges

Multidisciplinary Optimization of Innovative Aircraft using ModelCenter

Discovery of Design Methodologies. Integration. Multi-disciplinary Design Problems

Mechanism Feasibility Design Task

Preliminary Design of a Mach 6 Configuration using MDO

Crankcase scavenging.

Synthesis of Optimal Batch Distillation Sequences

Modeling and Simulate Automotive Powertrain Systems

Integrated Architectures Management, Behavior models, Controls and Software

Integrated Systems Architecture & Stability/Control Considerations in Early Vehicle Design

Aero-Elastic Optimization of a 10 MW Wind Turbine

Preliminary Detailed Design Review

THE AIRBUS / ENGINE & NACELLE MANUFACTURERS RELATIONSHIP : TOWARDS A MORE INTEGRATED, ENVIRONMENTALLY FRIENDLY ENGINEERING DESIGN

blended wing body aircraft for the

Power Electronics and Drives (PED)

Siemens PLM Software develops advanced testing methodologies to determine force distribution and visualize body deformation during vehicle handling.

Offshore Application of the Flywheel Energy Storage. Final report

Using ABAQUS in tire development process

A PARAMETRIC STUDY OF THE DEPLOYABLE WING AIRPLANE FOR MARS EXPLORATION

Proper Modeling of Integrated Vehicle Systems

ENERGY EXTRACTION FROM CONVENTIONAL BRAKING SYSTEM OF AUTOMOBILE

ADVANCED STRUCTURAL OPTIMIZATION UNDER CONSIDERATION OF COST TRACKING

HIGH VOLTAGE vs. LOW VOLTAGE: POTENTIAL IN MILITARY SYSTEMS

Development of an Advanced Rotorcraft Preliminary Design Framework

EFFECTIVE APPROACH TO ENHANCE THE SHOCK PERFORMANCE OF ULTRA-LARGE BGA COMPONENTS

AEM 4321 / EE4231 Automatic Control Systems

European Lunar Lander: System Engineering Approach

Integration of Lubrication and Cooling System GT-SUITE Models

HERCULES-2 Project. Deliverable: D8.8

Flight and Terminal Ballistic Performance Demonstration of a Gun-Launched Medium Caliber Ramjet Propelled Air Defense Projectile

APR Performance APR004 Wing Profile CFD Analysis NOTES AND IMAGES

Jay Gundlach AIAA EDUCATION SERIES. Manassas, Virginia. Joseph A. Schetz, Editor-in-Chief. Blacksburg, Virginia. Aurora Flight Sciences

Automated Driving - Object Perception at 120 KPH Chris Mansley

Solar Based Propulsion System UAV Conceptual Design ( * )

Design and Simulation of New Versions of Tube Launched UAV

PARAMETRIC MODELING OF AIRCRAFT FUEL SYSTEMS INTEGRATION IN RAPID

Improving the Fuel Economy of Heavy Duty Fleets II San Diego, CA February 20th, 2008

Methodology for Distributed Electric Propulsion Aircraft Control Development with Simulation and Flight Demonstration

MDO advances for aircraft design in ONERA

Optimization of Heat Management of Vehicles Using Simulation Tools

Contents. Preface... xiii Introduction... xv. Chapter 1: The Systems Approach to Control and Instrumentation... 1

Powertrain Design for Hand- Launchable Long Endurance Unmanned Aerial Vehicles

Development of Rattle Noise Analysis Technology for Column Type Electric Power Steering Systems

Flow Controlled Core Overview

EMC System Engineering of the Hybrid Vehicle Electric Motor and Battery Pack

ENGINE-AIRFRAME INTEGRATION DURING CONCEPTUAL DESIGN FOR MILITARY APPLICATION

UNCLASSIFIED. FY 2016 Base FY 2016 OCO

Annual Report Summary Green Regional Aircraft (GRA) The Green Regional Aircraft ITD

A First Principles-based Li-Ion Battery Performance and Life Prediction Model Based on Single Particle Model Equations

Heat Shield Design Project

Modeling Contact with Abaqus/Standard

Aerodynamics and its application for vehicles / Járműáramlástan DIRECTIONAL STABILITY SIDE WIND EFFECT

A SUMMARY OF INDUSTRY MDO APPLICATIONS AND NEEDS

Multirotor UAV propeller development using Mecaflux Heliciel

Turbo boost. ACTUS is ABB s new simulation software for large turbocharged combustion engines

Calibration. DOE & Statistical Modeling

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

White paper: Pneumatics or electrics important criteria when choosing technology

Classical Aircraft Sizing I

Scania complements testing by applying a system simulation approach

Transcription:

Multidisciplinary System Design Optimization (MSDO) Problem Formulation Lecture 2 Anas Alfaris 1

Today s Topics MDO definition Optimization problem formulation MDO in the design process MDO challenges 2

MDO Definition What is MDO? A methodology for the design of complex engineering systems and subsystems that coherently exploits the synergism of mutually interacting phenomena Optimal design of complex engineering systems which requires analysis that accounts for interactions amongst the disciplines (= parts of the system) How to decide what to change, and to what extent to change it, when everything influences everything else. Ref: AIAA MDO website http://www.aiaa.org (Click Inside AIAA, Technical Committees) 3

Engineering Design Disciplines Aircraft: Aerodynamics Propulsion Structures Controls Avionics/Software Manufacturing others Spacecraft: Astrodynamics Thermodynamics Communications Payload & Sensor Structures Optics Guidance & Control Automobiles: Engines Body/chassis Aerodynamics Electronics Hydraulics Industrial design others 4 Fairly mature, but advances in theory, methodology, computation and application foster substantial payoffs

Multidisciplinary Aspects of Design Emphasis is on the multidisciplinary nature of the complex engineering systems design process. Aerospace vehicles are a particular class of such systems. Structures Aerodynamics Control Emphasis in recent years has been on advances that can be achieved due to the interaction of two or more disciplines. 5

System Level Optimization Why system-level, multidisciplinary optimization? Disciplinary specialists tend to strive towards improvement of objectives and satisfaction of constraints in terms of the variables of their own discipline In doing so they generate side effects - often unknowinglythat other disciplines have to absorb, usually to the detriment of the overall system performance 6

Aircraft Optimization D Marketing: maximize passenger volume Cabin diameter M AR Aero: maximize L/D Aspect Ratio BPR 7 Structures: minimize structural mass Wing-root moment Propulsion: minimize specific fuel consumption (SFC) Bypass Ratio

Bréguet Range Equation System-level Optimization Marketing Aero All R V ( L / D) W ln initial g SFC W final R = Range [m] V = Flight velocity [m/s] SFC = Specific Fuel Consumption [kg/s/n] L/D = Lift-over-Drag ration [N/N] g = gravitational acceleration [m/s 2 ] W initial = Initial (takeoff) weight [N] W final = Weight at end of flight [N] W fuel =W initial -W final Fuel quantity [N] Propulsion Structures 8

Human Interface Aspects of Design It is wrong to think of MDO as automated or pushbutton design: The human strengths (creativity, intuition, decisionmaking) and computer strengths (memory, speed, objectivity) should complement each other The human will always be the Meta-designer Challenges of defining an effective interface continuous vs. discrete thinking Challenges of visualization in multidimensional space, e.g. search path from initial design to final design Human element is a key component in any successful system design methodology 9

Quantitative vs. Qualitative Human inventiveness, creativity, intuition, experience Conceiving different concepts Evaluation, selection of concepts Qualitative Effort Stream Question Question Question Question Answer Answer Answer Answer Quantitative Effort Stream Time Quantitative, objective, computational New Vehicle Design Parallel, qualitative, and quantitative efforts in design. Image by MIT OpenCourseWare. Human mind is the driving force in the design process. MDO is a way of formalizing the quantitative tool to apply the best trade-offs. 10

Architecture vs. Design Whole Product System Ice Cooler Architecture selects the concept, decomposition and mapping of form to function Architecture establishes the vector of design and operating parameters Design selects the values of the vector of variables This is what optimization is good for Some work in architecture is just an exhaustive search over the design of one architecture 11 Quantity Surface Area Operating parameters P Initial Water Top Material Thickness Material Design Variables X Box with Bottom Well Thickness Length, width, Height Image by MIT OpenCourseWare.

Optimization Problem Formulation 12

Optimization Aspects of Design Optimization methods have been combined with design synthesis and parametric analysis for ca. 40 years Traditionally used graphical methods to find maximum or minimum of a multivariate function ( carpet plot ), but. Objective J(x) peaks Graphics break down above 3-4 dimensions Where is max J(x)? Caution: local extrema! Where is min J(x)? 13

Combinatorial Explosion Any design can be defined by a vector in multidimensional space, where each design variable represents a different dimension For n > 3 a combinatorial explosion takes place and the design space cannot be computed and plotted in polynomial time Numerical optimization offers an alternative to the graphical approach and brute force evaluation 14 During past three decades much progress has been made in numerical optimization

Formal Notation Quantitative side of the design problem may be formulated as a problem of Nonlinear Programming (NLP) min J x, p s.t. g(x, p) 0 h(x, p) =0 x x x i, LB i i, UB i 1,..., n) ( This is the problem formulation that we will discuss this semester. where J J x J x x 1 1 x x x g g ( x) g ( x) 1 h h ( x) h ( x) 1 i m m 1 2 z T T n T T 15

Objectives The objective can be a vector J of z system responses or characteristics we are trying to maximize or minimize J J J J J 1 2 3 i cost [$] range [km] weight [kg] data rate [bps] Often the objective is a scalar function, but for real systems often we attempt multi-objective optimization: x J(x) J z ROI [%] Some objectives can be conflicting. 16

Design Variables Design vector x contains n variables that form the design space x 17 During design space exploration or optimization we change the entries of x in some rational fashion to achieve a desired effect x x x x x 1 2 3 i n aspect ratio [-] transmit power [W] # of apertures [-] orbital altitude [km] control gain [V/V] Real: Integer: Binary: x can be.. i Boolean: Design variables are controlled by the designers

Parameters Parameters p are quantities that affect the objective J, but are considered fixed, i.e. they cannot be changed by the designers. Sometimes parameters p can be turned into design variables x i to enlarge the design space. Sometimes parameters p are former design variables that were fixed at some value because they were found not to affect any of the objectives J i or because their optimal level was predetermined. 18

Constraints Constraints act as boundaries of the design space x and typically occur due to finiteness of resources or technological limitations of some design variables. Often, but not always, optimal designs lie at the intersection of several active constraints Inequality constraints: 19 Equality constraints: Bounds: g x 0 j 1,2,, m j h x 0 k 1,2,, m k x x x i 1,2,, n i, LB i i, UB Objectives are what we are trying to achieve Constraints are what we cannot violate Design variables are what we can change 1 2

Constraints versus Objectives It can be difficult to choose whether a condition is a constraint or an objective. For example: should we try to minimize cost, or should we set a constraint stating that cost should not exceed a given level. The two approaches can lead to different designs. Sometimes, the initial formulation will need to be revised in order to fully understand the design space. In some formulations, all constraints are treated as objectives (physical programming). 20

Example Problem Statement design variables objective function Minimize the take-off weight of the aircraft by changing wing geometric parameters while satisfying the given range and payload requirements at the given cruise speed. constraints parameter 21

Group Exercise... (10 mins) For your group s system: 1. Consider the preliminary design phase. Identify: -important disciplines -potential objective functions -potential design variables -system parameters -constraints and bounds 2. Report out 22

MDO in the Design Process 23

What MDO really does MDO mathematically traces a path in the design space from some initial design x o towards improved designs (with respect to the objective J). It does this by operating on a large number of variables and functions simultaneously - a feat beyond the power of the human mind. The path is not biased by intuition or experience. 24 This path instead of being invisible inside a black box becomes more visible by various MDO techniques such as sensitivity analysis and visualization Optimization does not remove the designer from the loop, but it helps conduct trade studies

Design Vector x x 1 2 MSDO Framework Simulation Model Discipline A Discipline B Objective Vector J J 1 2 x n Coupling Discipline C Multiobjective Optimization Optimization Algorithms J z Approximation Methods Tradespace Exploration (DOE) Numerical Techniques (direct and penalty methods) Heuristic Techniques (SA,GA) Coupling Sensitivity Analysis Isoperformance 25 Output Evaluation

Simulation versus Optimization There are two distinct components of the MSDO process: The optimization algorithm decides how to move through the design space. The simulation model evaluates designs chosen by the optimizer. Both objective functions and constraints must be evaluated. Sometimes, disciplinary simulation models can be used in an optimization framework, but often they are not appropriate. There are several different approaches to couple the optimizer and the simulation models (Lecture 4). 26

27 Typical Process in MDO (1) Define overall system requirements (2) Define design vector x, objective J and constraints (3) System decomposition into modules (4) Modeling of physics via governing equations at the module level - module execution in isolation (5) Model integration into an overall system simulation (6) Benchmarking of model with respect to a known system from past experience, if available (7) Design space exploration (DoE) to find sensitive and important design variables x i (8) Formal optimization to find min J(x) (9) Post-optimality analysis to explore sensitivity and tradeoffs: sensitivity analysis, approximation methods, isoperformance, include uncertainty

In Practice... (i) Step through (1)-(8) (ii) The optimizer will use an error in the problem setup to determine a mathematically valid but physically unreasonable solution OR The optimizer will be unable to find a feasible solution (satisfies all constraints) (iii) Add, remove or modify constraints and/or design variables (iv) Iterate until an appropriate model is obtained Although MDO is an automated formalization of the design process, it is a highly interactive procedure... 28

MDO in the Design Process configuration drawing configurator outer mold line CFD aerodynamics weights WingMOD engine deck propulsion baseline design optimized design 29 performance weights economics MDO is only one part of the design process couples with other design tools invaluable but not always complete

MDO Uses The MD portion of MDO is important on its own Often MDO is used not to find the truly optimal design, but rather to find an improved design, or even a feasible design... Range of design objectives Feasible Improved Optimal Pareto 30 from Giesing, 1998

MDO Challenges 31

32 MDO Challenges Fidelity/expense of disciplinary models Fidelity is often sacrificed to obtain models with short computation times. Complexity Design variables, constraints and model interfaces must be managed carefully. Communication The user interface is often very unfriendly and it can be difficult to change problem parameters. Flexibility It is easy for an MDO tool to become very specialized and only valid for one particular problem. How do we prevent MDO codes from becoming complex, highly specialized tools which are used by a single person (often the developer!) for a single problem?

Fidelity vs. Expense high fidelity (e.g. CFD,FEM) can we do better? how to implement? intermediate fidelity (e.g. vortex lattice, beam theory) empirical models Fidelity Level trade studies Level of MSDO limited optimization/iteration can the results be believed? full MDO 33 from Giesing, 1998

high fidelity (e.g. CFD,FEM) intermediate fidelity (e.g. vortex lattice, beam theory) empirical relations Disciplinary Depth is design practical? focus on a subsystem Breadth vs. Depth System Breadth all critical constraints how to implement? can the results be believed? complete system 34

MDO Pros/Cons Advantages reduction in design time systematic, logical design procedure handles wide variety of design variables & constraints not biased by intuition or experience Disadvantages computational time grows rapidly with number of dv s numerical problems increase with number of dv s limited to range of applicability of analysis programs will take advantage of analysis errors to provide mathematical design improvements difficult to deal with discontinuous functions 35

Lecture summary MDO is not a stand-alone, automated design process MDO is a valuable tool that requires substantial human interaction and complements other design tools Elements of an MDO framework MDO Challenges Next two lectures will address Modeling & Simulation and Problem Decomposition 36

References Kroo, I.: MDO applications in preliminary design: status and directions, AIAA Paper 97-1408, 1997. Kroo, I. and Manning, V.: Collaborative optimization: status and directions, AIAA Paper 2000-4721, 2000. Sobieski, I. and Kroo, I.: Aircraft design using collaborative optimization, AIAA Paper 96-0715, 1996. Balling, R. and Wilkinson, C.: Execution of multidisciplinary design optimization approaches on common test problems, AIAA Paper 96-4033, 1996. Giesing, J. and Barthelemy, J.: A summary of industry MDO applications and needs, AIAA White Paper, 1998. AIAA MDO Technical Committee: Current state-of-the-art in multidisciplinary design optimization, 1991. 37

MIT OpenCourseWare http://ocw.mit.edu ESD.77 / 16.888 Multidisciplinary System Design Optimization Spring 2010 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.