CYLINDER HEAD FEM ANALYSIS AND ITS IMPROVEMENT

Similar documents
THERMAL AND STRESS DISTRIBUTION OF DIFFERENT I.C. ENGINE PISTON COMBUSTION CHAMBERS USING 3-D FINITE ELEMENT ANALYSIS METHOD

Finite Element Analysis on Thermal Effect of the Vehicle Engine

Stress Analysis of Engine Camshaft and Choosing Best Manufacturing Material

Design and Optimization of HTV Fuel Tank Assembly by Finite Element Analysis

Design and Stress Analysis of Crankshaft for Single Cylinder 4-Stroke Diesel Engine

Research on Optimization for the Piston Pin and the Piston Pin Boss

The Simulation of Metro Wheel Tread Temperature in Emergency Braking Condition Hong-Guang CUI 1 and Guo HU 2*

Static and Dynamic Strength Analysis on Rear Axle of Small Payload Off-highway Dump Trucks

Harmonic Analysis of Reciprocating Compressor Crankcase Assembly

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852

Static Analysis of Crankcase and Crankshaft of Single Cylinder Four Stroke Diesel Engine

Modal Analysis of Automobile Brake Drum Based on ANSYS Workbench Dan Yang1, 2,Zhen Yu1, 2, Leilei Zhang1, a * and Wentao Cheng2

Theoretical and Experimental Investigation of Compression Loads in Twin Screw Compressor

[Type text] [Type text] [Type text] Zhang Zenglian 1 School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang,

STRESS ANALYSIS OF PISTON USING PRESSURE LOAD AND THERMAL LOAD

Chapter 7: Thermal Study of Transmission Gearbox

Stress Analysis of Piston at Different Pressure Load

Design and Analysis of Engine and Chassis Mounting Bracket

CFD Analysis for Designing Fluid Passages of High Pressure Reciprocating Pump

CONTACT ANALYSIS OF RAIL WHEEL USING FINITE ELEMENT TECHNIQES - A REVIEW

DESIGN OF AN AIR COOLED CYLINDER HEAD FOR TWO FAMILYS OF DIESEL ENGINES WITH DIRECT INJECTION

Thermal Stress Analysis of Diesel Engine Piston

Heat treatment Elimination in Forged steel Crankshaft of Two-stage. compressor.

The Optimal Design of a Drum Friction Plate Using AnsysWorkbench

MULTI-BODY DYNAMIC ANALYSIS OF AN IC ENGINE PISTON FOR SHAPE OPTIMIZATION

Thermal Analysis of Shell and Tube Heat Exchanger Using Different Fin Cross Section

FEM Analysis of Combined Paired Effect on Piston & Connecting Rod using ANSYS

Load Analysis and Multi Body Dynamics Analysis of Connecting Rod in Single Cylinder 4 Stroke Engine

INTERNATIONAL JOURNAL OF DESIGN AND MANUFACTURING TECHNOLOGY (IJDMT) CONSTANT SPEED ENGINE CONROD SOFT VALIDATION & OPTIMIZATION

Keywords: Von Mises, Piston, Thermal Analysis, Pressure, CATIAV5R20, ANSYS14 I. INTRODUCTION

Available online at ScienceDirect. Physics Procedia 67 (2015 )

Optimization of Four Cylinder Engine Crankshaft using FEA

Structural Analysis of a Ceramic Coated Diesel Engine Piston Using Finite Element Method

Research on Pressure Loss for the Reverse-Flow Extended-Tube Muffler*

DESIGN AND OPTIMIZATION OF HTV FUEL TANK ASSEMBLY BY FINITE ELEMENT ANALYSIS

Parametric Modeling and Finite Element Analysis of the Brake Drum Based on ANSYS APDL

Analysis of the Influence of Piston Cooling Cavity on Its. Temperature Field

THERMAL STRESS ANALYSIS OF HEAVY TRUCK BRAKE DISC ROTOR

Analysis Of Vehicle Air Compressor Mounting Bracket

Structural performance improvement of passenger seat using FEA for AIS 023 compliance

DESIGN AND SIMULATION OF A CYLINDER HEAD STRUCTURE FOR A COMPRESSED NATURAL GAS DIRECT INJECTION ENGINE

51. Heat transfer characteristic analysis of negative pressure type EGR valve based on CFD

International Journal of Advance Engineering and Research Development

ABSTRACT I. INTRODUCTION III. GEOMETRIC MODELING II. LITERATURE REVIW

Optimum Design on Structural Parameters of Reciprocating Refrigeration Compressor Crankshaft

Static Structural and Thermal Analysis of Aluminum Alloy Piston For Design Optimization Using FEA Kashyap Vyas 1 Milan Pandya 2

DESIGN AND SIMULATION OF A CYLINDER HEAD STRUCTURE FOR A COMPRESSED NATURAL GAS DIRECT INJECTION ENGINE

Flow and Heat Transfer Analysis of an Inlet Guide Vane with Closed-loop Steam Cooling

Optimization of Design Based on Tip Radius and Tooth Width to Minimize the Stresses on the Spur Gear with FE Analysis.

Modeling and Analysis of Two Wheeler Connecting Rod by Using Ansys

MARINE FOUR-STROKE DIESEL ENGINE CRANKSHAFT MAIN BEARING OIL FILM LUBRICATION CHARACTERISTIC ANALYSIS

Design & Thermal Analysis of I.C. Engine Poppet Valves using Solidworks and FEA

FE Modeling and Analysis of a Human powered/electric Tricycle chassis

Tooth Shape Optimization of the NGW31 Planetary Gear Based on Romax Designer

NUMERICAL SIMULATION FOR RESPONSE OF REINFORCED CONCRETE SLABS WITH SPRINGS SUPPORTED UNDER BLAST LOADS

STRUCTURAL ANALYSIS OF SPUR GEAR USING FEM

Static Stress Analysis of Piston

Structural Analysis Of Reciprocating Compressor Manifold

[Vishal*et al., 5(7): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

STRUCTURAL ANALYSIS OF REAR AXLE CASING OF TRACTOR

Stress and Design Analysis of Triple Reduction Gearbox Casing

Design and Simulation of Go Kart Chassis

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

Dynamic Load Analysis and Optimization of a Fracture-Split Connecting Rod

Design, Analysis& Optimization of Truck chassis- Rail & Cross member

Parametric Design and Motion Analysis of Geneva Wheel Mechanism Based on the UG NX8.5

The Dynamic Characteristics of the Torque Sensor by Bearing Interference Fit

The Digital Simulation Of The Vibration Of Compressor And Pipe System

ENGINEERING FOR RURAL DEVELOPMENT Jelgava,

Analysis on fatigue life of a certain gear transmission system

Value Engineering of Engine Rear Cover by Virtual Simulation

PREDICTION OF PISTON SLAP OF IC ENGINE USING FEA BY VARYING GAS PRESSURE

COMPARISON OF THE TEMPERATURE DISTRIBUTION IN THE DRY AND WET CYLINDER SLEEVE IN UNSTEADY STATE

Research on Impact of Cooling Fan s Geometry on Nozzle s Heat Load of the Air-Cooled Diesel Engine

INFLUENCE OF CERAMIC COATING ON PISTON SURFACE IN I.C ENGINE

Prediction of Thermal Deflection at Spindle Nose-tool Holder Interface in HSM

COMPARATIVE STUDY OF MODAL ANALYSIS ON FLYWHEEL FOR AUTOMOTIVES

Influence of pantograph fixing position on aerodynamic characteristics of high-speed trains

Structural Analysis of Pick-Up Truck Chassis using Fem

COMPARISON OF ANALYTICAL & FEA OF CONTACT ANALYSIS OF SPUR GEAR DRIVE

Non-Linear Simulation of Front Mudguard Assembly

Design and Performance Analysis of Louvered Fin Automotive Radiator using CAE Tools

DESIGN OPTIMIZATION AND FINITE ELEMENT ANALYSIS OF PISTON USING PRO-e

Parametric Study on Flow and Heat Transfer Performance of Multi-Flow Spiral-Wound Heat Exchanger

MULTI-PARAMETER OPTIMIZATION OF BRAKE OF PISTON

International Journal of Advance Engineering and Research Development. Offset Disc Butterfly Valve Design

Analysis of Switch Gear and Validation

Comparing FEM Transfer Matrix Simulated Compressor Plenum Pressure Pulsations to Measured Pressure Pulsations and to CFD Results

DESIGN AND FATIGUE LIFE ESTIMATION OF DIESEL ENGINE PISTON USING ANSYS AND FESAFE

DESIGN AND OPTMIZATION OF PISTON USED UNCOATED ALUMINIUM ALOY AND COATED WITH CERAMIC MATERIAL USING CATIA & ANSYS

VIBRATION REDUCTION IN CONVENTIONAL VEHICLES BY INCREASING THE STIFFNESS ON THE CHASSIS FRAME

Analysis of Flow Field for Automotive Exhaust System Based on Computational Fluid Dynamics

CFD ANALYSIS ON LOUVERED FIN

Static Analysis of Crankcase for Single Cylinder High Speed Diesel Engine

MODELLING AND ANALYSIS OF CAM SHAFT

Damping Assessment for Crankshaft Design to Reduce the High Vibrations

Novel Automatic Demoulding and Feeding Device for Oil Seal Transfering Molding Press and Simulation Analysis

Ashwani Kumar 1, Shaik Imran Behmad 2, Pravin P Patil 3 1,2,3

Numerical Simulation on Erosion of Drain Valve Liangliang Xu1,a, Zhengdong Wang2,b, Xinhai Yu3,c, Cong Zeng4,d

A STUDY OF THE CENTRIFUGAL COMPRESSOR DISCHARGE PIPELINE CONSTRAINED OSCILLATION. KIRILL SOLODYANKIN*, JIŘÍ BĚHAL ČKD KOMPRESORY, a.s.

Transcription:

CYLINDER HEAD FEM ANALYSIS AND ITS IMPROVEMENT Shixiong Li 1,*, Jinlong Mao 1, Shumao Wang 1 1 College of Engineering, China Agricultural University, Beijing, China, 100083; * Corresponding author, Address: P. O. Box 114, College of Engineering, China Agricultural University, 17 Tsinghua East Road, Beijing, 100083, P. R. China, Tel: +86-10-62736460, Fax: +86-10-62736385, Email: li_shixiong@263.net, lsx@cau.edu.cn Abstract: Keywords: The nose bridge between the inlet valve and exhaust valve is the most fragile part on the cylinder head. Fatigue crack is the major failure mode. It is necessary to analyze the structure strength and reliability (SSR) of this zone. In this paper, a three-dimensional (3D) model for a engine cylinder head is built up using Pro/Engineer wildfire 2.0, and the 3D FEM analysis of the SSR is carried out. The temperature field and stress field of the nose bridge are also calculated based on the model. Several improvement designs are given and compared as the result of the above analysis, which lays the foundation for the cylinder head production. engine, cylinder head, nose bridge zone, SSR, FEM, design improvement 1. INTRODUCTION Computer technology has been widely used in the agricultural area, especially computer simulations, which greatly promote engineering analysis. With the improvement of the computer s capability, the finite element method (FEM) is considered to be one of the most powerful design tools in Computer-Aided Engineering (CAE) (Liu, 2004). Using this method, the complex structural configuration can be modeled and the response at any point of the structure can be easily determined (Cyuan, 2000). Now, the finite element method has been evolving to be a widely accepted tool for the solution of pragmatic engineering problems (Liang, 2004).

770 Shixiong Li, Jinlong Mao, Shumao Wang The cylinder head is one of the most complex parts in the engine, and it endures high thermal and mechanical load during working cycles (Zhang, 2002). The nose bridge on the head between the inlet valve and exhaust valve is subjected to the hot air through the exhaust valve and the cool air through the inlet valve simultaneously, and it is the weakest part in the cylinder head. The fatigue in the nose zone is one of the most important factors that shorten the life of a cylinder head. So it is very meaningful to find a method to weaken restriction of the heat distortion in the nose zone, especially in the preliminary design stage, the using of computer simulation to analyze the strength and fatigue life of a cylinder head is very important and necessary. In this paper, a successful and feasible numerical model was configured first and analyzed thoroughly, and then with the result got from the analysis, several ameliorative models are analyzed based on finite element method. 2. MODELLING AND COMPARISION ANALYSIS Due to the complexity of cylinder head in geometrical structure and the heat load, the Pro/Engineer Wildfire 2.0 is selected as the three-dimension solid modeling tool. One cylinder area on the cylinder head of diesel engine 4105Q was modeled with it and the model was transferred to the threedimensional finite element analysis software ANSYS 9.0 to do the further analysis. 2.1 The model of the cylinder head The three-dimensional model created by Pro/Engineer Wildfire 2.0 (Fig.1) made some simplify for some structures which have no large effect on the temperature and stress field distribution, such as bolt holes, pin holes and ribs etc. But there are no simplify on the major structure dimensions and shapes in order to have an accuracy correct analysis result. Fig.1: 3D cylinder head model

Cylinder Head FEM Analysis and its Improvement 771 When the model is completed, save it to the file of.igs and transfer it to the finite element analysis (FEA) software ANSYS 9.0. In the FEA software, after defining the properties of the material and the elements, the model is meshed by using automatic mesh tool. Fig.2 show the meshed model, which contains 47310 elements and 84498 nodes. Fig.2: The meshed model of the cylinder head 2.2 The comparison analysis of the original and the improved designs The main objective of this study is to provide information on the structure and thermal stress of the cylinder head nose bridge and provide feasible solutions on the structure design improvement. 2.2.1 The temperature and stress field calculation of the original design In order to calculate the temperature and stress distributions in the cylinder head, the third-type boundary condition should be defined first and then as the thermal load applied on the FEA model. The third-type boundary condition: T T T kx nx + ky ny + kz nz = α T-T (1) x y x Where: α: convection coefficient; k: heat conduction coefficient; T : the liquid temperature; T: the temperature on the part surface; nx, ny, nz: the direction cosine of the normal to the boundary.

772 Shixiong Li, Jinlong Mao, Shumao Wang The boundaries are defined through many modification and calculation using the established experiential equation and values shown in Table 1: Table 1. The experiential values of α and T. Location α -W/(m 2.K) T Upper and side surface of the cylinder head: 23 293K The surface of air intake channel 350 335K The surface of exhaust gas channel 650 973K The surface of combustion chamber 1000 1200K The surface of coolant channel 3000 353K Immediately below the nose bridge 3600 383K Forced cooling 6000 383K Cylinder head with the contact surface of the inlet valve seat 150 665K Cylinder head with the contact surface of the exhaust valve seat 200 803K Cylinder head, gasket and cylinder block 100 503K The calculation results are shown in Fig. 3. Fig.3: Temperature distribution of the original design In order to examine the plausibility of the boundary selection, the calculation results of the temperature distribution and the experimental results of Type Z6110 diesel engine are compared, as shown in Table 2. Table 2. The Comparison between Calculation and Experimental Temperatures. Points 1 2 3 4 5 6 7 8 9 Measurement 483 424 518 507 558 605 613 471 430 Calculation 496 430 567 552 595 620 631 536 433 Errors (%) 2.7 1.4 9.5 8.9 6.6 2.5 2.8 13.8 0.7 The units for Temperatures are K.

Cylinder Head FEM Analysis and its Improvement 773 Table 2 show the overall temperature distribution is coherent, which means the boundary condition selection is reasonable. The thermal stress distribution is achieved through automatic data coupling calculation based on the temperature distribution calculation results. The calculation results of the thermal stress distribution are shown in Fig. 4. Fig. 4: Thermal stress distribution of the original design Fig 3 & 4 show that the max data occurs on the exhaust valve side of the nose bridge which need to find ways to lower its temperature and thermal stress. 2.2.2 The temperature and stress field calculation of the improved designs In order to lower the temperature and thermal stress of the nose bridge zone, decrease the restriction of heat distortion, several models with different structure are provided. Case1. Reduce the thickness of the nose bridge to 8 mm; Case2. Machining a deep and narrow arc groove (unload groove) with about 0.5mm width in the nose bridge; Case3. Machining a 3 mm diameter cooling water hole to improve the cooling condition in the nose bridge; Case4. Casting a coolant channel whose outlet is opposite to the nose bridge. The temperature distribution calculation results are shown in Fig.5

774 Shixiong Li, Jinlong Mao, Shumao Wang (a) Case1 (b) Case2 (c) Case3 (d) Case4 Fig.5: The temperature distribution The thermal stress distribution calculation results are shown in Fig.6 (a) Case1 (b) Case2 (c) Case3 (d) Case4 Fig.6: The thermal stress distribution

Cylinder Head FEM Analysis and its Improvement 775 2.3 Comparison The comparison of the four improved design solutions temperature and thermal stress distribution calculation results are shown in table 3 and table 4. (Note: A is the original case) Table 3. The Highest Temperature Distribution Comparisons in Nose Bridge Zone Cases A 1 2 3 4 The Highest Temperature (K) 630 610.4 630 590 602 Table 4. The Highest Von Mises Thermal Stress Distribution Comparisons in Nose Bridge Zone Cases A 1 2 3 4 The Highest Thermal Stress (MPa) 417 408 440 413 397 3. RESULTS AND DISCUSSION Case1. Reducing the thickness of nose bridge improves the heat exchange condition in the nose zone, lowering the nose temperature about 20K and the thermal stress about 9Mpa. Case2. Machining a unload groove have no change to the temperature distribution, while make the thermal stress increased about 23Mpa; Case3. Machining a coolant holes in the nose bridge effectively lower the nose temperature 40K, and at the same time lower the thermal stress about 4Mpa. Case4. Connect a coolant injector against the nose bridge is the best way to improve the temperature and thermal stress distributions in these solutions. It not only makes the temperature lower 28K, but also makes the thermal stress lower 20Mpa. It has been already found its application on some engines. 4. CONCLUSIONS AND FUTURE WORKS From the above analysis, the main outcomes can be outlined as follows: (1) For the nose bridge of cylinder head, an elaborate temperature field and thermal stress analysis was carried out using ANSYS 9.0. Results from the research could be provided to the designers to be as the reference in their work of improving the fatigue life of the cylinder head.

776 Shixiong Li, Jinlong Mao, Shumao Wang (2) Just as what have been calculated, in all the cases the nose bridge between the inlet valve and exhaust valve are found to endure the highest temperature and highest thermal load. And the thermal load is dynamic and has a very high rate of repetition, causing the nose bridge to be the most fragile part in the cylinder head. We can know from the results that remove some metal and cool this zone with coolant will effectively lower the temperature and thermal stress. (3) Because the configuration of cylinder head is too complex to predict the critical area and failure mode in the design phase, the finite element simulation have become the best method to obtain the stress distribution with different structures, this can greatly reduce project span time and total project cost. ACKNOWLEDGEMENTS This study is supported by China National 11th 5-Year Planned Project The Research on Rice and Wheat Cross-area Harvest Mechanization Technology (Contract Number: 2006BAD28B03). REFERENCES Liu Jinxiang, LiaoRi dong, Zhang You. Finite Element Analysis for Cylinder Head of 6114 Diesel Engine. Transaction of CSICE, 2004, 22 (4): 367~372 Shiang-Woei Cyuan. Finite element simulation of a twin-cam 16-valve cylinder structure. Finite elements in Analysis and Design, 2000, (35): 199-212 S.L. Liang, X.H. Dai, H.M. Yao. 3D FE Analysis of Cylinder Head for Diesel Engine. Agricultural Mechanical Paper, 2004, 35 (3): 45~48 Zhang Weizheng, Zhang Guohua, Guo Liangping. The Thermal Fatigue Test and Modification of High-Temperature Creep for cast Iron Cylinder Heads. Transaction of CSICE, 2002, 23 (6): 67~69