Purlins and Girts. A division of Canam Group

Similar documents
ROOFING SOLUTIONS DESIGN GUIDE PURLINS AND GIRTS DESIGN GUIDE PURLINS AND GIRTS S&T029N

DeltaStud - Lightweight Steel Framing

ROUGH OPENINGS PRODUCT CATALOG STRONGER THAN STEEL. INTERIOR AND EXTERIOR FRAMING

LIGHTWEIGHT STEEL FRAMING METRIC SECTION PROPERTIES

1-3/8" inside-to-inside dimension. length of the leg. S162

2507 (IBC 2006 ONLY) 3054 (IBC 2006 ONLY) Supreme Framing System Product Catalog

Expanding Your Solutions. Steel Framing and Accessories. ICC ESR and 2015 IBC, IRC

REVEAL SERIES ARCHITECTURAL DECK PRODUCTS CANADA

IBC 2009/2012 COMPLIANT. Supreme Framing System. Product Catalog

Supreme. Supreme Framing System. Product Catalog IAPMO UNIFORM ER #0313

STRONGER THAN STEEL. interior and exterior framing

Overview. HDS replaces built-up curtain wall headers. HDS replaces load-bearing box beam headers

Light gage steel framing

GENERAL INFORMATION FEATURES.

REVEAL SERIES ARCHITECTURAL DECK PRODUCTS UNITED STATES

STANDARD SPECIFICATIONS

WARRANTY AND LIMITATIONS

REVEAL SERIES ARCHITECTURAL DECK PRODUCTS

Revision and Errata List AISC Steel Construction Manual, 13 th Edition, Third Printing (Revision 2 June 2010)

BUILDING PRODUCTS LCP PURLINS & GIRTS. Purlin and Girt Structural System. BC 1:2012 FPC Cert. No. ABS-BCI-SG-0001

Table of Contents. PrimeJoist

LETTER OF TRANSMITTAL

Expanding Your Solutions. ViperStud Product Catalog. Interior Non-Load Bearing Studs and Track

DIVISION: METALS SECTION: STEEL DECKING REPORT HOLDER: 2100 REXFORD ROAD CHARLOTTE, NORTH CAROLINA EVALUATION SUBJECT:

STRONGER. COLD-FORMED STRUCTURAL FRAMING PRODUCTS technical design guide

REPORT HOLDER: CLARKDIETRICH BUILDING SYSTEMS 9050 CENTRE POINTE DRIVE, SUITE 400 WEST CHESTER, OHIO EVALUATION SUBJECT:

Plate Girder and Stiffener

Structural. Guide. Inside this

Analysis Methods for Skewed Structures. Analysis Types: Line girder model Crossframe Effects Ignored

U.S. PATENT NO.: US 7,765,771 TECHNICAL GUIDE SUPERIOR ENGINEERED FLOOR FRAMING SYSTEM

Structural Sections. Page 15

RAFTERS. Single and Continuous Spans

STRAMIT PURLINS, GIRTS & BRIDGING

STANDARD SPECIFICATION

DIVISION: METALS SECTION: STEEL DECKING REPORT HOLDER: CONSOLIDATED SYSTEMS, INC. (CSi )

FLUSH SEAT DESIGN GUIDE FOR USE WITH ECOSPAN COMPOSITE JOISTS. economy THROUGH ecology. v1.3

SECTION DIMENSIONS & PROPERTIES. Elastic Section Modulus About X-X. Radius of Gyration About X-X. (in 3 ) r x. (in) I y

BOSS STEEL Metal Reference Book Version 9

Technical Data MM Channel

Purlins & Girts. LYSAGHT Purlins & Girts User s Manual

TRUS JOIST BEAMS, HEADERS, AND COLUMNS

APPENDIX D. D.1 Macalloy Bars. Approximate safe working loads (kn) Appendix D - Proprietary Components (1/9) Stainless steel architectural ties

LINTELS WITH TG. Single Spans. Lintels Supporting Truncated Girder Truss INCLUDES TG Set Back 2.4m Maximum 40 kg/m 2 90 kg/m 2

ESR-2408 Reissued August 2014 This report is subject to renewal August 2015.

4.5 COMPOSITE STEEL AND CONCRETE

Piling Product Guide Edition. Servicesteel.org

B-LINE SERIES SGPC-16. Safety gratings. Safety gratings. Safety for every walk of life

DIVISION: METALS SECTION: METAL FASTENINGS SECTION: STEEL DECKING REPORT HOLDER: ITW BUILDEX

Technical Data Sheet. British Standards Compliant. TECHNICAL DATA SHEET System 160 (British Standards)


Allowable Holes in VERSA-LAM Beams

GENERAL INFORMATION 600-QFH QFJ APPLICATIONS CODES AND STANDARDS PRODUCT DATA

Catalog VF4. Verco s manufacturing facilities are located in Phoenix, Arizona, and the California cities of Fontana and Antioch.

GP Lam LVL. Grade Thickness Depth , 9 1 4, 9 1 2, , , 14, 16, 18, 24 (20 and 22 by special order) 2.

Bridge Overhang Brackets

3NL-32 / 3NI-32 / 3PLN-32 ROOF DECK GRADE 50 STEEL

Design principles and Assumptions

December 1, Table of Contents. TABLE TOPIC PAGE General TABLE TOPIC PAGE. Roof Decks (continued) (Diaphragm Shear Values)

Zeds & Cees Purlins. Users Guide. Purlins & girts structural sections

MBG GRATINGS. MBG Metal Bar Grating HEAVY DUTY MANUAL METAL BAR GRATING AMERICAN NATIONAL STANDARD ANSI/NAAMM STANDARD GRATINGS FIFTH EDITION

Product Range Handbook

GP Lam LVL. Grade Thickness Depth , , , , , 149, 169, 189, 249 (209and 229 by special order) 2.

Pipe Strut vs. Laced Strut

WESTERN SPECIFIER. Technical Data for PWI Joists, PWLVL Headers, Beams, Rim Board, Stud, and Dimension

western for products manufactured in White City, Oregon

STRUCTURAL STAINLESS STEEL DESIGN TABLES IN ACCORDANCE WITH AISC DG27: STRUCTURAL STAINLESS STEEL

2. Runway & Crane System

SSC Case Study V Container Ship Recurring Failure of Side Longitudinal Passing through a Web Frame

1¾" BEAMS & HEADERS. [1¾" THICKNESS] NER F b E Design Values LAMINATED VENEER LUMBER. Finnforest USA, Engineered Wood Division

Cladding Profiles. Technical Specifications

2.0E ES LVL U.S. Design Manual

CABLE MANAGEMENT SOLUTIONS CATALOGUE2003/04 A COMPLETE CABLE MANAGEMENT SOLUTION FOR COMMERCIAL AND INDUSTRIAL APPLICATIONS.

Series 2, 3, 4 Steel Cable Ladder Steel Cable Ladder, Series 2, 3, 4 & 5

DESIGN CHART # 1: Lamit Basic S.I.P Properties

TAS. Fire Design Example Based on European Standard ENV (Eurocode 9) TALAT Lecture pages. Advanced Level

Case Study of Bridge Load Rating in KY using BrR. C.Y. Yong, P.E., S.E., ENV-SP

Number: 161. Originally Issued: 06/24/2010 Revised: 08/03/2017 Valid Through: 06/30/2018

Innovative designs to improve your bottom line.

The following excerpt are pages from the North American Product Technical Guide, Volume 1: Direct Fastening, Edition 15.

PIPINGSOLUTIONS, INC.

Multideck 80-V2 Features and Applications

Bulb Flats. Light weight corrosion resistant solution for plate stiffening

Quick Selection Guide

PRODUCT CATALOGUE LOUCON METAL LTD. 37 and 39 Grenfell Crescent, Nepean, ON K2G 0G3. Hours of Operation: Monday-Friday 8:00 AM 5:00 PM

COMPOSITE FLOOR SYSTEM

Submitted by: Sr. Engineer. Sr. Product Engineer. Product Engineer. Director Power Market Sales. Approved by: Director of Engineering

Behavior & Design. Curved Girder. Curved Steel Girder Bridges. PDF Created with deskpdf PDF Writer - Trial ::

BOISE GLULAM 24F-V4 IJC

UT Lift 1.2. Users Guide. Developed at: The University of Texas at Austin. Funded by the Texas Department of Transportation Project (0-5574)

This product is no longer manufactured.

INDEX OF W.T.I. BEAMS

ESR-1414 Reissued July 2014 This report is subject to renewal October 1, 2015.

Multideck 50-V2 Features and Applications

Rosboro TM. Next-Generation Glulam. n Architectural Appearance. n Full Framing-Width Stock. Glulam. n I-Joist and Conventional.

PLANK-AND-BEAM FRAMING FOR RESIDENTIAL BUILDINGS

SPECIAL PROFILE STEEL JOIST CATALOG SPECIAL PROFILE STEEL JOISTS BOWSTRING JOISTS SCISSOR JOISTS ARCH JOISTS GABLE JOISTS BUILDING SYSTEMS 2009

GP Lam LVL. (20!and 22! by special order) 13 4! 31 2! 1.5E. Lengths: up to 60 feet. Referenced dimensions are nominal and used for design purposes.

LVL User s Guide. Technical Data for LVL Headers, Beams, Column Applications for Residential Floor and Roof Systems

DIVISION: METALS SECTION: STEEL DECKING SECTION: STEEL FLOOR DECKING SECTION: STEEL ROOF DECKING REPORT HOLDER:

Design Guide Standard Joists INTERACTIVE PDF

Transcription:

Purlins and Girts A division of Canam Group

TABLE OF CONTENTS OUR SOLUTIONS AND SERVICES............................................................ 5 Cautionary statement.................................................................. 5 INTRODUCTION........................................................................... 6 Advantages.......................................................................... 6 High-performance steel................................................................ 6 Design.............................................................................. 6 Tolerances........................................................................... 6 Complete fabrication services........................................................... 6 LATERAL STABILITY OF PURLINS........................................................... 7 Through-fastened roof................................................................. 7 Standing seam roof................................................................... 7 Definition of discrete bracing............................................................ 7 Anchorage of purlin bracing (anti-roll safeguard)........................................... 8 Plan view of purlin bracing locations per bay.............................................. 9 Sample calculations Metric........................................................... 10 Loads on discrete bracing lines Metric................................................. 13 Table 1 Z sections on a 2/12 roof pitch............................................... 13 Table 2 Z sections on a 4/12 roof pitch............................................... 14 Table 3 C sections on a 2/12 roof pitch............................................... 15 Table 4 C sections on a 4/12 roof pitch............................................... 16 C SECTIONS............................................................................. 17 New nomenclature................................................................... 17 Properties Metric................................................................... 18 Selection table for factored loads Metric................................................ 20 Properties Imperial.................................................................. 22 Selection table for factored loads Imperial.............................................. 24 Fabrication tolerance................................................................. 26 Z SECTIONS............................................................................. 27 New nomenclature................................................................... 27 Properties Metric................................................................... 28 Selection table for factored loads Metric................................................ 30 Properties Imperial.................................................................. 32 Selection table for factored loads Imperial.............................................. 34 STANDARD FEATURES OF C AND Z SECTIONS............................................... 36 Assembly holes...................................................................... 36 Sag rod holes....................................................................... 36 Fabrication marks.................................................................... 36 Overlapping Z sections................................................................ 37 CONNECTION DETAILS AND ACCESSORIES.................................................. 38 Interior girt to column connection details................................................ 38 Interior girt to corner column connection details.......................................... 38 Exterior girt to corner column connection details.......................................... 39 3D view of building corner column...................................................... 40 Frame attachment angles.............................................................. 41 Angle closures...................................................................... 42 APPENDIX 1 Cutting list (order form)...................................................... 43 APPENDIX 2 Fabrication details (order form)................................................ 44 BUSINESS UNITS AND WEB ADDRESSES................................................... 46 PLANTS AND SALES OFFICES ADDRESSES.................................................. 47 Canam is a trademark of Canam Group Inc. 3

4

OUR SOLUTIONS AND SERVICES Canam Canada specializes in the fabrication of steel joists, joist girders, steel deck, and purlins and girts used in the construction of commercial, industrial, and institutional buildings. We offer customers value-added engineering and drafting support, architectural flexibility, and customized solutions and service. Canam Canada is one of the largest steel joist fabricators in North America. Because product quality, job site management and timelines are critical to the execution of any project, big or small, our reliability makes life easier for our customers. From design to delivery, our products stand out in terms of their exceptional quality. It should therefore come as no surprise that, thanks to our cutting-edge equipment, skilled employees and top-quality products, Canam Canada always delivers on its promises. Whatever the nature or scope of your project, we will meet your requirements and comply with all building codes applicable in your area. At Canam Canada, we know that, for our customers, time is money. This is why we have developed a rigorous job site management process to ensure that deadlines are met, period. To further streamline this process, our fleet of trucks stands ready to assure on-time delivery, regardless of the location. CAUTIONARY STATEMENT Although every effort was made to ensure that all data contained in this catalog is factual and that the numerical values are accurate to a degree consistent with current cold-formed steel design practices, Canam Canada does not assume any responsibility whatsoever for errors or oversights that may result from the use of the information contained herein. Anyone making use of the contents of this catalog assumes all liability arising from such use. All comments and suggestions for improvements to this publication are appreciated and will receive full consideration in future editions. 5

INTRODUCTION Purlins and girts are complementary products to structural steel and used primarily in the walls and roof of a building. All purlins and girts are cold-formed using high-performance steel in order to minimize weight while maximizing capacity. As with all Canam Canada products, our purlins and girts meet strict quality standards. Canam Canada fabricates a complete range of C and Z sections for use as purlins and girts at its plant in Boucherville, Quebec. The nominal depth of these sections varies from 6 inches (152 mm) to 14 inches (356 mm). ADVANTAGES Our automated equipment eliminates waste by cutting sections to exact length, which results in substantial cost savings for our customers. We can also manufacture sections according to your shop drawings. Canam Canada can equally apply a coat of red or grey primer to cold-formed sections according to the specifications of CPMA Standard 1-73A. This service is offered at a competitive price. HIGH-PERFORMANCE STEEL All purlins and girts are cold-formed from high-strength steel in order to minimize weight while maximizing capacity. The steel used to fabricate such members complies with the requirements of ASTM Standard A1011 HSLAS Grade 50. DESIGN The capacity of all Canam Canada cold-formed C and Z sections complies with the requirements of the CAN/CSA- S136-M07 North American Specification for the Design of Cold Formed Steel Structural Members with a material grade of 345 MPa (50 ksi). TOLERANCES The fabrication tolerances of all Canam Canada coldformed C and Z sections comply with those specified in the ACNOR CAN/CSA-A660-M04 standard for the Certification of Manufacturers of Steel Building Systems. Material thickness tolerances comply with standard ACNOR CAN/CSA-S136-M07. COMPLETE FABRICATION SERVICES In addition to our standard cut-to-length, punching and painting services, Canam Canada is now pleased to offer customers a turnkey fabrication solution for purlins and girts. The installation of connections and punching is performed at our plant according to your shop drawings. Customers who entrust the fabrication of their purlins and girts to Canam Canada benefit from multiple advantages: A finished product that is delivered directly to the job site Time savings (no changes or deliveries to the customer s facility) Lower manpower costs Reduced shipping and handling costs (no deliveries to the job site from the customer s facility) To obtain a quote or for additional information, please contact one of our sales representatives. 6

LATERAL STABILITY OF PURLINS THROUGH-FASTENED ROOF The use of a through-fastened roof does not preclude the need for proper purlin bracing. The roof structure can provide lateral stability but supplies no torsional stability whatsoever for Z or C sections. Discrete bracing should therefore be incorporated in the design phase in order to control torsional flexural buckling. DEFINITION OF DISCRETE BRACING A discrete brace can take a multitude of different forms as seen in the figures below. All of these types of bracing are discrete because the movement is controlled only at the particular brace point (Galambos 1998). The required bracing force and stiffness for this type of brace is dependant upon the number of braces provided STANDING SEAM ROOF The use of a standing seam roof does not preclude the need for adequate purlin bracing. The roof structure can only provide partial lateral stability and supplies no torsional stability whatsoever for Z or C sections. Discrete bracing should therefore be incorporated in the design phase in order to control torsional flexural buckling. EXAMPLES OF LATERAL STABILITY: TYPE 1 Symmetrical about the ridge Purlin brace Ridge brace TYPE 2 Symmetrical about the ridge Ridge channel Cope angles at top flange Angle cross brace at eaves Angle top and bottom (typical) Fasteners at each purlin (typical) Eave strut 7

LATERAL STABILITY OF PURLINS TYPE 3 Symmetrical about the ridge Steel deck Channel bracing Eave strut Ridge channel C section for discrete bracing Clip angle Purlin Structural bolts ANCHORAGE OF PURLIN BRACING (ANTI-ROLL SAFEGUARD) If no discrete bracing line is used, anchorage is required at each purlin support, which must be designed to resist in-plane forces. In certain instances, anti-roll clips may also be necessary. EXAMPLES: Purlin Anti-roll clip Structural fastener Purlin Shop weld Structural fastener Anti-roll stiffener Purlin Shop weld Anti-roll U section Structural fastener Horizontal plate Horizontal plate Structural bolts Structural bolts Structural bolts If one or more discrete bracing lines are used between purlin supports, the supports must be designed to resist in-plane forces as explained in the paragraph above. Substantial anchorage is required for the discrete bracing line at each eave and ridge end. The applied load on each line can be calculated according to standard S136. 8

LATERAL STABILITY OF PURLINS EXAMPLES: Purlin X purlin brace Single purlin brace NOTE: The purlin bracing is always installed in the same way regardless of the secondary member being used, including C and Z sections, struts, angles, etc. A A Single purlin brace (every other span) (1) Fastener Steel deck roof Single purlin brace Purlin X purlin brace (1) Fastener VIEW A-A PLAN VIEW OF PURLIN BRACING LOCATIONS PER BAY 1) A minimum of two rows of purlin bracing is required for long spans, regardless of the length of the bay (see the tables on pages 13-16). 2) The purlin bracings are spaced as shown in the diagram below. Rafter Purlin Rafter Purlin Single purlin brace Purlin lap Single purlin brace Purlin lap X purlin brace X purlin brace 0.38 x span 0.24 x span 0.38 x span = = = = Span Span Spacing for two rows Spacing for three rows Location of purlin bracing on a pitch 2/12 9

LATERAL STABILITY OF PURLINS SAMPLE CALCULATIONS METRIC Snow load = 2.4 kpa Wind pressure = 0.6 kpa Dead load = 1 kpa 8,000 mm 7 spaces of 1,100 mm Ridge channel Z section Wind (uplift) = 1.2 kpa 12 2 Example: Single span of Lx = 6,000 mm with a 1,100 mm spacing between Z sections. There are 9 sections (7 spaces of 1,100 mm) per building slope with a roof pitch of 41.67 in 250 mm (angle of a = 9.46 degrees). The sloped length of one side is 8,000 mm with 300 mm between the ridge and the last section. Loads: Dead load (dl) of 1.0 kpa Snow load (sl) = 2.4 kpa Gross wind load in pressure (wp) = 0.6 kpa and 1.2 kpa of wind uplift (wu) STEP 1: CALCULATION OF Z SECTION WN AND WT LOADS FOR EACH LOAD wn dl = dl cos (a) Spacing = 1.09 kn/m wn sl = sl [cos (a)] 2 Spacing = 2.57 kn/m wn wp = wp Spacing = 0.66 kn/m wn wu = wu Spacing = 1.32 kn/m } wn wt dl = dl sin (a) Spacing = 0.18 kn/m wt sl = sl [sin (a)] 2 Spacing = 0.07 kn/m } wt STEP 2: LOAD COMBINATIONS ACCORDING TO THE 2005 NATIONAL BUILDING CODE Gravity: the greater of: 1.25 wn dl + 1.5 wn sl + 0.4 wn wp = 5.48 kn/m control 1.25 wn dl + 0.5 wn sl + 1.4 wn wp = 3.57 kn/m total wn = 5.48 kn/m total wt = 0.33 kn/m Uplift: 0.90 wn dl 1.4 wn wu = 0.87 kn/m 10

LATERAL STABILITY OF PURLINS STEP 3: CALCULATION OF LOADS ACCORDING TO WT AND WN Single span: Mf x = total wn Lx 2 / 8 = 24.66 kn m Mf y = total wt Lt 2 / 8 = 0.37 kn m Where: Lt is the maximum distance between supports where discrete bracings are found. Assumption: According to the Canam table, one row of local lateral restraints at regular intervals, therefore, Lt = 3,000 mm. Vf = total Wn Lx / 2 = 16.44 kn Mf uplift = uplift Lx 2 / 8 = 3.92 kn m STEP 4: PRELIMINARY CHOICE OF A SECTION Choice: new nomenclature: 305Z76-326M; former nomenclature: Z305x14 Assumption: the roof deck only partially maintains the compression flange on the Z section with a standing seam roof. Connections every 610 mm c/c provide only partial lateral support. Calculation of the moment under gravity loads Value of the Canam table (Mu) for Lt = 3,000 mm = 26.5 kn m Mrx = Mu Mry = 0.9 Sy Fy = 6.77 kn m where Sy = 21.8 x 10 3 mm 3 and Fy = 345 MPa according to the Canam table Interaction equations Mfx / Mrx + Mfy / Mry = 0.99 <= 1 ACCEPTABLE Calculation of the moment under uplift loads Mr uplift = Value of the Canam table (Mu for Lt = 3,000 mm) = 26.5 kn m Note: local lateral restraints can be used for uplift. Mf uplift / Mr uplift = 0.15 <= 1 ACCEPTABLE Calculation of shear (worst case scenario is shear near the support) Vr = Value of the Canam table (Vr) = 92.90 kn Vf / Vr = 0.18 <= 1 ACCEPTABLE Calculation of web crippling with 100 mm of bearing Pr = Value of the Canam table (Pr) = 24.80 kn Pr reduced because of the pitch = Pr [sin (90 a)] 2 = 24.13 kn Vf / Pr reduced = 0.68 <= 1 ACCEPTABLE Reinforcement between the bearing and the support in the section s web is therefore not required in this step. Calculation of deflection I min (deflection < span / 180) = 180 x 5 x (wn sl + wn wp) x Lx 3 / (384 x 200,000 MPa) = 8.173 x 10 6 mm. The Ix inertia of section 305Z76-326M according to the catalog is 22 x 10 6 mm 4 greater than the minimum inertia. Section 305Z76-326M (Z305x14) is acceptable. 11

LATERAL STABILITY OF PURLINS STEP 5: DESIGN OF THE ROW OF BRACING MEMBERS AND THE RIDGE CONNECTION According to the information in table 1 on page 13, the factored vertical load of a 6,000 mm purlin with a 2/12 pitch and a bracing line is 0.367/section/1.0 kn/m. The axial load of 8 sloped sections with a factored vertical load of 5.48 kn/m is: 0.367 x 8 purlins per slope x 5.48 kn/m = 16.1 kn factored/bracing line. The local lateral restraint must be sized from top to bottom to transfer this load. In our example, the pitch is 2/12, the lateral restraint could be an angle welded from top to bottom with a cross bridging weld every 3 spaces from top to bottom. Other types of lateral restraint can also be used (see the beginning of the present section). In our example, the 16.1 kn load will be offset by the component connecting the Z section on each side of the ridge. The sizing of this part must be designed to achieve 16.1 kn where the section will be attached. STEP 6: DESIGN OF SUPPORTS ACCORDING TO THE PN EFFORT The Pn effort per section in each top flange above the support is 2.01 kn, which is equivalent to 0.367 (as indicated in table 1 on page 13) multiplied by 5.48 kn/m. The moment developed in the section is equal to Pn x height of the section = Mf support = 2.01 kn x 305 mm = 613.05 kn mm. Mr support = 0.9 x (Sx) x Fy = 0.9 x [(width at the bearing) x (thickness of the section) 2 /4] x 0.350 = 186.07 kn mm Where: width at the bearing = height of the section in mm. Mf> Mr NOT ACCEPTABLE. According to Step 4, an anti-roll clip must be installed between the web and the support. Two options are possible at this stage: the use of either a stiffener or an angle of suitable thickness (see page 8 for examples of anti-roll stiffeners). If an angle is used, it must have a minimum thickness of 8 mm by 200 mm wide and 200 mm high, which is equivalent to Mr = 864 kn mm. The use of this option presumes that only the angle is connected to the support. The choice of a 75 mm long by 200 mm high by 3 mm thick bearing stiffener would allow for a 200 mm wide by 200 mm high by 3 mm thick angle, which is lighter. General notes: In the example above, the use of only one local lateral restraint slightly increases the weight of the Z section. However, the second discrete bracing line could have a greater impact. Consider the results with 2 rows: 2 discrete bracing lines with the same pitch: 254Z76-290M with a Pn = 0.167 of the table x 8 x 5.48 kn/m = 7.3 kn/bracing line. Note that if no discrete bracing line had been used in this second example, it would not be considered acceptable even in the presence of several sag rod lines and with the largest available section. The choice of conventional steel deck instead of a standing seam roof is slightly conservative for a sloped roof when the tables in the present catalog are used. 12

LATERAL STABILITY OF PURLINS LOADS ON DISCRETE BRACING LINES METRIC TABLE 1 Z SECTIONS ON A 2/12 ROOF PITCH AND DISCRETE BRACING LOAD COEFFICIENTS (Pn) Span 3,000 mm 3,000 mm 4,500 mm 4,500 mm 6,000 mm 6,000 mm 6,000 mm 7,000 mm 7,000 mm Number of discrete bracing 1 2 1 2 1 2 3 2 3 Material 152Z76-144M 0.026 0.032 0.130 0.034 0.399 0.156 0.117 0.266 0.200 152Z76-181M 0.012 0.022 0.151 0.049 0.426 0.174 0.131 0.289 0.217 152Z76-218M 0.002 0.013 0.171 0.063 0.453 0.194 0.145 0.311 0.233 152Z76-254M 0.016 0.003 0.192 0.078 0.480 0.213 0.160 0.333 0.250 152Z76-290M 0.029 0.007 0.212 0.092 0.507 0.232 0.174 0.355 0.266 152Z76-326M 0.043 0.016 0.233 0.106 0.534 0.251 0.188 0.377 0.283 203Z76-144M 0.157 0.101 0.146 0.108 0.077 0.087 0.065 0.056 0.042 203Z76-181M 0.149 0.096 0.135 0.100 0.062 0.076 0.057 0.044 0.033 203Z76-218M 0.141 0.090 0.124 0.092 0.048 0.066 0.049 0.032 0.024 203Z76-254M 0.134 0.085 0.113 0.103 0.033 0.055 0.041 0.020 0.015 203Z76-290M 0.126 0.079 0.101 0.076 0.018 0.044 0.033 0.008 0.006 203Z76-326M 0.119 0.074 0.090 0.068 0.003 0.034 0.026 0.004 0.003 229Z76-181M 0.185 0.115 0.210 0.139 0.190 0.141 0.106 0.131 0.099 229Z76-218M 0.179 0.110 0.201 0.133 0.178 0.133 0.100 0.121 0.091 229Z76-254M 0.173 0.106 0.192 0.127 0.167 0.125 0.094 0.112 0.084 229Z76-290M 0.167 0.102 0.183 0.120 0.155 0.117 0.088 0.103 0.077 229Z76-326M 0.161 0.098 0.174 0.114 0.143 0.109 0.081 0.093 0.070 254Z76-181M 0.210 0.128 0.262 0.166 0.279 0.188 0.141 0.192 0.144 254Z76-218M 0.205 0.125 0.255 0.161 0.270 0.181 0.136 0.184 0.138 254Z76-254M 0.200 0.121 0.248 0.156 0.260 0.174 0.132 0.177 0.133 254Z76-290M 0.196 0.118 0.241 0.151 0.251 0.167 0.126 0.169 0.127 254Z76-326M 0.191 0.114 0.234 0.146 0.242 0.161 0.121 0.161 0.121 305Z76-181M 0.242 0.146 0.329 0.201 0.392 0.246 0.184 0.269 0.202 305Z76-218M 0.239 0.143 0.324 0.198 0.379 0.241 0.181 0.264 0.198 305Z76-254M 0.236 0.141 0.319 0.194 0.379 0.237 0.177 0.259 0.194 305Z76-290M 0.232 0.138 0.314 0.191 0.373 0.232 0.174 0.253 0.190 305Z76-326M 0.228 0.136 0.309 0.187 0.367 0.227 0.171 0.248 0.186 356Z76-181M 0.261 0.156 0.367 0.221 0.458 0.280 0.210 0.314 0.236 356Z76-218M 0.259 0.154 0.364 0.219 0.453 0.276 0.207 0.310 0.233 356Z76-254M 0.256 0.152 0.360 0.216 0.449 0.273 0.205 0.307 0.230 356Z76-290M 0.254 0.150 0.357 0.214 0.444 0.270 0.202 0.303 0.227 356Z76-326M 0.251 0.149 0.353 0.211 0.439 0.266 0.200 0.299 0.224 Pn = load coefficient per section for 1 kn/m of factored vertical load per discrete bracing line. Axial load in a bracing line (kn) = number of sections per slope x the Pn value indicated in the table x factored vertical load in kn/m. (See Step 5 of the example on page 12 for more information.) 13

LATERAL STABILITY OF PURLINS TABLE 2 Z SECTIONS ON A 4/12 ROOF PITCH AND DISCRETE BRACING LOAD COEFFICIENTS (Pn) Span 3,000 mm 3,000 mm 4,500 mm 4,500 mm 6,000 mm 6,000 mm 6,000 mm 7,000 mm 7,000 mm Number of discrete bracing 1 2 1 2 1 2 3 2 3 Material 152Z76-144M 0.319 0.204 0.316 0.227 0.204 0.197 0.147 0.148 0.111 152Z76-181M 0.305 0.194 0.296 0.213 0.179 0.179 0.134 0.126 0.095 152Z76-218M 0.292 0.185 0.276 0.199 0.153 0.160 0.120 0.105 0.079 152Z76-254M 0.279 0.176 0.257 0.185 0.126 0.142 0.106 0.084 0.063 152Z76-290M 0.266 0.167 0.237 0.171 0.100 0.123 0.093 0.062 0.047 152Z76-326M 0.253 0.157 0.217 0.157 0.074 0.105 0.079 0.041 0.031 203Z76-144M 0.445 0.270 0.582 0.364 0.662 0.430 0.322 0.458 0.344 203Z76-181M 0.436 0.265 0.571 0.356 0.648 0.419 0.314 0.446 0.335 203Z76-218M 0.430 0.260 0.567 0.348 0.634 0.409 0.307 0.435 0.326 203Z76-254M 0.423 0.254 0.549 0.341 0.620 0.399 0.299 0.423 0.317 203Z76-290M 0.416 0.249 0.539 0.333 0.606 0.389 0.292 0.411 0.309 203Z76-326M 0.408 0.244 0.528 0.325 0.591 0.379 0.284 0.400 0.300 229Z76-181M 0.472 0.283 0.643 0.393 0.771 0.483 0.362 0.530 0.397 229Z76-218M 0.466 0.279 0.634 0.387 0.760 0.474 0.356 0.521 0.391 229Z76-254M 0.460 0.275 0.626 0.381 0.749 0.467 0.350 0.511 0.384 229Z76-290M 0.455 0.271 0.617 0.375 0.737 0.459 0.344 0.503 0.377 229Z76-326M 0.449 0.267 0.609 0.369 0.726 0.451 0.338 0.493 0.370 254Z76-181M 0.496 0.296 0.693 0.420 0.857 0.527 0.395 0.589 0.441 254Z76-218M 0.491 0.293 0.687 0.415 0.848 0.520 0.390 0.581 0.436 254Z76-254M 0.487 0.290 0.680 0.410 0.839 0.514 0.386 0.574 0.430 254Z76-290M 0.482 0.287 0.673 0.405 0.830 0.507 0.381 0.566 0.425 254Z76-326M 0.478 0.283 0.666 0.400 0.821 0.501 0.376 0.559 0.419 305Z76-181M 0.527 0.313 0.757 0.453 0.966 0.583 0.437 0.663 0.497 305Z76-218M 0.524 0.311 0.753 0.450 0.959 0.578 0.434 0.658 0.493 305Z76-254M 0.521 0.309 0.748 0.447 0.953 0.574 0.430 0.653 0.490 305Z76-290M 0.517 0.306 0.743 0.443 0.947 0.570 0.427 0.648 0.486 305Z76-326M 0.514 0.304 0.739 0.440 0.941 0.565 0.424 0.643 0.482 356Z76-181M 0.545 0.323 0.794 0.473 1.029 0.615 0.461 0.706 0.530 356Z76-218M 0.543 0.321 0.791 0.470 1.024 0.612 0.459 0.703 0.527 356Z76-254M 0.540 0.319 0.788 0.468 1.020 0.609 0.457 0.699 0.524 356Z76-290M 0.538 0.318 0.784 0.466 1.015 0.606 0.454 0.695 0.521 356Z76-326M 0.536 0.316 0.781 0.463 1.011 0.603 0.452 0.691 0.519 Pn = load coefficient per section for 1 kn/m of factored vertical load per discrete bracing line. Axial load in a bracing line (kn) = number of sections per slope x the Pn value indicated in the table x factored vertical load in kn/m. (See Step 5 of the example on page 12 for more information.) 14

LATERAL STABILITY OF PURLINS TABLE 3 C SECTIONS ON A 2/12 ROOF PITCH AND DISCRETE BRACING LOAD COEFFICIENTS (Pn) Span 3,000 mm 3,000 mm 4,500 mm 4,500 mm 6,000 mm 6,000 mm 6,000 mm 7,000 mm 7,000 mm Number of discrete bracing 1 2 1 2 1 2 3 2 3 Material 152S70-144M 0.148 0.069 0.221 0.104 0.296 0.139 0.104 0.162 0.121 152S70-181M 0.109 0.042 0.163 0.063 0.218 0.084 0.063 0.099 0.074 152S70-218M 0.070 0.015 0.106 0.023 0.141 0.030 0.022 0.036 0.003 152S70-254M 0.032 0.011 0.048 0.017 0.064 0.023 0.019 0.027 0.022 152S70-290M 0.006 0.038 0.009 0.057 0.012 0.076 0.059 0.089 0.067 152S70-326M 0.044 0.064 0.065 0.097 0.087 0.129 0.096 0.151 0.115 203S70-144M 0.222 0.121 0.333 0.182 0.443 0.242 0.181 0.283 0.211 203S70-181M 0.201 0.107 0.301 0.160 0.402 0.213 0.159 0.249 0.185 203S70-218M 0.181 0.092 0.271 0.139 0.361 0.185 0.137 0.216 0.163 203S70-254M 0.160 0.078 0.240 0.117 0.321 0.156 0.119 0.183 0.137 203S70-290M 0.140 0.064 0.210 0.096 0.280 0.128 0.096 0.150 0.111 203S70-326M 0.120 0.050 0.180 0.075 0.240 0.100 0.075 0.117 0.088 229S89-181M 0.202 0.107 0.303 0.161 0.404 0.215 0.161 0.251 0.188 229S89-218M 0.182 0.093 0.273 0.140 0.364 0.187 0.140 0.218 0.163 229S89-254M 0.162 0.079 0.243 0.119 0.323 0.159 0.119 0.185 0.139 229S89-290M 0.142 0.065 0.213 0.098 0.283 0.130 0.098 0.152 0.114 229S89-326M 0.122 0.051 0.183 0.077 0.243 0.102 0.077 0.119 0.090 254S89-144M 0.240 0.134 0.360 0.201 0.480 0.268 0.201 0.312 0.234 254S89-181M 0.224 0.123 0.336 0.184 0.447 0.245 0.184 0.286 0.214 254S89-218M 0.207 0.111 0.311 0.167 0.415 0.223 0.167 0.260 0.195 254S89-254M 0.191 0.100 0.287 0.150 0.383 0.200 0.150 0.233 0.175 254S89-290M 0.176 0.089 0.263 0.133 0.351 0.178 0.133 0.207 0.156 254S89-326M 0.160 0.078 0.240 0.117 0.320 0.156 0.117 0.181 0.136 305S89-181M 0.251 0.141 0.376 0.212 0.502 0.283 0.212 0.330 0.248 305S89-218M 0.240 0.134 0.360 0.201 0.480 0.268 0.201 0.313 0.234 305S89-254M 0.229 0.127 0.344 0.190 0.459 0.253 0.190 0.295 0.221 305S89-290M 0.219 0.119 0.328 0.179 0.438 0.238 0.179 0.278 0.209 305S89-326M 0.208 0.112 0.312 0.168 0.417 0.223 0.167 0.261 0.196 356S89-218M 0.259 0.147 0.389 0.221 0.519 0.295 0.221 0.344 0.258 356S89-254M 0.251 0.142 0.377 0.213 0.503 0.284 0.213 0.331 0.249 356S89-290M 0.244 0.137 0.366 0.205 0.488 0.274 0.205 0.319 0.239 356S89-326M 0.237 0.131 0.355 0.197 0.473 0.263 0.197 0.307 0.230 Pn = load coefficient per section for 1 kn/m of factored vertical load per discrete bracing line. Axial load in a bracing line (kn) = number of sections per slope x the Pn value indicated in the table x factored vertical load in kn/m. (See Step 5 of the example on page 12 for more information.) 15

LATERAL STABILITY OF PURLINS TABLE 4 C SECTIONS ON A 4/12 ROOF PITCH AND DISCRETE BRACING LOAD COEFFICIENTS (Pn) Span 3,000 mm 3,000 mm 4,500 mm 4,500 mm 6,000 mm 6,000 mm 6,000 mm 7,000 mm 7,000 mm Number of discrete bracing 1 2 1 2 1 2 3 2 3 Material 152S70-144M 0.436 0.240 0.654 0.360 0.872 0.480 0.360 0.560 0.420 152S70-181M 0.399 0.214 0.598 0.320 0.798 0.427 0.321 0.499 0.374 152S70-218M 0.362 0.188 0.543 0.281 0.723 0.376 0.281 0.438 0.329 152S70-254M 0.325 0.162 0.487 0.243 0.650 0.324 0.243 0.378 0.283 152S70-290M 0.289 0.136 0.433 0.205 0.577 0.273 0.205 0.318 0.239 152S70-326M 0.252 0.111 0.378 0.167 0.504 0.222 0.167 0.259 0.194 203S70-144M 0.507 0.290 0.761 0.434 1.014 0.579 0.434 0.676 0.507 203S70-181M 0.487 0.276 0.731 0.414 0.975 0.551 0.414 0.643 0.483 203S70-218M 0.468 0.262 0.701 0.393 0.936 0.524 0.393 0.611 0.459 203S70-254M 0.448 0.248 0.672 0.373 0.897 0.497 0.373 0.579 0.434 203S70-290M 0.429 0.235 0.643 0.352 0.858 0.470 0.352 0.548 0.411 203S70-326M 0.410 0.221 0.614 0.332 0.819 0.443 0.332 0.516 0.387 229S89-181M 0.489 0.277 0.733 0.415 0.977 0.553 0.415 0.645 0.484 229S89-218M 0.469 0.263 0.704 0.394 0.938 0.526 0.394 0.613 0.460 229S89-254M 0.450 0.249 0.674 0.374 0.899 0.499 0.374 0.581 0.436 229S89-290M 0.430 0.236 0.646 0.354 0.861 0.471 0.354 0.550 0.413 229S89-326M 0.411 0.222 0.613 0.333 0.822 0.445 0.333 0.519 0.389 254S89-144M 0.525 0.302 0.787 0.453 1.050 0.604 0.453 0.704 0.528 254S89-181M 0.509 0.291 0.764 0.436 1.019 0.582 0.436 0.679 0.509 254S89-218M 0.494 0.280 0.740 0.420 0.987 0.560 0.420 0.654 0.490 254S89-254M 0.478 0.269 0.717 0.404 0.957 0.539 0.404 0.629 0.471 254S89-290M 0.463 0.259 0.694 0.388 0.926 0.517 0.388 0.603 0.453 254S89-326M 0.448 0.248 0.671 0.372 0.896 0.496 0.372 0.579 0.434 305S89-181M 0.535 0.309 0.803 0.464 1.071 0.619 0.464 0.722 0.541 305S89-218M 0.525 0.302 0.787 0.453 1.057 0.604 0.453 0.705 0.529 305S89-254M 0.515 0.295 0.772 0.442 1.030 0.590 0.442 0.688 0.516 305S89-290M 0.504 0.288 0.757 0.431 1.009 0.575 0.431 0.671 0.503 305S89-326M 0.494 0.281 0.741 0.421 0.989 0.561 0.421 0.655 0.491 356S89-218M 0.543 0.315 0.815 0.472 1.087 0.630 0.472 0.735 0.551 356S89-254M 0.536 0.310 0.804 0.465 1.072 0.620 0.465 0.723 0.542 35SS89-290M 0.529 0.305 0.793 0.457 1.058 0.609 0.457 0.711 0.533 356S89-326M 0.521 0.300 0.782 0.450 1.043 0.599 0.450 0.699 0.524 Pn = load coefficient per section for 1 kn/m of factored vertical load per discrete bracing line. Axial load in a bracing line (kn) = number of sections per slope x the Pn value indicated in the table x factored vertical load in kn/m. (See Step 5 of the example on page 12 for more information.) 16

C SECTIONS NEW NOMENCLATURE New nomenclature International system Imperial system Former nomenclature SI Imperial d b h t d b h t SI Imperial 152S70-144M 600S275-57 152.4 69.9 25.4 1.52 6 2.75 1 0.06 C152x4.3 C6x2.9 152S70-181M 600S275-71 152.4 69.9 25.4 1.91 6 2.75 1 0.08 C152x5.2 C6x3.5 152S70-218M 600S275-86 152.4 69.9 25.4 2.29 6 2.75 1 0.09 C152x6.0 C6x4.0 152S70-254M 600S275-100 152.4 69.9 25.4 2.67 6 2.75 1 0.11 C152x7.0 C6x4.7 152S70-290M 600S275-114 152.4 69.9 25.4 3.05 6 2.75 1 0.12 C152x8.3 C6x5.6 152S70-326M 600S275-128 152.4 69.9 25.4 3.43 6 2.75 1 0.14 C152x8.9 C6x6.0 203S70-144M 800S275-57 203.2 69.9 25.4 1.52 8 2.75 1 0.06 C203x5.1 C8x3.4 203S70-181M 800S275-71 203.2 69.9 25.4 1.91 8 2.75 1 0.08 C203x6.0 C8x4.0 203S70-218M 800S275-86 203.2 69.9 25.4 2.29 8 2.75 1 0.09 C203x7.0 C8x4.7 203S70-254M 800S275-100 203.2 69.9 25.4 2.67 8 2.75 1 0.11 C203x8.0 C8x5.4 203S70-290M 800S275-114 203.2 69.9 25.4 3.05 8 2.75 1 0.12 C203x9.1 C8x6.1 203S70-326M 800S275-128 203.2 69.9 25.4 3.43 8 2.75 1 0.14 C203x10.6 C8x7.1 229S89-181M 900S350-71 228.6 88.9 25.4 1.91 9 3.50 1 0.08 C229x6.8 C9x4.6 229S89-218M 900S350-86 228.6 88.9 25.4 2.29 9 3.50 1 0.09 C229x8.0 C9x5.4 229S89-254M 900S350-100 228.6 88.9 25.4 2.67 9 3.50 1 0.11 C229x9.4 C9x6.3 229S89-290M 900S350-114 228.6 88.9 25.4 3.05 9 3.50 1 0.12 C229x10.7 C9x7.2 229S89-326M 900S350-128 228.6 88.9 25.4 3.43 9 3.50 1 0.14 C229x11.9 C9x8.0 254S89-144M 1000S350-57 254.0 88.9 25.4 1.52 10 3.50 1 0.06 C254x5.7 C10x3.8 254S89-181M 1000S350-71 254.0 88.9 25.4 1.91 10 3.50 1 0.08 C254x7.0 C10x4.7 254S89-218M 1000S350-86 254.0 88.9 25.4 2.29 10 3.50 1 0.09 C254x8.6 C10x5.8 254S89-254M 1000S350-100 254.0 88.9 25.4 2.67 10 3.50 1 0.11 C254x10.0 C10x6.7 254S89-290M 1000S350-114 254.0 88.9 25.4 3.05 10 3.50 1 0.12 C254x11.3 C10x7.6 254S89-326M 1000S350-128 254.0 88.9 25.4 3.43 10 3.50 1 0.14 C254x12.7 C10x8.5 305S89-181M 1200S350-71 304.8 88.9 25.4 1.91 12 3.50 1 0.08 C305x8.0 C12x5.4 305S89-218M 1200S350-86 304.8 88.9 25.4 2.29 12 3.50 1 0.09 C305x9.5 C12x6.4 305S89-254M 1200S350-100 304.8 88.9 25.4 2.67 12 3.50 1 0.11 C305x11.0 C12x7.4 305S89-290M 1200S350-114 304.8 88.9 25.4 3.05 12 3.50 1 0.12 C305x12.5 C12x8.4 305S89-326M 1200S350-128 304.8 88.9 25.4 3.43 12 3.50 1 0.14 C305x14.0 C12x9.4 356S89-218M 1400S350-86 355.6 88.9 25.4 2.29 14 3.50 1 0.09 C356x10.4 C14x7.0 356S89-254M 1400S350-100 355.6 88.9 25.4 2.67 14 3.50 1 0.11 C356x12.1 C14x8.1 356S89-290M 1400S350-114 355.6 88.9 25.4 3.05 14 3.50 1 0.12 C356x13.8 C14x9.3 356S89-326M 1400S350-128 355.6 88.9 25.4 3.43 14 3.50 1 0.14 C356x15.5 C14x10.4 NEW NOMENCLATURE SI EXAMPLE: 152S70-144M With 152 = depth of section (mm) S = C section 70 = flange width (mm) 144 = minimum steel thickness, i.e. 95% of the design thickness (10-2 mm) M = International system nomenclature (metric) IMPERIAL EXAMPLE: 600S275-57 With 600 = depth of section (10-2 in.) S = C section 275 = flange width (10-2 in.) 57 = minimum steel thickness, i.e. 95% of the design thickness (10-3 in.) FORMER NOMENCLATURE SI EXAMPLE: C152x4.3 With C = C section 152 = depth of section (mm) 4.3 = nominal linear weight (kg/m) IMPERIAL EXAMPLE: C6x2.9 With C = C section 6 = depth of section (in.) 2.9 = nominal linear weight (lb./ft.) 17

C SECTIONS PROPERTIES METRIC Y b h t/2 t X d S.C. C.G. X e x Y EXAMPLE: 152S70-144M With 152 = depth of section (mm) S = C section 70 = flange width (mm) 144 = minimum steel thickness, i.e. 95% of the design thickness (10-2 mm) M = International system nomenclature (metric) SECTIONS DIMENSIONS No. New Former nomenclature nomenclature d b h t 1 152S70-144M C152x4.3 152.4 69.9 25.4 1.52 2 152S70-181M C152x5.2 152.4 69.9 25.4 1.91 3 152S70-218M C152x6.0 152.4 69.9 25.4 2.29 4 152S70-254M C152x7.0 152.4 69.9 25.4 2.67 5 152S70-290M C152x8.3 152.4 69.9 25.4 3.05 6 152S70-326M C152x8.9 152.4 69.9 25.4 3.43 7 203S70-144M C203x5.1 203.2 69.9 25.4 1.52 8 203S70-181M C203x6.0 203.2 69.9 25.4 1.91 9 203S70-218M C203x7.0 203.2 69.9 25.4 2.29 10 203S70-254M C203x8.0 203.2 69.9 25.4 2.67 11 203S70-290M C203x9.1 203.2 69.9 25.4 3.05 12 203S70-326M C203x10.6 203.2 69.9 25.4 3.43 13 229S89-181M C229x6.8 228.6 88.9 25.4 1.91 14 229S89-218M C229x8.0 228.6 88.9 25.4 2.29 15 229S89-254M C229x9.4 228.6 88.9 25.4 2.67 16 229S89-290M C229x10.7 228.6 88.9 25.4 3.05 17 229S89-326M C229x11.9 228.6 88.9 25.4 3.43 18 254S89-144M C254x5.7 254.0 88.9 25.4 1.52 19 254S89-181M C254x7.0 254.0 88.9 25.4 1.91 20 254S89-218M C254x8.6 254.0 88.9 25.4 2.29 21 254S89-254M C254x10.0 254.0 88.9 25.4 2.67 22 254S89-290M C254x11.3 254.0 88.9 25.4 3.05 23 254S89-326M C254x12.7 254.0 88.9 25.4 3.43 24 305S89-181M C305x8.0 304.8 88.9 25.4 1.91 25 305S89-218M C305x9.5 304.8 88.9 25.4 2.29 26 305S89-254M C305x11.0 304.8 88.9 25.4 2.67 27 305S89-290M C305x12.5 304.8 88.9 25.4 3.05 28 305S89-326M C305x14.0 304.8 88.9 25.4 3.43 29 356S89-218M C356x10.4 355.6 88.9 25.4 2.29 30 356S89-254M C356x12.1 355.6 88.9 25.4 2.67 31 356S89-290M C356x13.8 355.6 88.9 25.4 3.05 32 356S89-326M C356x15.5 355.6 88.9 25.4 3.43 (Table continued on page 19) 18

C SECTIONS Regular units of measurement are shown in parentheses. d = depth of section (mm) b = flange width (mm) h = length of lip (mm) t = steel thickness (mm) A = gross area of section (mm 2 ) C.G. = center of gravity S.C. = shear center I x = moment of inertia about axis X-X: maximum compressive stress = 0.6 F y (10 6 mm 4 ) S x eff = elastic section modulus about axis X-X: maximum compressive stress = 0.9 F y (10 3 mm 3 ) r x = radius of gyration about axis X-X (mm) I y = moment of inertia about axis Y-Y (10 6 mm 4 ) S y eff = elastic section modulus about axis Y-Y: maximum compressive stress = 0.9 F y (10 3 mm 3 ) r y = radius of gyration about axis Y-Y (mm) x = distance from center of web to center of gravity (mm) e = distance from center of web to shear center (mm) PROPERTIES SECTIONS I x S x eff r x I y S y eff r y x e A New nomenclature (imperial) 1.87 21.82 60.9 0.37 8.12 27.1 23.6 36.8 503 600S275-57 2.30 30.16 60.7 0.45 9.96 26.9 23.5 36.6 625 600S275-71 2.73 35.86 60.5 0.53 11.73 26.7 23.3 36.4 746 600S275-86 3.15 41.34 60.3 0.61 13.43 26.6 23.1 36.2 865 600S275-100 3.56 46.69 60.1 0.68 15.06 26.4 22.9 36.0 983 600S275-114 3.95 51.90 60.0 0.76 16.62 26.2 22.7 35.9 1,100 600S275-128 3.65 30.49 79.3 0.41 8.36 26.5 20.5 33.9 580 800S275-57 4.51 43.06 79.1 0.50 10.27 26.3 20.3 33.7 722 800S275-71 5.36 52.59 78.9 0.59 12.09 26.1 20.1 33.5 862 800S275-86 6.19 60.94 78.6 0.67 13.85 25.9 20.0 33.3 1,001 800S275-100 7.00 68.94 78.4 0.75 15.53 25.7 19.8 33.1 1,138 800S275-114 7.80 76.77 78.2 0.83 17.15 25.6 19.6 32.9 1,274 800S275-128 6.89 49.31 90.4 0.92 14.83 33.0 26.0 41.8 843 900S350-71 8.20 60.84 90.2 1.09 17.53 32.8 25.8 41.6 1,007 900S350-86 9.48 77.13 90.0 1.25 20.14 32.6 25.6 41.4 1,170 900S350-100 10.74 89.36 89.8 1.40 22.66 32.5 25.5 41.2 1,332 900S350-114 11.98 102.29 89.6 1.55 25.10 32.3 25.3 41.0 1,492 900S350-128 7.10 42.26 99.6 0.77 12.17 32.8 24.8 40.6 716 1000S350-57 8.81 55.69 99.4 0.95 14.99 32.6 24.6 40.4 891 1000S350-71 10.48 68.98 99.2 1.12 17.72 32.5 24.4 40.3 1,065 1000S350-86 12.13 87.66 99.0 1.29 20.36 32.3 24.2 40.1 1,238 1000S350-100 13.75 103.18 98.8 1.45 22.91 32.1 24.1 39.9 1,409 1000S350-114 15.34 118.01 98.6 1.61 25.38 31.9 23.9 39.7 1,579 1000S350-128 13.51 68.53 117.0 1.00 15.24 31.8 22.2 38.1 988 1200S350-71 16.10 85.39 116.7 1.18 18.02 31.7 22.0 37.9 1,182 1200S350-86 18.64 108.89 116.5 1.36 20.71 31.5 21.9 37.7 1,373 1200S350-100 21.15 128.96 116.3 1.53 23.31 31.3 21.7 37.5 1,564 1200S350-114 23.62 150.50 116.1 1.70 25.82 31.1 21.5 37.3 1,753 1200S350-128 23.24 101.93 133.8 1.24 18.25 30.9 20.1 35.8 1,298 1400S350-86 26.93 130.31 133.6 1.42 20.98 30.7 19.9 35.7 1,509 1400S350-100 30.57 154.87 133.4 1.60 23.61 30.5 19.7 35.5 1,719 1400S350-114 34.15 181.38 133.1 1.77 26.16 30.3 19.6 35.3 1,927 1400S350-128 19

C SECTIONS SELECTION TABLE FOR FACTORED LOADS METRIC F y = specified minimum yield strength = 345 MPa M re = factored moment resistance (kn m) M u = factored moment resistance considering lateral buckling (kn m) L u = maximum laterally unsupported length for which a member can develop Mr (mm) V r = factored shear resistance (kn) P r = factored bearing resistance (kn) for a 100 mm bearing The tables on the following pages list M r, the factored bending moment resistance for Canam C sections, as well as L u, the maximum laterally unsupported length without lateral support in torsion and buckling for which this moment is valid. The maximum shear resistance, V r, is listed for each section. M u is the maximum factored bending moment that the section can resist at the specified laterally unsupported length (L u ). The maximum factored bearing resistance, P r, is given for a bearing length of 100 mm. SECTIONS No. New Former nomenclature nomenclature V r P r L u M re 1 152S70-144M C152x4.3 15.5 5.9 1,523 6.9 2 152S70-181M C152x5.2 26.9 9.0 1,519 8.9 3 152S70-218M C152x6.0 38.7 12.6 1,516 10.7 4 152S70-254M C152x7.0 49.5 16.8 1,514 12.3 5 152S70-290M C152x8.3 56.2 21.4 1,512 13.9 6 152S70-326M C152x8.9 62.8 26.6 1,512 15.4 7 203S70-144M C203x5.1 12.2 5.7 1,484 9.3 8 203S70-181M C203x6.0 23.9 8.7 1,478 12.6 9 203S70-218M C203x7.0 41.3 12.2 1,473 15.7 10 203S70-254M C203x8.0 56.2 16.3 1,468 18.1 11 203S70-290M C203x9.1 73.3 20.8 1,464 20.5 12 203S70-326M C203x10.6 91.7 25.9 1,461 22.8 13 229S89-181M C229x6.8 19.9 8.6 1,805 15.0 14 229S89-218M C229x8.0 34.5 12.0 1,800 18.5 15 229S89-254M C229x9.4 53.0 16.1 1,795 23.7 16 229S89-290M C229x10.7 69.1 20.6 1,791 27.5 17 229S89-326M C229x11.9 87.4 25.6 1,787 31.2 18 254S89-144M C254x5.7 9.4 5.5 1,800 12.8 19 254S89-181M C254x7.0 18.3 8.4 1,794 16.9 20 254S89-218M C254x8.6 31.7 11.9 1,788 21.0 21 254S89-254M C254x10.0 50.5 15.9 1,783 26.9 22 254S89-290M C254x11.3 70.9 20.4 1,778 31.6 23 254S89-326M C254x12.7 89.7 25.3 1,774 35.9 24 305S89-181M C305x8.0 15.7 8.2 1,774 20.8 25 305S89-218M C305x9.5 27.2 11.6 1,768 26.0 26 305S89-254M C305x11.0 43.3 15.5 1,762 33.4 27 305S89-290M C305x12.5 64.8 19.9 1,756 39.4 28 305S89-326M C305x14.0 92.4 24.8 1,750 45.7 29 356S89-218M C356x10.4 23.8 11.3 1,748 31.0 30 356S89-254M C356x12.1 37.8 15.2 1,742 39.9 31 356S89-290M C356x13.8 56.6 19.5 1,735 47.2 32 356S89-326M C356x15.5 80.7 24.4 1,729 55.0 (Table continued on page 21) 20

C SECTIONS Example: Single span of 7,500 mm, spacing of 1,600 mm: external pressure + internal suction (0.38 + 0.32) = 0.70 kpa external suction + internal pressure (0.28 + 0.32) = 0.60 kpa Use two X bracings to prevent the section from buckling and torsion at a third of the span and hold the girt line straight ; metal siding on outside flange attached every 310 mm c/c. Pressure w f = 1.4 x 0.70 kpa x 1.6 m = 1.57 kn/m Suction w f = 1.4 x 0.60 kpa x 1.6 m = 1.34 kn/m + M f = 1.57 kn/m x (7.5 m) 2 / 8 = 11.04 kn m - M f = 1.34 kn/m x (7.5 m) 2 / 8 = 9.45 kn m V f = 1.57 kn/m x 7.5 m / 2 = 5.89 kn I min (deflection < span / 180) = 180 x 5 x 1.12 kn/m x (7,500 mm) 3 384 x 200,000 MPa = 5.5 x 10 6 mm 4 The Properties table lists many profiles with a value of I x greater than I min : 203S70-254M I x = 6.2 x 10 6 mm 4 229S89-181M I x = 6.9 x 10 6 mm 4 254S89-144M I x = 7.1 x 10 6 mm 4 The table also indicates that the strength of these three profiles: + M u with 2,500 mm of unsupported compression flange > M f - M u with 2,500 mm of unsupported compression flange > M f The X bracings must be connected to the section according to standard S136-07 as described in the section entitled Lateral Stability of Purlins (see pages 7-12). V r > V f P r > V f, except for 254S89-144M. If this section is selected, the connection to the support must be made by bolting the web to prevent web crippling over the bearing. The final selection will be determined according to the other bays of the building and the desired economy in steel or space. M u Sections Unsupported length New nomenclature 1,500 1,800 2,100 2,400 2,700 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500 7,000 7,500 8,000 (imperial) 6.9 6.7 6.3 5.9 5.5 4.9 3.9 3.1 2.4 2.0 1.7 1.4 1.3 1.1 1.0 0.9 600S275-57 8.8 8.8 8.3 7.8 7.2 6.5 5.2 4.1 3.3 2.7 2.3 2.0 1.7 1.5 1.4 1.2 600S275-71 10.5 10.5 10.1 9.5 8.7 7.9 6.5 5.1 4.1 3.4 2.9 2.5 2.2 2.0 1.8 1.6 600S275-86 12.1 12.1 11.7 10.9 10.1 9.2 7.6 6.0 4.9 4.2 3.6 3.1 2.8 2.5 2.2 2.0 600S275-100 13.7 13.7 13.2 12.4 11.5 10.5 8.8 7.1 5.8 4.9 4.2 3.7 3.3 3.0 2.7 2.5 600S275-114 15.2 15.2 14.7 13.8 12.8 11.8 10.0 8.1 6.7 5.7 5.0 4.4 3.9 3.6 3.3 3.0 600S275-128 10.2 9.8 9.2 8.6 7.9 7.0 5.5 4.2 3.4 2.8 2.3 2.0 1.7 1.5 1.3 1.2 800S275-57 12.9 12.9 12.1 11.3 10.3 9.2 7.2 5.6 4.5 3.7 3.1 2.6 2.3 2.0 1.8 1.6 800S275-71 15.5 15.5 14.7 13.6 12.5 11.2 8.8 6.9 5.5 4.6 3.9 3.3 2.9 2.6 2.3 2.1 800S275-86 17.9 17.9 16.9 15.7 14.4 13.0 10.3 8.1 6.5 5.4 4.6 4.0 3.5 3.1 2.8 2.5 800S275-100 20.2 20.2 19.2 17.8 16.3 14.7 11.8 9.3 7.6 6.3 5.4 4.7 4.2 3.7 3.4 3.1 800S275-114 22.5 22.5 21.4 19.9 18.3 16.5 13.4 10.6 8.7 7.3 6.3 5.5 4.9 4.4 4.0 3.6 800S275-128 16.3 16.3 15.8 15.1 14.3 13.4 11.7 9.8 7.8 6.4 5.3 4.5 3.9 3.4 3.0 2.7 900S350-71 19.5 19.5 18.9 18.0 17.1 16.0 14.0 11.7 9.4 7.7 6.5 5.5 4.8 4.2 3.7 3.3 900S350-86 23.6 23.6 22.9 21.9 20.7 19.4 17.0 14.3 11.6 9.5 8.0 6.9 5.9 5.2 4.6 4.2 900S350-100 27.1 27.1 26.8 25.6 24.2 22.7 20.0 16.9 13.7 11.3 9.6 8.2 7.2 6.3 5.6 5.1 900S350-114 30.5 30.5 30.5 29.3 27.7 26.0 22.9 19.5 15.9 13.2 11.2 9.7 8.5 7.5 6.7 6.1 900S350-128 13.6 13.6 13.2 12.8 12.2 11.6 10.5 8.9 7.1 5.8 4.8 4.1 3.5 3.0 2.7 2.3 1000S350-57 18.9 18.9 18.2 17.4 16.5 15.4 13.4 11.1 8.9 7.2 6.0 5.1 4.4 3.8 3.4 3.0 1000S350-71 22.6 22.6 21.8 20.8 19.7 18.4 16.0 13.4 10.7 8.8 7.3 6.2 5.4 4.7 4.1 3.7 1000S350-86 27.2 27.2 26.5 25.2 23.9 22.3 19.5 16.3 13.1 10.7 9.0 7.7 6.7 5.8 5.2 4.6 1000S350-100 31.2 31.2 30.9 29.4 27.8 26.1 22.8 19.1 15.4 12.7 10.7 9.2 8.0 7.0 6.3 5.6 1000S350-114 35.1 35.1 35.1 33.6 31.8 29.8 26.1 22.0 17.9 14.8 12.5 10.7 9.4 8.3 7.4 6.7 1000S350-128 22.5 22.5 21.8 21.0 20.0 19.0 17.0 14.0 11.2 9.1 7.6 6.4 5.5 4.8 4.2 3.7 1200S350-71 29.2 29.2 28.1 26.8 25.3 23.6 20.4 16.8 13.4 10.9 9.1 7.7 6.6 5.8 5.1 4.5 1200S350-86 35.0 35.0 34.0 32.3 30.5 28.5 24.7 20.4 16.3 13.3 11.1 9.5 8.2 7.1 6.3 5.6 1200S350-100 40.1 40.1 39.5 37.6 35.5 33.2 28.8 23.8 19.0 15.6 13.1 11.2 9.7 8.5 7.5 6.7 1200S350-114 45.1 45.1 45.1 42.9 40.5 37.8 32.9 27.2 21.9 18.0 15.2 13.0 11.3 9.9 8.8 7.9 1200S350-128 33.9 33.8 32.8 31.6 30.2 28.6 25.1 20.4 16.2 13.2 11.0 9.3 8.0 7.0 6.1 5.4 1400S350-86 43.4 43.4 42.1 40.0 37.7 35.1 30.2 24.6 19.6 16.0 13.4 11.3 9.8 8.5 7.5 6.7 1400S350-100 49.7 49.7 48.9 46.5 43.8 40.8 35.1 28.6 22.9 18.7 15.7 13.3 11.5 10.1 8.9 7.9 1400S350-114 55.9 55.9 55.8 53.0 49.9 46.4 40.0 32.7 26.2 21.5 18.0 15.4 13.3 11.7 10.4 9.3 1400S350-128 21

C SECTIONS PROPERTIES IMPERIAL Y b h t/2 t X d S.C. C.G. X e x Y EXAMPLE: 600S275-57 With 600 = depth of section (10-2 in.) S = C section 275 = flange width (10-2 in.) 57 = minimum steel thickness, i.e. 95% of the design thickness (10-3 in.) SECTIONS DIMENSIONS No. New Former nomenclature nomenclature d b h t 1 600S275-57 C6x2.9 6 2.75 1 0.06 2 600S275-71 C6x3.5 6 2.75 1 0.08 3 600S275-86 C6x4.0 6 2.75 1 0.09 4 600S275-100 C6x4.7 6 2.75 1 0.11 5 600S275-114 C6x5.6 6 2.75 1 0.12 6 600S275-128 C6x6.0 6 2.75 1 0.14 7 800S275-57 C8x3.4 8 2.75 1 0.06 8 800S275-71 C8x4.0 8 2.75 1 0.08 9 800S275-86 C8x4.7 8 2.75 1 0.09 10 800S275-100 C8x5.4 8 2.75 1 0.11 11 800S275-114 C8x6.1 8 2.75 1 0.12 12 800S275-128 C8x7.1 8 2.75 1 0.14 13 900S350-71 C9x4.6 9 3.50 1 0.08 14 900S350-86 C9x5.4 9 3.50 1 0.09 15 900S350-100 C9x6.3 9 3.50 1 0.11 16 900S350-114 C9x7.2 9 3.50 1 0.12 17 900S350-128 C9x8.0 9 3.50 1 0.14 18 1000S350-57 C10x3.8 10 3.50 1 0.06 19 1000S350-71 C10x4.7 10 3.50 1 0.08 20 1000S350-86 C10x5.8 10 3.50 1 0.09 21 1000S350-100 C10x6.7 10 3.50 1 0.11 22 1000S350-114 C10x7.6 10 3.50 1 0.12 23 1000S350-128 C10x8.5 10 3.50 1 0.14 24 1200S350-71 C12x5.4 12 3.50 1 0.08 25 1200S350-86 C12x6.4 12 3.50 1 0.09 26 1200S350-100 C12x7.4 12 3.50 1 0.11 27 1200S350-114 C12x8.4 12 3.50 1 0.12 28 1200S350-128 C12x9.4 12 3.50 1 0.14 29 1400S350-86 C14x7.0 14 3.50 1 0.09 30 1400S350-100 C14x8.1 14 3.50 1 0.11 31 1400S350-114 C14x9.3 14 3.50 1 0.12 32 1400S350-128 C14x10.4 14 3.50 1 0.14 (Table continued on page 23) 22

C SECTIONS Regular units of measurement are shown in parentheses. d = depth of section (in.) b = flange width (in.) h = length of lip (in.) t = steel thickness (in.) A = gross area of section (in. 2 ) C.G. = center of gravity S.C. = shear center I x = moment of inertia about axis X-X: maximum compressive stress = 0.6 F y (in. 4 ) S x eff = elastic section modulus about axis X-X: maximum compressive stress = 0.9 F y (in. 3 ) r x = radius of gyration about axis X-X (in.) I y = moment of inertia about axis Y-Y (in. 4 ) S y eff = elastic section modulus about axis Y-Y: maximum compressive stress = 0.9 F y (in. 3 ) r y = radius of gyration about axis Y-Y (in.) x = distance from center of web to center of gravity (in.) e = distance from center of web to shear center (in.) PROPERTIES SECTIONS I x S x eff r x I y S y eff r y x e A New nomenclature (metric) 4.5 1.3 2.4 0.9 0.5 1.1 0.9 1.5 0.8 152S70-144M 5.5 1.8 2.4 1.1 0.6 1.1 0.9 1.4 1.0 152S70-181M 6.6 2.2 2.4 1.3 0.7 1.1 0.9 1.4 1.2 152S70-218M 7.6 2.5 2.4 1.5 0.8 1.1 0.9 1.4 1.3 152S70-254M 8.5 2.9 2.4 1.6 0.9 1.0 0.9 1.4 1.5 152S70-290M 9.5 3.2 2.4 1.8 1.0 1.0 0.9 1.4 1.7 152S70-326M 8.8 1.9 3.1 1.0 0.5 1.0 0.8 1.3 0.9 203S70-144M 10.8 2.6 3.1 1.2 0.6 1.0 0.8 1.3 1.1 203S70-181M 12.9 3.2 3.1 1.4 0.7 1.0 0.8 1.3 1.3 203S70-218M 14.9 3.7 3.1 1.6 0.8 1.0 0.8 1.3 1.6 203S70-254M 16.8 4.2 3.1 1.8 0.9 1.0 0.8 1.3 1.8 203S70-290M 18.7 4.7 3.1 2.0 1.1 1.0 0.8 1.3 2.0 203S70-326M 16.6 3.0 3.6 2.2 0.9 1.3 1.0 1.6 1.3 229S89-181M 19.7 3.8 3.6 2.6 1.1 1.3 1.0 1.6 1.6 229S89-218M 22.8 4.7 3.5 3.0 1.2 1.3 1.0 1.6 1.8 229S89-254M 25.8 5.5 3.5 3.4 1.4 1.3 1.0 1.6 2.1 229S89-290M 28.8 6.3 3.5 3.7 1.5 1.3 1.0 1.6 2.3 229S89-326M 17.1 2.5 3.9 1.9 0.7 1.3 1.0 1.6 1.1 254S89-144M 21.2 3.4 3.9 2.3 0.9 1.3 1.0 1.6 1.4 254S89-181M 25.2 4.3 3.9 2.7 1.1 1.3 1.0 1.6 1.7 254S89-218M 29.1 5.3 3.9 3.1 1.2 1.3 1.0 1.6 1.9 254S89-254M 33.0 6.4 3.9 3.5 1.4 1.3 1.0 1.6 2.2 254S89-290M 36.9 7.2 3.9 3.9 1.5 1.3 0.9 1.6 2.5 254S89-326M 32.5 4.2 4.6 2.4 0.9 1.3 0.9 1.5 1.5 305S89-181M 38.7 5.3 4.6 2.9 1.1 1.3 0.9 1.5 1.8 305S89-218M 44.8 6.5 4.6 3.3 1.2 1.2 0.9 1.5 2.1 305S89-254M 50.8 7.9 4.6 3.7 1.4 1.2 0.9 1.5 2.4 305S89-290M 56.7 9.2 4.6 4.1 1.5 1.2 0.9 1.5 2.7 305S89-326M 55.8 6.2 5.3 3.0 1.1 1.2 0.8 1.4 2.0 356S89-218M 64.7 7.8 5.3 3.4 1.3 1.2 0.8 1.4 2.3 356S89-254M 73.4 9.5 5.3 3.8 1.4 1.2 0.8 1.4 2.7 356S89-290M 82.1 11.1 5.2 4.3 1.6 1.2 0.8 1.4 3.0 356S89-326M 23

C SECTIONS SELECTION TABLE FOR FACTORED LOADS IMPERIAL F y = specified minimum yield strength = 345 ksi M re = factored moment resistance (kip ft.) M u = factored moment resistance considering lateral buckling (kip ft.) L u = maximum laterally unsupported length for which a member can develop Mr (ft.) V r = factored shear resistance (kip) P r = factored bearing resistance (kip) for a 4 inch bearing The tables on the following pages list M r, the factored bending moment resistance for Canam C sections, as well as L u, the maximum laterally unsupported length without lateral support in torsion and buckling for which this moment is valid. The maximum shear resistance, V r, is listed for each section. M u is the maximum factored bending moment that the section can resist at the specified laterally unsupported length (L u ). The maximum factored bearing resistance, P r, is given for a bearing length of 4 inches. SECTIONS No. New Former nomenclature nomenclature V r P r L u M re 1 600S275-57 C6x2.9 3.50 1.34 5.0 5.1 2 600S275-71 C6x3.5 6.06 2.03 5.0 6.5 3 600S275-86 C6x4.0 8.71 2.85 5.0 7.9 4 600S275-100 C6x4.7 11.13 3.78 5.0 9.1 5 600S275-114 C6x5.6 12.63 4.83 5.0 10.2 6 600S275-128 C6x6.0 14.11 6.00 5.0 11.4 7 800S275-57 C8x3.4 2.75 1.29 4.9 6.9 8 800S275-71 C8x4.0 5.39 1.96 4.8 9.3 9 800S275-86 C8x4.7 9.29 2.76 4.8 11.6 10 800S275-100 C8x5.4 12.64 3.68 4.8 13.4 11 800S275-114 C8x6.1 16.49 4.71 4.8 15.1 12 800S275-128 C8x7.1 20.59 5.85 4.8 16.8 13 900S350-71 C9x4.6 4.49 1.93 5.9 11.0 14 900S350-86 C9x5.4 7.78 2.72 5.9 13.7 15 900S350-100 C9x6.3 11.92 3.63 5.9 17.5 16 900S350-114 C9x7.2 15.55 4.65 5.9 20.3 17 900S350-128 C9x8.0 19.67 5.78 5.9 23.0 18 1000S350-57 C10x3.8 2.11 1.24 5.9 9.5 19 1000S350-71 C10x4.7 4.13 1.90 5.9 12.5 20 1000S350-86 C10x5.8 7.15 2.68 5.9 15.5 21 1000S350-100 C10x6.7 11.38 3.58 5.8 19.8 22 1000S350-114 C10x7.6 15.96 4.60 5.8 23.3 23 1000S350-128 C10x8.5 20.18 5.72 5.8 26.5 24 1200S350-71 C12x5.4 3.54 1.85 5.8 15.3 25 1200S350-86 C12x6.4 6.13 2.61 5.8 19.2 26 1200S350-100 C12x7.4 9.76 3.50 5.8 24.6 27 1200S350-114 C12x8.4 14.59 4.50 5.8 29.0 28 1200S350-128 C12x9.4 20.82 5.60 5.7 33.7 29 1400S350-86 C14x7.0 5.36 2.55 5.7 22.9 30 1400S350-100 C14x8.1 8.52 3.42 5.7 29.4 31 1400S350-114 C14x9.3 12.75 4.41 5.7 34.8 32 1400S350-128 C14x10.4 18.19 5.50 5.7 40.6 (Table continued on page 25) 24

C SECTIONS Example: Single span of 25 ft., spacing of 5 ft.: external pressure + internal suction (8.0 + 6.6) = 14.6 psf external suction + internal pressure (5.9 + 6.6) = 12.5 psf Use two X bracings to prevent the section from buckling and torsion at a third of the span and hold the girt line straight; metal siding on outside flange attached every 12 inches c/c. Pressure w f = 1.4 x 14.6 psf x 5.0 ft. = 102 plf Suction w f = 1.4 x 12.5 psf x 5.0 ft. = 88 plf + M f = 0.102 kip/ft. x (25 ft.) 2 / 8 = 8.0 kip ft. - M f = 0.088 kip/ft. x (25 ft.) 2 / 8 = 6.9 kip ft. V f = 0.102 kip/ft. x 25 ft./2 = 1.28 kip I min (deflection < span / 180) = 180 x 5 x 0.073 kip/ft. x (25 ft.) 3 x 144 384 x 29,500 ksi = 13.0 in. 4 The Properties table lists many profiles with a value of I x greater than I min : 800S275-100 I x = 14.9 in. 4 900S350-71 I x = 16.6 in. 4 1000S350-57 I x = 17.1 in. 4 The table also indicates that the strength of these three profiles: + M u with 8 ft. 4 in. of unsupported compression flange > M f - M u with 8 ft. 4 in. of unsupported compression flange > M f The X bracings must be connected to the section according to standard S136-07 as described in the section entitled Lateral Stability of Purlins (see pages 7-12). V r > V f P r > V f, except for 1000S350-57. If this section is selected, the connection to the support must be made by bolting the web to prevent web crippling over the bearing. The final selection will be determined according to the other bays of the building and the desired economy in steel or space. M u Sections Unsupported length New nomenclature 5 6 7 8 9 10 11 12 13 14 15 16 18 20 22 24 (metric) 5.1 4.9 4.6 4.3 4.0 3.6 3.1 2.7 2.3 2.0 1.8 1.6 1.3 1.0 0.9 0.8 152S70-144M 6.5 6.5 6.1 5.7 5.2 4.7 4.2 3.6 3.1 2.7 2.4 2.1 1.7 1.4 1.2 1.1 152S70-181M 7.8 7.8 7.4 6.9 6.4 5.8 5.1 4.4 3.8 3.3 3.0 2.7 2.2 1.8 1.6 1.4 152S70-218M 8.9 8.9 8.6 8.0 7.4 6.7 6.0 5.2 4.5 4.0 3.6 3.2 2.6 2.2 1.9 1.7 152S70-254M 10.1 10.1 9.7 9.1 8.4 7.6 6.9 6.1 5.3 4.7 4.2 3.8 3.1 2.7 2.3 2.1 152S70-290M 11.2 11.2 10.8 10.1 9.4 8.6 7.8 6.9 6.1 5.4 4.9 4.4 3.7 3.2 2.8 2.5 152S70-326M 7.5 7.2 6.7 6.3 5.7 5.1 4.4 3.7 3.2 2.8 2.4 2.1 1.7 1.4 1.2 1.0 203S70-144M 9.5 9.5 8.9 8.2 7.5 6.7 5.8 4.9 4.2 3.6 3.2 2.8 2.3 1.9 1.6 1.4 203S70-181M 11.4 11.4 10.7 9.9 9.1 8.1 7.0 6.0 5.1 4.5 4.0 3.5 2.9 2.4 2.0 1.8 203S70-218M 13.2 13.2 12.4 11.5 10.5 9.4 8.2 7.0 6.0 5.3 4.7 4.2 3.4 2.9 2.5 2.1 203S70-254M 14.9 14.9 14.0 13.0 11.9 10.7 9.4 8.0 7.0 6.1 5.4 4.9 4.0 3.4 2.9 2.6 203S70-290M 16.6 16.6 15.6 14.5 13.3 12.0 10.6 9.1 7.9 7.0 6.2 5.6 4.7 4.0 3.4 3.0 203S70-326M 12.0 12.0 11.6 11.0 10.4 9.8 9.0 8.2 7.3 6.4 5.6 4.9 3.9 3.2 2.7 2.3 229S89-181M 14.4 14.4 13.9 13.2 12.5 11.7 10.8 9.8 8.8 7.7 6.7 6.0 4.8 3.9 3.3 2.8 229S89-218M 17.4 17.4 16.8 16.0 15.2 14.2 13.1 12.0 10.7 9.4 8.3 7.4 5.9 4.9 4.2 3.6 229S89-254M 20.0 20.0 19.7 18.7 17.7 16.6 15.4 14.0 12.6 11.1 9.8 8.7 7.1 5.9 5.0 4.3 229S89-290M 22.5 22.5 22.5 21.4 20.3 19.0 17.6 16.1 14.6 12.9 11.4 10.2 8.3 7.0 5.9 5.2 229S89-326M 10.0 10.0 9.7 9.4 9.0 8.5 8.0 7.4 6.7 5.8 5.1 4.5 3.6 2.9 2.4 2.0 254S89-144M 13.9 13.9 13.4 12.7 12.0 11.2 10.3 9.4 8.3 7.3 6.4 5.6 4.5 3.7 3.1 2.6 254S89-181M 16.7 16.7 16.0 15.2 14.4 13.4 12.4 11.2 10.0 8.7 7.7 6.8 5.4 4.5 3.7 3.2 254S89-218M 20.1 20.1 19.4 18.5 17.4 16.3 15.0 13.7 12.2 10.7 9.4 8.3 6.7 5.5 4.6 4.0 254S89-254M 23.0 23.0 22.6 21.6 20.3 19.0 17.6 16.0 14.3 12.6 11.0 9.8 7.9 6.6 5.6 4.8 254S89-290M 25.9 25.9 25.9 24.6 23.3 21.8 20.1 18.3 16.5 14.5 12.8 11.4 9.3 7.7 6.6 5.7 254S89-326M 16.6 16.5 16.0 15.4 14.7 13.9 13.0 11.9 10.5 9.1 8.0 7.0 5.6 4.6 3.8 3.2 305S89-181M 21.5 21.5 20.6 19.6 18.5 17.2 15.8 14.3 12.6 10.9 9.6 8.5 6.8 5.5 4.6 3.9 305S89-218M 25.8 25.8 24.9 23.7 22.3 20.8 19.1 17.2 15.3 13.3 11.6 10.3 8.2 6.8 5.7 4.9 305S89-254M 29.6 29.6 29.0 27.6 26.0 24.2 22.2 20.1 17.8 15.5 13.6 12.1 9.7 8.0 6.8 5.8 305S89-290M 33.3 33.3 33.1 31.5 29.6 27.6 25.4 23.0 20.4 17.8 15.7 13.9 11.2 9.3 7.9 6.8 305S89-326M 25.0 24.9 24.1 23.2 22.1 20.9 19.4 17.5 15.3 13.3 11.6 10.2 8.2 6.7 5.6 4.7 356S89-218M 32.0 32.0 30.9 29.3 27.5 25.6 23.4 21.0 18.5 16.0 14.0 12.4 9.9 8.1 6.8 5.8 356S89-254M 36.7 36.7 35.9 34.1 32.0 29.7 27.2 24.4 21.5 18.7 16.4 14.5 11.6 9.5 8.0 6.9 356S89-290M 41.3 41.3 40.9 38.8 36.4 33.8 31.0 27.9 24.5 21.3 18.7 16.6 13.4 11.0 9.3 8.0 356S89-326M 25

C AND Z SECTIONS FABRICATION TOLERANCE b b 01 01 02 02 d t d t h E4 h E4 E3 P S1 E1 E2 S2 L C (camber) DIMENSION OR ANGLE FABRICATION TOLERANCE mm b,d ±5 h +10, -3 01 ±3 02 ±5 P,L ±3 C 0.002L E1,E2,E3,E4 ±3 S1,S2 ±2 t according to CAN/CSA-S136 26

Z SECTIONS NEW NOMENCLATURE New nomenclature International system Imperial system Former nomenclature SI Imperial d b h t d b h t SI Imperial 152Z76-144M 600Z300-57 152.4 76.2 24.1 1.52 6 3 0.95 0.060 Z152x4.5 Z6x3.0 152Z76-181M 600Z300-71 152.4 76.2 24.1 1.91 6 3 0.95 0.075 Z152x5.4 Z6x3.6 152Z76-218M 600Z300-86 152.4 76.2 24.1 2.29 6 3 0.95 0.090 Z152x6.4 Z6x4.3 152Z76-254M 600Z300-100 152.4 76.2 24.1 2.67 6 3 0.95 0.105 Z152x7.6 Z6x5.1 152Z76-290M 600Z300-114 152.4 76.2 24.1 3.05 6 3 0.95 0.120 Z152x8.6 Z6x5.8 152Z76-326M 600Z300-128 152.4 76.2 24.1 3.43 6 3 0.95 0.135 Z152x9.7 Z6x6.5 203Z76-144M 800Z300-57 203.2 76.2 24.1 1.52 8 3 0.95 0.060 Z203x5.1 Z8x3.4 203Z76-181M 800Z300-71 203.2 76.2 24.1 1.91 8 3 0.95 0.075 Z203x6.3 Z8x4.2 203Z76-218M 800Z300-86 203.2 76.2 24.1 2.29 8 3 0.95 0.090 Z203x7.3 Z8x4.9 203Z76-254M 800Z300-100 203.2 76.2 24.1 2.67 8 3 0.95 0.105 Z203x8.8 Z8x5.9 203Z76-290M 800Z300-114 203.2 76.2 24.1 3.05 8 3 0.95 0.120 Z203x10.0 Z8x6.7 203Z76-326M 800Z300-128 203.2 76.2 24.1 3.43 8 3 0.95 0.135 Z203x11.2 Z8x7.5 229Z76-181M 900Z300-71 228.6 76.2 24.1 1.91 9 3 0.95 0.075 Z229x6.6 Z9x4.4 229Z76-218M 900Z300-86 228.6 76.2 24.1 2.29 9 3 0.95 0.090 Z229x7.7 Z9x5.2 229Z76-254M 900Z300-100 228.6 76.2 24.1 2.67 9 3 0.95 0.105 Z229x9.2 Z9x6.2 229Z76-290M 900Z300-114 228.6 76.2 24.1 3.05 9 3 0.95 0.120 Z229x10.6 Z9x7.1 229Z76-326M 900Z300-128 228.6 76.2 24.1 3.43 9 3 0.95 0.135 Z229x11.9 Z9x8.0 254Z76-181M 1000Z300-71 254.0 76.2 24.1 1.91 10 3 0.95 0.075 Z254x6.8 Z10x4.6 254Z76-218M 1000Z300-86 254.0 76.2 24.1 2.29 10 3 0.95 0.090 Z254x8.2 Z10x5.5 254Z76-254M 1000Z300-100 254.0 76.2 24.1 2.67 10 3 0.95 0.105 Z254x9.8 Z10x6.6 254Z76-290M 1000Z300-114 254.0 76.2 24.1 3.05 10 3 0.95 0.120 Z254x11.2 Z10x7.5 254Z76-326M 1000Z300-128 254.0 76.2 24.1 3.43 10 3 0.95 0.135 Z254x12.5 Z10x8.4 305Z76-181M 1200Z300-71 304.8 76.2 24.1 1.91 12 3 0.95 0.075 Z305x7.7 Z12x5.2 305Z76-218M 1200Z300-86 304.8 76.2 24.1 2.29 12 3 0.95 0.090 Z305x9.2 Z12x6.2 305Z76-254M 1200Z300-100 304.8 76.2 24.1 2.67 12 3 0.95 0.105 Z305x10.9 Z12x7.3 305Z76-290M 1200Z300-114 304.8 76.2 24.1 3.05 12 3 0.95 0.120 Z305x12.4 Z12x8.3 305Z76-326M 1200Z300-128 304.8 76.2 24.1 3.43 12 3 0.95 0.135 Z305x14.0 Z12x9.4 356Z76-181M 1400Z300-71 355.6 76.2 24.1 1.91 14 3 0.95 0.075 Z355x8.5 Z14x5.7 356Z76-218M 1400Z300-86 355.6 76.2 24.1 2.29 14 3 0.95 0.090 Z355x10.1 Z14x6.8 356Z76-254M 1400Z300-100 355.6 76.2 24.1 2.67 14 3 0.95 0.105 Z355x11.9 Z14x8.0 356Z76-290M 1400Z300-114 355.6 76.2 24.1 3.05 14 3 0.95 0.120 Z355x13.6 Z14x9.1 356Z76-326M 1400Z300-128 355.6 76.2 24.1 3.43 14 3 0.95 0.135 Z355x15.4 Z14x10.3 NEW NOMENCLATURE SI EXAMPLE: 152Z76-144M With 152 = depth of section (mm) Z = Z section 70 = flange width (mm) 144 = minimum steel thickness, i.e. 95% of the design thickness (10-2 mm) M = International system nomenclature (metric) IMPERIAL EXAMPLE: 600Z300-57 With 600 = depth of section (10-2 in.) Z = Z section 300 = flange width (10-2 in.) 57 = minimum steel thickness, i.e. 95% of the design thickness (10-3 in.) FORMER NOMENCLATURE SI EXAMPLE: Z152x4.5 With Z = Z section 152 = depth of section (mm) 4.5 = nominal linear weight (kg/m) IMPERIAL EXAMPLE: Z6x3.0 With Z = Z section 6 = depth of section (in.) 3.0 = nominal linear weight (lb./ft.) 27

Z SECTIONS PROPERTIES METRIC Y b Z h O W t/2 t dx C.G. & S.C. X W Z Y EXAMPLE: 152Z76-144M With 152 = depth of section (mm) Z = Z section 76 = flange width (mm) 144 = minimum steel thickness, i.e. 95% of the design thickness (10-2 mm) M = International system nomenclature (metric) SECTIONS DIMENSIONS No. New Former nomenclature nomenclature d b h t 1 152Z76-144M Z152x4.5 152.4 76.2 24.1 1.52 2 152Z76-181M Z152x5.4 152.4 76.2 24.1 1.91 3 152Z76-218M Z152x6.4 152.4 76.2 24.1 2.29 4 152Z76-254M Z152x7.6 152.4 76.2 24.1 2.67 5 152Z76-290M Z152x8.6 152.4 76.2 24.1 3.05 6 152Z76-326M Z152x9.7 152.4 76.2 24.1 3.43 7 203Z76-144M Z203x5.1 203.2 76.2 24.1 1.52 8 203Z76-181M Z203x6.3 203.2 76.2 24.1 1.91 9 203Z76-218M Z203x7.3 203.2 76.2 24.1 2.29 10 203Z76-254M Z203x8.8 203.2 76.2 24.1 2.67 11 203Z76-290M Z203x10.0 203.2 76.2 24.1 3.05 12 203Z76-326M Z203x11.2 203.2 76.2 24.1 3.43 13 229Z76-181M Z229x6.6 228.6 76.2 24.1 1.91 14 229Z76-218M Z229x7.7 228.6 76.2 24.1 2.29 15 229Z76-254M Z229x9.2 228.6 76.2 24.1 2.67 16 229Z76-290M Z229x10.6 228.6 76.2 24.1 3.05 17 229Z76-326M Z229x11.9 228.6 76.2 24.1 3.43 18 254Z76-181M Z254x6.8 254.0 76.2 24.1 1.91 19 254Z76-218M Z254x8.2 254.0 76.2 24.1 2.29 20 254Z76-254M Z254x9.8 254.0 76.2 24.1 2.67 21 254Z76-290M Z254x11.2 254.0 76.2 24.1 3.05 22 254Z76-326M Z254x12.5 254.0 76.2 24.1 3.43 23 305Z76-181M Z305x7.7 304.8 76.2 24.1 1.91 24 305Z76-218M Z305x9.2 304.8 76.2 24.1 2.29 25 305Z76-254M Z305x10.9 304.8 76.2 24.1 2.67 26 305Z76-290M Z305x12.4 304.8 76.2 24.1 3.05 27 305Z76-326M Z305x14.0 304.8 76.2 24.1 3.43 28 356Z76-181M Z355x8.5 355.6 76.2 24.1 1.91 29 356Z76-218M Z355x10.1 355.6 76.2 24.1 2.29 30 356Z76-254M Z355x11.9 355.6 76.2 24.1 2.67 31 356Z76-290M Z355x13.6 355.6 76.2 24.1 3.05 32 356Z76-326M Z355x15.4 355.6 76.2 24.1 3.43 (Table continued on page 29) 28

Z SECTIONS Regular units of measurement are shown in parentheses. d = depth of section (mm) b = flange width (mm) h = length of lip (mm) t = steel thickness (mm) A = gross area of section (mm 2 ) C.G. = center of gravity S.C. = shear center I x = moment of inertia about axis X-X: maximum compressive stress = 0.6 F y (10 6 mm 4 ) S x eff = elastic section modulus about axis X-X: maximum compressive stress = 0.9 F y (10 3 mm 3 ) r x = radius of gyration about axis X-X (mm) I y = moment of inertia about axis Y-Y (10 6 mm 4 ) S y eff = elastic section modulus about axis Y-Y: maximum compressive stress = 0.9 F y (10 3 mm 3 ) r y = radius of gyration about axis Y-Y (mm) r min = radius of gyration about axis Z-Z (mm) 0 = angle between Z-Z axis and Y-Y axis (degrees) PROPERTIES SECTIONS I x S x eff r x I y S y eff r y r min 0 A New nomenclature (imperial) 2.01 22.50 61.9 0.89 10.21 41.3 23.5-30.7 524 600Z300-57 2.49 29.37 61.7 1.10 12.65 41.1 23.4-30.6 653 600Z300-71 2.96 36.32 61.6 1.31 15.01 41.0 23.3-30.6 780 600Z300-86 3.41 44.06 61.4 1.51 17.33 40.8 23.2-30.5 906 600Z300-100 3.86 50.71 61.2 1.70 19.59 40.6 23.1-30.5 1,031 600Z300-114 4.30 56.48 61.0 1.89 21.80 40.4 23.0-30.5 1,156 600Z300-128 3.90 31.21 80.5 0.89 10.21 38.5 24.2-21.3 602 800Z300-57 4.83 41.35 80.3 1.10 12.65 38.4 24.1-21.3 750 800Z300-71 5.75 52.67 80.1 1.31 15.01 38.2 24.0-21.2 896 800Z300-86 6.65 64.36 79.9 1.51 17.33 38.0 23.9-21.2 1,042 800Z300-100 7.54 74.21 79.7 1.70 19.59 37.8 23.8-21.1 1,186 800Z300-114 8.41 82.80 79.5 1.89 21.80 37.7 23.7-21.1 1,330 800Z300-128 6.36 47.28 89.3 1.10 12.65 37.2 24.2-18.2 798 900Z300-71 7.57 60.50 89.1 1.31 15.01 37.0 24.1-18.2 954 900Z300-86 8.76 75.31 88.9 1.51 17.33 36.8 24.0-18.1 1,110 900Z300-100 9.94 86.96 88.7 1.70 19.59 36.7 23.9-18.1 1,264 900Z300-114 11.10 97.08 88.5 1.89 21.80 36.5 23.7-18.0 1,417 900Z300-128 8.14 53.21 98.1 1.10 12.65 36.1 24.1-15.8 846 1000Z300-71 9.70 68.34 97.9 1.31 15.01 35.9 24.0-15.7 1,012 1000Z300-86 11.23 85.45 97.7 1.51 17.33 35.8 23.9-15.7 1,177 1000Z300-100 12.75 100.37 97.5 1.70 19.59 35.6 23.8-15.6 1,341 1000Z300-114 14.24 112.10 97.3 1.89 21.80 35.4 23.7-15.6 1,504 1000Z300-128 12.54 65.04 115.3 1.10 12.65 34.2 23.8-12.3 943 1200Z300-71 14.95 84.01 115.1 1.31 15.01 34.0 23.7-12.2 1,128 1200Z300-86 17.34 105.77 114.9 1.51 17.33 33.9 23.6-12.2 1,313 1200Z300-100 19.68 125.59 114.7 1.70 19.59 33.7 23.5-12.2 1,496 1200Z300-114 22.00 143.31 114.5 1.89 21.80 33.5 23.4-12.1 1,678 1200Z300-128 18.16 77.30 132.2 1.10 12.65 32.6 23.4-9.9 1,040 1400Z300-71 21.67 99.66 131.9 1.31 15.01 32.4 23.3-9.8 1,245 1400Z300-86 25.13 126.11 131.7 1.51 17.33 32.3 23.2-9.8 1,448 1400Z300-100 28.55 150.55 131.5 1.70 19.59 32.1 23.1-9.8 1,651 1400Z300-114 31.94 172.70 131.3 1.89 21.80 31.9 23.0-9.7 1,852 1400Z300-128 29

Z SECTIONS SELECTION TABLE FOR FACTORED LOADS METRIC F y = specified minimum yield strength = 345 MPa M r = factored moment resistance (kn m) M u = factored moment resistance considering lateral buckling (kn m) L u = maximum laterally unsupported length for which a member can develop Mr (mm) V r = factored shear resistance (kn) P r = factored bearing resistance (kn) for a 100 mm bearing The tables on the following pages list M r, the factored bending moment resistance for Canam Z sections, as well as L u, the maximum laterally unsupported length without lateral support in torsion and buckling for which this moment is valid. The maximum shear resistance, V r, is listed for each section. M u is the maximum factored bending moment that the section can resist at the specified laterally unsupported length (L u ). The maximum factored bearing resistance, P r, is given for a bearing length of 100 mm. SECTIONS No. New Former nomenclature nomenclature V r P r L u M re 1 152Z76-144M Z152x4.5 15.5 5.9 1,495 7.1 2 152Z76-181M Z152x5.4 26.9 9.0 1,494 9.0 3 152Z76-218M Z152x6.4 38.7 12.6 1,558 11.1 4 152Z76-254M Z152x7.6 49.5 16.8 1,732 13.1 5 152Z76-290M Z152x8.6 56.2 21.4 1,832 15.0 6 152Z76-326M Z152x9.7 62.8 26.6 1,844 16.7 7 203Z76-144M Z203x5.1 12.2 5.7 1,452 10.4 8 203Z76-181M Z203x6.3 23.9 8.7 1,449 13.2 9 203Z76-218M Z203x7.3 41.3 12.2 1,511 16.2 10 203Z76-254M Z203x8.8 56.2 16.3 1,669 19.1 11 203Z76-290M Z203x10.0 73.3 20.8 1,766 21.9 12 203Z76-326M Z203x11.2 91.7 25.9 1,773 24.5 13 229Z76-181M Z229x6.6 20.1 8.6 1,430 15.4 14 229Z76-218M Z229x7.7 34.8 12.0 1,494 19.0 15 229Z76-254M Z229x9.2 53.3 16.1 1,645 22.3 16 229Z76-290M Z229x10.6 69.6 20.6 1,739 25.7 17 229Z76-326M Z229x11.9 88.0 25.6 1,745 28.7 18 254Z76-181M Z254x6.8 18.4 8.4 1,411 17.9 19 254Z76-218M Z254x8.2 31.9 11.9 1,479 21.9 20 254Z76-254M Z254x9.8 50.8 15.9 1,623 25.8 21 254Z76-290M Z254x11.2 71.4 20.4 1,714 29.6 22 254Z76-326M Z254x12.5 90.2 25.3 1,720 33.1 23 305Z76-181M Z305x7.7 15.8 8.2 1,377 21.5 24 305Z76-218M Z305x9.2 27.3 11.6 1,452 28.2 25 305Z76-254M Z305x10.9 43.5 15.5 1,584 33.1 26 305Z76-290M Z305x12.4 65.1 19.9 1,669 38.1 27 305Z76-326M Z305x14.0 92.9 24.8 1,673 42.6 28 356Z76-181M Z355x8.5 13.8 8.0 1,345 23.3 29 356Z76-218M Z355x10.1 23.9 11.3 1,341 30.6 30 356Z76-254M Z355x11.9 38.0 15.2 1,337 38.7 31 356Z76-290M Z355x13.6 56.8 19.5 1,476 45.7 32 356Z76-326M Z355x15.4 81.1 24.4 1,544 51.9 (Table continued on page 31) 30

Z SECTIONS Example: Single span of 7,500 mm, spacing of 1,600 mm: external pressure + internal suction (0.38 + 0.32) = 0.70 kpa external suction + internal pressure (0.28 + 0.32) = 0.60 kpa Use two X bracings to prevent the section from buckling and torsion at a third of the span and hold the girt line straight; metal siding on outside flange attached every 310 mm c/c. Pressure w f = 1.4 x 0.70 kpa x 1.6 m = 1.57 kn/m Suction w f = 1.4 x 0.60 kpa x 1.6 m = 1.34 kn/m + M f = 1.57 kn/m x (7.5 m) 2 / 8 = 11.04 kn m - M f = 1.34 kn/m x (7.5 m) 2 / 8 = 9.45 kn m V f = 1.57 kn/m x 7.5 m / 2 = 5.89 kn I min (deflection < span / 180) = 180 x 5 x 1.12 kn/m x (7,500 mm) 3 384 x 200,000 MPa = 5.5 x 10 6 mm 4 The Properties table lists many profiles with a value of I x greater than I min : 203Z76-218M I x = 5.7 x 10 6 mm 4 229Z76-181M I x = 6.4 x 10 6 mm 4 254Z76-181M I x = 8.1 x 10 6 mm 4 The table also indicates that the strength of these three profiles: + M u with 2,500 mm of unsupported compression flange > M f - M u with 2,500 mm of unsupported compression flange > M f The X bracings must be connected to the section according to standard S136-07 as described in the section entitled Lateral Stability of Purlins (see pages 7-12). V r > V f P r > V f The final selection will be determined according to the other bays of the building and the desired economy in steel or space. M u Sections Unsupported length New nomenclature 1,500 1,800 2,100 2,400 2,700 3,000 3,300 3,600 3,900 4,200 4,500 4,800 5,400 6,000 6,750 7,500 (imperial) 7.1 6.7 6.3 5.9 5.4 4.8 4.2 3.5 3.0 2.6 2.3 2.0 1.6 1.3 1.1 0.9 600Z300-57 9.0 8.5 8.0 7.4 6.8 6.1 5.3 4.5 3.8 3.3 2.9 2.6 2.1 1.7 1.4 1.2 600Z300-71 11.1 10.6 10.0 9.3 8.5 7.6 6.6 5.6 4.9 4.2 3.7 3.3 2.7 2.2 1.8 1.5 600Z300-86 13.1 12.9 12.1 11.3 10.3 9.3 8.1 7.0 6.0 5.3 4.6 4.1 3.4 2.8 2.3 2.0 600Z300-100 15.0 15.0 14.2 13.2 12.1 10.9 9.6 8.3 7.2 6.3 5.6 5.0 4.1 3.5 2.9 2.5 600Z300-114 16.7 16.7 15.9 14.8 13.6 12.3 10.9 9.5 8.3 7.3 6.5 5.8 4.8 4.1 3.4 2.9 600Z300-128 10.3 9.8 9.2 8.5 7.7 6.8 5.8 4.9 4.1 3.6 3.1 2.8 2.2 1.8 1.4 1.2 800Z300-57 13.0 12.4 11.6 10.7 9.6 8.5 7.2 6.1 5.2 4.5 3.9 3.5 2.8 2.3 1.8 1.5 800Z300-71 16.2 15.4 14.4 13.2 11.9 10.5 9.0 7.6 6.5 5.7 5.0 4.4 3.5 2.9 2.4 2.0 800Z300-86 19.1 18.6 17.4 16.0 14.5 12.8 10.9 9.3 8.0 6.9 6.1 5.4 4.4 3.6 3.0 2.5 800Z300-100 21.9 21.8 20.4 18.8 17.0 15.0 12.9 11.0 9.4 8.2 7.3 6.5 5.3 4.4 3.6 3.0 800Z300-114 24.5 24.4 22.8 21.0 19.1 16.9 14.6 12.4 10.7 9.4 8.3 7.4 6.1 5.1 4.2 3.6 800Z300-128 15.3 14.5 13.5 12.4 11.1 9.7 8.2 6.9 5.9 5.1 4.5 4.0 3.2 2.6 2.1 1.7 900Z300-71 18.9 17.9 16.7 15.3 13.8 12.1 10.2 8.6 7.4 6.4 5.6 5.0 4.0 3.3 2.6 2.2 900Z300-86 22.3 21.7 20.2 18.5 16.7 14.6 12.4 10.5 9.0 7.8 6.9 6.1 4.9 4.0 3.3 2.7 900Z300-100 25.7 25.3 23.6 21.7 19.5 17.1 14.6 12.3 10.6 9.3 8.1 7.2 5.9 4.9 4.0 3.3 900Z300-114 28.7 28.4 26.5 24.3 21.9 19.3 16.4 14.0 12.0 10.5 9.3 8.3 6.7 5.6 4.6 3.9 900Z300-128 17.6 16.6 15.5 14.2 12.7 11.0 9.2 7.8 6.6 5.7 5.0 4.4 3.5 2.9 2.3 1.9 1000Z300-71 21.8 20.6 19.2 17.5 15.7 13.6 11.4 9.6 8.3 7.1 6.3 5.5 4.4 3.6 2.9 2.5 1000Z300-86 25.8 24.9 23.1 21.1 18.9 16.5 13.8 11.7 10.0 8.7 7.6 6.8 5.4 4.5 3.6 3.0 1000Z300-100 29.6 29.1 27.0 24.7 22.2 19.3 16.3 13.8 11.8 10.3 9.0 8.0 6.5 5.4 4.4 3.6 1000Z300-114 33.1 32.6 30.3 27.7 24.8 21.7 18.3 15.5 13.4 11.6 10.3 9.1 7.4 6.1 5.0 4.2 1000Z300-128 21.1 19.9 18.6 17.0 15.1 13.0 10.8 9.1 7.7 6.7 5.9 5.2 4.1 3.3 2.7 2.2 1200Z300-71 27.9 26.3 24.3 22.1 19.6 16.8 13.9 11.8 10.1 8.7 7.6 6.7 5.4 4.4 3.5 2.9 1200Z300-86 33.1 31.7 29.3 26.6 23.6 20.2 16.8 14.2 12.1 10.5 9.2 8.2 6.5 5.4 4.3 3.6 1200Z300-100 38.1 37.0 34.2 31.1 27.5 23.6 19.7 16.6 14.3 12.4 10.9 9.6 7.7 6.4 5.1 4.3 1200Z300-114 42.6 41.4 38.4 34.8 30.9 26.5 22.1 18.7 16.1 14.0 12.3 10.9 8.8 7.3 5.9 4.9 1200Z300-128 22.7 21.4 19.7 17.8 15.7 13.3 11.0 9.3 7.9 6.9 6.0 5.3 4.2 3.4 2.7 2.2 1400Z300-71 29.8 27.9 25.7 23.2 20.4 17.3 14.3 12.1 10.4 9.0 7.8 6.9 5.5 4.5 3.7 3.0 1400Z300-86 37.6 35.2 32.5 29.3 25.7 21.7 18.1 15.2 13.1 11.3 9.9 8.7 7.0 5.7 4.6 3.8 1400Z300-100 45.5 42.7 39.3 35.5 31.1 26.3 21.8 18.4 15.8 13.7 12.0 10.6 8.5 7.0 5.6 4.6 1400Z300-114 51.9 49.1 45.2 40.7 35.7 30.2 25.1 21.2 18.2 15.8 13.8 12.3 9.8 8.1 6.6 5.4 1400Z300-128 31

Z SECTIONS PROPERTIES IMPERIAL Y b Z h O W t/2 t dx C.G. & S.C. X W Z Y EXAMPLE: 600Z300-57 With 600 = depth of section (10-2 in.) Z = Z section 300 = flange width (10-2 in.) 57 = minimum steel thickness, i.e. 95% of the design thickness (10-3 in.) SECTIONS DIMENSIONS No. New Former nomenclature nomenclature d b h t 1 600Z300-57 Z6x3.0 6 3 0.95 0.060 2 600Z300-71 Z6x3.6 6 3 0.95 0.075 3 600Z300-86 Z6x4.3 6 3 0.95 0.090 4 600Z300-100 Z6x5.1 6 3 0.95 0.105 5 600Z300-114 Z6x5.8 6 3 0.95 0.120 6 600Z300-128 Z6x6.5 6 3 0.95 0.135 7 800Z300-57 Z8x3.4 8 3 0.95 0.060 8 800Z300-71 Z8x4.2 8 3 0.95 0.075 9 800Z300-86 Z8x4.9 8 3 0.95 0.090 10 800Z300-100 Z8x5.9 8 3 0.95 0.105 11 800Z300-114 Z8x6.7 8 3 0.95 0.120 12 800Z300-128 Z8x7.5 8 3 0.95 0.135 13 900Z300-71 Z9x4.4 9 3 0.95 0.075 14 900Z300-86 Z9x5.2 9 3 0.95 0.090 15 900Z300-100 Z9x6.2 9 3 0.95 0.105 16 900Z300-114 Z9x7.1 9 3 0.95 0.120 17 900Z300-128 Z9x8.0 9 3 0.95 0.135 18 1000Z300-71 Z10x4.6 10 3 0.95 0.075 19 1000Z300-86 Z10x5.5 10 3 0.95 0.090 20 1000Z300-100 Z10x6.6 10 3 0.95 0.105 21 1000Z300-114 Z10x7.5 10 3 0.95 0.120 22 1000Z300-128 Z10x8.4 10 3 0.95 0.135 23 1200Z300-71 Z12x5.2 12 3 0.95 0.075 24 1200Z300-86 Z12x6.2 12 3 0.95 0.090 25 1200Z300-100 Z12x7.3 12 3 0.95 0.105 26 1200Z300-114 Z12x8.3 12 3 0.95 0.120 27 1200Z300-128 Z12x9.4 12 3 0.95 0.135 28 1400Z300-71 Z14x5.7 14 3 0.95 0.075 29 1400Z300-86 Z14x6.8 14 3 0.95 0.090 30 1400Z300-100 Z14x8.0 14 3 0.95 0.105 31 1400Z300-114 Z14x9.1 14 3 0.95 0.120 32 1400Z300-128 Z14x10.3 14 3 0.95 0.135 (Table continued on page 33) 32

Z SECTIONS Regular units of measurement are shown in parentheses. d = depth of section (in.) b = flange width (in.) h = length of lip (in.) t = steel thickness (in.) A = gross area of section (in. 2 ) C.G. = center of gravity S.C. = shear center I x = moment of inertia about axis X-X: maximum compressive stress = 0.6 F y (in. 4 ) S x eff = elastic section modulus about axis X-X: maximum compressive stress = 0.9 F y (in. 3 ) r x = radius of gyration about axis X-X (in.) I y = moment of inertia about axis Y-Y ( in. 4 ) S y eff = elastic section modulus about axis Y-Y: maximum compressive stress = 0.9 F y ( in. 3 ) r y = radius of gyration about axis Y-Y (in.) r min = radius of gyration about axis Z-Z (in.) 0 = angle between Z-Z axis and Y-Y axis (radians) PROPERTIES SECTIONS I x S x eff r x I y S y eff r y r min 0 A New nomenclature (metric) 4.8 1.39 2.44 2.15 0.62 1.63 0.92-0.54 0.81 152Z76-144M 6.0 1.80 2.43 2.65 0.77 1.62 0.92-0.53 1.01 152Z76-181M 7.1 2.27 2.42 3.14 0.92 1.61 0.92-0.53 1.21 152Z76-218M 8.2 2.69 2.42 3.62 1.06 1.61 0.91-0.53 1.40 152Z76-254M 9.3 3.09 2.41 4.08 1.20 1.60 0.91-0.53 1.60 152Z76-290M 10.3 3.45 2.40 4.53 1.33 1.59 0.90-0.53 1.79 152Z76-326M 9.4 1.93 3.17 2.15 0.62 1.52 0.95-0.37 0.93 203Z76-144M 11.6 2.54 3.16 2.65 0.77 1.51 0.95-0.37 1.16 203Z76-181M 13.8 3.30 3.15 3.14 0.92 1.50 0.95-0.37 1.39 203Z76-218M 16.0 3.93 3.15 3.62 1.06 1.50 0.94-0.37 1.61 203Z76-254M 18.1 4.53 3.14 4.08 1.20 1.49 0.94-0.37 1.84 203Z76-290M 20.2 5.05 3.13 4.53 1.33 1.48 0.93-0.37 2.06 203Z76-326M 15.3 2.91 3.51 2.65 0.77 1.46 0.95-0.32 1.24 229Z76-181M 18.2 3.79 3.51 3.14 0.92 1.46 0.95-0.32 1.48 229Z76-218M 21.1 4.60 3.50 3.62 1.06 1.45 0.94-0.32 1.72 229Z76-254M 23.9 5.31 3.49 4.08 1.20 1.44 0.94-0.32 1.96 229Z76-290M 26.7 5.92 3.48 4.53 1.33 1.44 0.93-0.31 2.20 229Z76-326M 19.6 3.28 3.86 2.65 0.77 1.42 0.95-0.28 1.31 254Z76-181M 23.3 4.28 3.85 3.14 0.92 1.42 0.95-0.27 1.57 254Z76-218M 27.0 5.23 3.85 3.62 1.06 1.41 0.94-0.27 1.82 254Z76-254M 30.6 6.12 3.84 4.08 1.20 1.40 0.94-0.27 2.08 254Z76-290M 34.2 6.84 3.83 4.53 1.33 1.39 0.93-0.27 2.33 254Z76-326M 30.1 4.03 4.54 2.65 0.77 1.35 0.94-0.21 1.46 305Z76-181M 35.9 5.28 4.53 3.14 0.92 1.34 0.93-0.21 1.75 305Z76-218M 41.6 6.48 4.52 3.62 1.06 1.33 0.93-0.21 2.03 305Z76-254M 47.3 7.67 4.52 4.08 1.20 1.33 0.92-0.21 2.32 305Z76-290M 52.9 8.75 4.51 4.53 1.33 1.32 0.92-0.21 2.60 305Z76-326M 43.6 4.72 5.20 2.65 0.77 1.28 0.92-0.17 1.61 356Z76-181M 52.1 6.24 5.19 3.14 0.92 1.28 0.92-0.17 1.93 356Z76-218M 60.4 7.72 5.19 3.62 1.06 1.27 0.91-0.17 2.24 356Z76-254M 68.6 9.20 5.18 4.08 1.20 1.26 0.91-0.17 2.56 356Z76-290M 76.7 10.55 5.17 4.53 1.33 1.26 0.90-0.17 2.87 356Z76-326M 33

Z SECTIONS SELECTION TABLE FOR FACTORED LOADS IMPERIAL F y = specified minimum yield strength = 50 ksi M re = factored moment resistance (kip ft.) M u = factored moment resistance considering lateral buckling (kip ft.) L u = maximum laterally unsupported length for which a member can develop Mr (ft.) V r = factored shear resistance (kip) P r = factored bearing resistance (kip) for a 4 inch bearing The tables on the following pages list M r, the factored bending moment resistance for Canam Z sections, as well as L u, the maximum laterally unsupported length without lateral support in torsion and buckling for which this moment is valid. The maximum shear resistance, V r, is listed for each section. M u is the maximum factored bending moment that the section can resist at the specified laterally unsupported length (L u ). The maximum factored bearing resistance, P r, is given for a bearing length of 4 inches. SECTIONS No. New Former nomenclature nomenclature V r P r L u M re 1 600Z300-57 Z6x3.0 3.50 1.34 4.9 5.22 2 600Z300-71 Z6x3.6 6.06 2.03 4.9 6.62 3 600Z300-86 Z6x4.3 8.71 2.85 5.1 8.17 4 600Z300-100 Z6x5.1 11.13 3.78 5.7 9.63 5 600Z300-114 Z6x5.8 12.63 4.83 6.0 11.06 6 600Z300-128 Z6x6.5 14.11 6.00 6.0 12.34 7 800Z300-57 Z8x3.4 2.75 1.29 4.8 7.67 8 800Z300-71 Z8x4.2 5.39 1.96 4.8 9.70 9 800Z300-86 Z8x4.9 9.29 2.76 5.0 11.94 10 800Z300-100 Z8x5.9 12.64 3.68 5.5 14.06 11 800Z300-114 Z8x6.7 16.49 4.71 5.8 16.16 12 800Z300-128 Z8x7.5 20.59 5.85 5.8 18.06 13 900Z300-71 Z9x4.4 4.49 1.93 4.7 11.39 14 900Z300-86 Z9x5.2 7.78 2.72 4.9 13.98 15 900Z300-100 Z9x6.2 11.92 3.63 5.4 16.47 16 900Z300-114 Z9x7.1 15.55 4.65 5.7 18.92 17 900Z300-128 Z9x8.0 19.67 5.78 5.7 21.16 18 1000Z300-71 Z10x4.6 4.13 1.90 4.6 13.17 19 1000Z300-86 Z10x5.5 7.15 2.68 4.9 16.14 20 1000Z300-100 Z10x6.6 11.38 3.58 5.3 19.00 22 1000Z300-114 Z10x7.5 15.96 4.60 5.6 21.83 22 1000Z300-128 Z10x8.4 20.18 5.72 5.6 24.42 23 1200Z300-71 Z12x5.2 3.54 1.85 4.5 15.85 24 1200Z300-86 Z12x6.2 6.13 2.61 4.8 20.78 25 1200Z300-100 Z12x7.3 9.76 3.50 5.2 24.44 26 1200Z300-114 Z12x8.3 14.59 4.50 5.5 28.07 27 1200Z300-128 Z12x9.4 20.82 5.60 5.5 31.43 28 1400Z300-71 Z14x5.7 3.09 1.80 4.4 17.21 29 1400Z300-86 Z14x6.8 5.36 2.55 4.4 22.57 30 1400Z300-100 Z14x8.0 8.52 3.42 4.4 28.52 31 1400Z300-114 Z14x9.1 12.75 4.41 4.8 33.74 32 1400Z300-128 Z14x10.3 18.19 5.50 5.1 38.29 (Table continued on page 35) 34

Z SECTIONS Example: Single span of 25 ft., spacing of 5 ft.: external pressure + internal suction (8.0 + 6.6) = 14.6 psf external suction + internal pressure (5.9 + 6.6) = 12.5 psf Use two X bracings to prevent the section from buckling and torsion at a third of the span and hold the girt line straight; metal siding on outside flange attached every 12 inches c/c. Pressure w f = 1.4 x 14.6 psf x 5.0 ft. = 102 plf Suction w f = 1.4 x 12.5 psf x 5.0 ft. = 88 plf + M f = 0.102 kip/ft. x (25 ft.) 2 / 8 = 8.0 kip ft. - M f = 0.088 kip/ft. x (25 ft.) 2 / 8 = 6.9 kip ft. V f = 0.102 kip/ft. x 25 ft./2 = 1.28 kip I min (deflection < span / 180) = 180 x 5 x 0.073 kip/ft. x (25 ft.) 3 x 144 384 x 29,500 ksi = 13.0 in. 4 The Properties table lists many profiles with a value of I x greater than I min : 800Z300-86 I x = 13.8 in. 4 900Z300-71 I x = 15.3 in. 4 1000Z300-71 I x = 19.6 in. 4 The table also indicates that the strength of these three profiles: + M u with 8 ft. 4 in. of unsupported compression flange > M f - M u with 8 ft. 4 in. of unsupported compression flange > M f The X bracings must be connected to the section according to standard S136-07 as described in the section entitled Lateral Stability of Purlins (see pages 7-12). V r > V f P r > V f The final selection will be determined according to the other bays of the building and the desired economy in steel or space. M u Sections Unsupported length New nomenclature 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 18.0 20.0 22.0 24.0 (metric) 5.20 4.95 4.65 4.30 3.91 3.48 2.99 2.52 2.16 1.87 1.64 1.45 1.16 0.95 0.80 0.68 152Z76-144M 6.59 6.26 5.87 5.43 4.93 4.37 3.77 3.19 2.74 2.38 2.09 1.85 1.49 1.24 1.04 0.90 152Z76-181M 8.17 7.80 7.32 6.77 6.16 5.48 4.75 4.04 3.48 3.03 2.67 2.38 1.93 1.60 1.36 1.18 152Z76-218M 9.63 9.46 8.88 8.23 7.50 6.70 5.84 4.99 4.31 3.77 3.33 2.98 2.43 2.04 1.74 1.52 152Z76-254M 11.06 11.06 10.40 9.65 8.81 7.91 6.93 5.95 5.16 4.53 4.02 3.60 2.96 2.50 2.16 1.89 152Z76-290M 12.34 12.34 11.64 10.82 9.91 8.93 7.88 6.81 5.92 5.22 4.65 4.18 3.46 2.94 2.55 2.25 152Z76-326M 7.59 7.19 6.72 6.18 5.56 4.87 4.11 3.47 2.96 2.56 2.24 1.98 1.58 1.29 1.07 0.91 203Z76-144M 9.59 9.08 8.47 7.77 6.97 6.10 5.14 4.34 3.72 3.22 2.82 2.49 2.00 1.64 1.37 1.17 203Z76-181M 11.91 11.27 10.51 9.64 8.67 7.59 6.42 5.43 4.66 4.04 3.55 3.14 2.53 2.09 1.76 1.51 203Z76-218M 14.06 13.63 12.72 11.68 10.51 9.22 7.83 6.63 5.70 4.96 4.37 3.88 3.14 2.60 2.21 1.90 203Z76-254M 16.16 15.95 14.89 13.68 12.33 10.85 9.24 7.85 6.77 5.91 5.21 4.64 3.77 3.15 2.68 2.33 203Z76-290M 18.06 17.86 16.67 15.34 13.84 12.21 10.46 8.90 7.70 6.73 5.96 5.32 4.35 3.65 3.13 2.73 203Z76-326M 11.22 10.60 9.87 9.02 8.06 6.99 5.86 4.94 4.23 3.66 3.20 2.83 2.26 1.85 1.55 1.32 229Z76-181M 13.92 13.13 12.22 11.17 9.99 8.67 7.28 6.15 5.27 4.57 4.01 3.55 2.85 2.34 1.97 1.68 229Z76-218M 16.47 15.88 14.77 13.51 12.09 10.52 8.85 7.49 6.43 5.59 4.91 4.35 3.51 2.90 2.45 2.11 229Z76-254M 18.92 18.57 17.28 15.81 14.17 12.35 10.42 8.84 7.60 6.62 5.83 5.18 4.20 3.49 2.96 2.56 229Z76-290M 21.16 20.80 19.36 17.72 15.90 13.90 11.76 10.00 8.62 7.53 6.65 5.92 4.82 4.02 3.43 2.98 229Z76-326M 12.93 12.20 11.32 10.31 9.17 7.90 6.59 5.55 4.75 4.11 3.59 3.17 2.53 2.07 1.73 1.47 254Z76-181M 16.02 15.09 14.00 12.75 11.34 9.78 8.16 6.89 5.90 5.11 4.48 3.96 3.17 2.60 2.18 1.90 254Z76-218M 19.00 18.22 16.90 15.40 13.70 11.83 9.89 8.36 7.17 6.23 5.46 4.84 3.89 3.21 2.70 2.31 254Z76-254M 21.83 21.31 19.77 18.02 16.05 13.87 11.63 9.84 8.46 7.36 6.47 5.74 4.63 3.84 3.25 2.80 254Z76-290M 24.42 23.86 22.14 20.19 18.00 15.59 13.10 11.11 9.57 8.34 7.35 6.54 5.30 4.41 3.75 3.24 254Z76-326M 15.49 14.62 13.57 12.35 10.94 9.29 7.70 6.48 5.54 4.79 4.18 3.69 2.93 2.39 1.99 1.69 305Z76-181M 20.52 19.26 17.77 16.07 14.15 12.02 9.97 8.40 7.19 6.22 5.44 4.80 3.83 3.14 2.62 2.27 305Z76-218M 24.44 23.19 21.40 19.35 17.04 14.47 12.02 10.15 8.69 7.53 6.60 5.83 4.67 3.83 3.22 2.75 305Z76-254M 28.08 27.10 25.00 22.61 19.91 16.93 14.07 11.90 10.20 8.85 7.77 6.88 5.53 4.56 3.84 3.29 305Z76-290M 31.43 30.36 28.01 25.33 22.32 18.99 15.82 13.39 11.50 10.00 8.79 7.80 6.29 5.20 4.40 3.79 305Z76-326M 16.69 15.65 14.41 12.96 11.31 9.48 7.86 6.63 5.67 4.91 4.30 3.79 3.02 2.46 2.05 1.73 356Z76-181M 21.85 20.45 18.79 16.89 14.74 12.34 10.25 8.65 7.40 6.41 5.61 4.95 3.94 3.22 2.68 2.33 356Z76-218M 27.59 25.81 23.71 21.30 18.57 15.55 12.91 10.90 9.33 8.08 7.07 6.24 4.99 4.08 3.42 2.91 356Z76-254M 33.43 31.26 28.70 25.77 22.46 18.80 15.62 13.18 11.29 9.79 8.57 7.58 6.07 4.99 4.19 3.58 356Z76-290M 38.30 35.93 32.98 29.60 25.80 21.58 17.93 15.16 13.00 11.28 9.90 8.77 7.05 5.81 4.89 4.19 356Z76-326M 35

STANDARD FEATURES OF C AND Z SECTIONS ASSEMBLY HOLES 32 mm (1 1/4 in.) to 38 mm (1 1/2 in.) 32 mm (1 1/4 in.) to 38 mm (1 1/2 in.) 76 mm (3 in.) 102 mm (4 in.) = = 76 mm (3 in.) 76 mm (3 in.) = 21 mm holes (13/16 in.) Ø 14 mm x 19 mm holes (9/16 in. x 3/4 in.) 14 mm x 19 mm holes (9/16 in. x 3/4 in.) = SAG ROD HOLES 76 mm (3 in.) = = 14 mm holes (9/16 in.) 21 mm holes (13/16 in.) D. C. C L FABRICATION MARKS EL: The plant fabrication mark is found on the same extremity as that indicated on the shop drawing. G108 800S275-71 EL: W W G108 800S275-71 EL: EL: 36

STANDARD FEATURES OF C AND Z SECTIONS OVERLAPPING Z SECTIONS Overlapping joints for sections < 210 mm (8 1/4 in.) 38 mm (1 1/2 in.) 562 mm (22 1/8 in.) 102 mm (4 in.) 562 mm (22 1/8 in.) 38 mm (1 1/2 in.) 76 mm (3 in.) = = = 102 mm (4 in.) = plant or jobsite Overlapping joints for sections > 210 mm (8 1/4 in.) 38 mm (1 1/2 in.) 562 mm (22 1/8 in.) 102 mm (4 in.) 562 mm (22 1/8 in.) 38 mm (1 1/2 in.) 76 mm (3 in.) plant or jobsite 37

CONNECTION DETAILS AND ACCESSORIES INTERIOR GIRT TO COLUMN CONNECTION DETAILS INTERIOR GIRT TO CORNER COLUMN CONNECTION DETAILS 38

CONNECTION DETAILS AND ACCESSORIES EXTERIOR GIRT TO CORNER COLUMN CONNECTION DETAILS 39

CONNECTION DETAILS AND ACCESSORIES 3D VIEW OF BUILDING CORNER 40

CONNECTION DETAILS AND ACCESSORIES FRAME ATTACHMENT ANGLES LG_ LG_ LG_ LG_ LG_ LG_ METRIC Cut (mm) TYPICAL DETAILS A1011 Gr 50 Steel Mark Description (mm) Length (mm) Holes (mm) C/C (mm) 36 76 36 51 LG 6.9.3 L76x51x3.0 148 14 76 LG 6.13.3 L76x51x3.0 148 21 76 23 102 23 57 76 57 51 51 LG 6.9.4 L76x51x3.0 148 14 102 LG 8.9.3 L76x51x3.0 190 14 76 LG 8.13.3 L76x51x3.0 190 21 76 44 102 44 51 LG 8.9.4 L76x51x3.0 190 14 102 LG 8.13.4 L76x51x3.0 190 21 102 44 76 76 44 51 LG 10.9 L76x51x3.0 240 14 76 LG 10.13 L76x51x3.0 240 21 76 IMPERIAL Cut (in.) TYPICAL DETAILS A1011 Gr 50 Steel Mark Description (in.) Length (in.) Holes (in.) C/C (in.) 1 7/16 3 1 7/16 2 LG 6.9.3 L3x2x0.12 5 7/8 9/16 3 LG 6.13.3 L3x2x0.12 5 7/8 13/16 3 15/16 4 15/16 2 1/4 3 2 1/4 2 2 LG 6.9.4 L3x2x0.12 5 7/8 9/16 4 LG 8.9.3 L3x2x0.12 7 1/2 9/16 3 LG 8.13.3 L3x2x0.12 7 1/2 13/16 3 1 3/4 4 1 3/4 2 LG 8.9.4 L3x2x0.12 7 1/2 9/16 4 LG 8.13.4 L3x2x0.12 7 1/2 13/16 4 1 3/4 3 3 1 3/4 2 LG 10.9 L3x2x0.12 9 1/2 9/16 3 LG 10.13 L3x2x0.12 9 1/2 13/16 3 41

CONNECTION DETAILS AND ACCESSORIES ANGLE CLOSURES LC_ LC_ METRIC LC_ Mark Description (mm) Length (mm) LC 4.35 L102x90x2.3 6,096 LC 3.30 L76x76x2.3 6,096 LC 3.20 L76x51x2.3 6,096 IMPERIAL Mark Description (in.) Length (ft.) LC 4.35 L4x3,5x0.09 20 LC 3.30 L3x3x0.09 20 LC 3.20 L3x2x0.09 20 42

PURLINS AND GIRTS APPENDIX 1 CUTTING LIST (ORDER FORM) DRAWINGS SUPPLIED BY THE CUSTOMER You can download this form on the Canam-Buildings website at canam-construction.com/en/tools. Please return the completed form either by fax to 450-641-8769 or by email to estimation.girts@canamgroupinc.com Date: Company: Contact person: Telephone: Project n ame: Email: Primer: None Grey Galvanized Indicate Option 1 or Option 2 and hole preferences SAG ROD HOLES 76 mm (3 in.) Option 1 Option 2 38 mm (1 1/2 in.) 38 mm (1 1/2 in.) Dimensions A and B Length = = 76 mm (3 in.) 102 mm (4 in.) = = 14 mm holes (9/16 in.) ø 17 mm holes (11/16 in.) ø 21 mm holes (13/16 in.) ø 14 mm holes x 19 mm (9/16 in. x 3/4 in.) 14 mm holes x 19 mm (9/16 in. x 3/4 in.) = 76 mm (3 in.) 76 mm (3 in.) = NOMENCLATURE QUANTITY TOTAL CUT LENGTH DIMENSION A DIMENSION B ft. or m in. or mm ft. or m in. or mm ft. or m in. or mm 43

PURLINS AND GIRTS APPENDIX 2 FABRICATION DETAILS (ORDER FORM) DRAWINGS SUPPLIED BY CANAM-BUILDINGS You can download this form on the Canam-Buildings website at canam-construction.com/en/tools. Please return the completed form either by fax to 450-641-8769 or by email to gedeon.dessin@canamgroupinc.com Date: Company: Contact person: Telephone: Project n ame: Email: 76 mm (3 in.) 102 mm (4 in.) 32 mm (1 1/4 in.) to 38 mm (1 1/2 in.) " " TYPICAL END CONNECTION 14 mm holes (9/16 in.) ø 17 mm holes (11/16 in.) ø 21 mm holes (13/16 in.) ø 14 mm X 19 mm holes (9/16 in.) (3/4 in.) 14 mm X 19 mm holes (9/16 in.) (3/4 in.) G150 G200 G230 G250 G300 G350 (G6) (G8) (G9) (G10) (G12) (G14) Z150 Z200 Z230 Z250 Z300 Z350 (Z6) (Z8) (Z9) (Z10) (Z12) (Z14) = 76 mm (3 in.) 76 mm (3 in.) = 32 mm (1 1/4 in.) to 38 mm (1 1/2 in.) 14 mm holes (9/16 in.) ø 17 mm holes (11/16 in.) ø 21 mm holes (13/16 in.) ø 14 mm X 19 mm holes (9/16 in.) (3/4 in.) 14 mm X 19 mm holes (9/16 in.) (3/4 in.) G230 G250 G300 G350 (G9) (G10) (G12) (G14) Z230 Z250 Z300 Z350 (Z9) (Z10) (Z12) (Z14) PRIMER: None A X IS SAG ROD HOLES 76 mm (3 in.) Grey Red GIRT LINE: (exterior side) " " 14 mm holes (9/16 in.) 21 mm holes (13/16 in.) POSITION OF BRACING: In the axis Facing interior column Facing exterior column Other: See equal qty of spaces Qty = sag rods - (0 mm to 4,575 mm) 0 ft. to 15 ft. - 0 in. - (4,575 mm to 6,100 mm) 15 ft. to 20 ft. - 0 in. - (6,100 mm to 7,620 mm) 20 ft. to 25 ft. - 0 in. - (7,620 mm to 9,150 mm) 25 ft. to 30 ft. - 0 in. - (9,150 mm and over) 30 ft. and over BRACING CLEARANCE Angles and bolts (supplied by Canam) Slot Holes Slot with fastener NOTES: - The purlin and girt extremities will be cut at a 90 angle (blown insulation excluded on columns). - For connections other than those presented above, please contact Canam Canada. - Unless specified otherwise, bolts are not supplied by Canam Canada. 44

PURLINS AND GIRTS APPENDIX 2 TYPICAL DETAILS W-beam Angle (not supplied by Canam) Girt or C section 38 mm (1 1/2 in.) Angle (supplied by Canam) 14 mm x 19 mm holes (9/16 in. x 3/4 in.) 12 mm (1/2 in.) 51 mm (2 in.) 51 mm (2 in.) 21 mm holes (13/16 in.) Angle (supplied by Canam) 14 mm x 19 mm holes (9/16 in. x 3/4 in.) 21 mm holes (13/16 in.) 12 mm (1/2 in.) 14 mm x 19 mm holes (9/16 in. x 3/4 in.) 21 mm holes (13/16 in.) Angle and plate (supplied by Canam) 51 mm (2 in.) 14 mm holes (9/16 in.) 21 mm holes (13/16 in.) 14 mm holes (9/16 in.) 21 mm holes (13/16 in.) Anchors (not supplied by Canam) 51 mm (2 in.) Angle (supplied by Canam) 0 mm (0 in.) 12 mm (1/2 in.) 25 mm (1 in.) OR GIRT TO COLUMN CONNECTION DETAILS W - GOSL = W - 32 mm to 38 mm (1 1/4 in.) (1 1/2 in.) HSS - 45

BUSINESS UNITS AND WEB ADDRESSES www.canamgroup.ws www.canam.ws www.canam.ws www.canaminternational.ws www.fabsouthllc.com www.hambro.ws www.structal.ws www.structalbridges.ws www.intelibuild.com PUBLICATIONS JOISTS STEEL DECK STEEL DECK DIAPHRAGM SPECIFICATION GUIDE (JOIST GIRDERS) PURLINS AND GIRTS CONTACT OUR EXPERTS JOISTS: www.canam-steeljoist.ws/contactus-joist JOIST GIRDERS: www.canam-steeljoist.ws/contactus-girder STEEL DECK: www.canam-steeljoist.ws/contactus-steeldeck COLD-FORMED PRODUCTS: www.canam-steeljoist.ws/contactus-coldformed ENGINEERING SERVICES: www.canam-steeljoist.ws/contactus-engineering Discover our interactive engineering tools at www.canam.ws/tools 46