Rosemount TM 222 Toroidal Flow-Through Conductivity Sensor. Instruction Manual LIQ-MAN-222 Rev.D June 2017

Similar documents
Toroidal Conductivity Sensor

Endurance TM Conductivity Sensors

Rosemount 402 and 402VP

For additional information, please visit our website at SENSOR SPECIFICATIONS

Conductivity Sensors. Applications

Rosemount 228. Toroidal Conductivity Sensor. Product Data Sheet July Series LIQ-PDS-228

Conductivity Sensors. Applications. 140 Series Conductivity Sensors Product Data Sheet LIQ_PDS_140_141_142_Conductivity_Sensors January 2014

Conductivity Sensors. Model 140, 141, 142. Product Data Sheet series/rev.b February 2011

Rosemount TM 242 Toroidal Flow-Through Conductivity Sensor. Instruction Manual LIQ-MAN-242 Rev. F June 2017

General Purpose ph/orp Sensors

General Purpose Conductivity Sensors ENDURANCE. Model 400 and 400VP Series. Product Data Sheet PDS /rev.J January 2011

Conductivity Sensors. Model 140, 141, 142. Product Data Sheet series/rev.a June 1998

General Purpose Conductivity Sensors ENDURANCE. Model 400 and 400VP Series. Product Data Sheet PDS /rev.I December 2008

General Purpose Conductivity Sensors ENDURANCE. Model 400 and 400VP Series. Product Data Sheet PDS /rev.G February 2006

General Purpose Conductivity Sensors ENDURANCE. Model 400 and 400VP Series. Product Data Sheet PDS /rev.K February 2013

ENDURANCE. Sanitary Flange Conductivity Sensors. Models 403 and 403VP. Product Data Sheet PDS /rev.A June 2005

General Purpose Toroidal Conductivity Sensors

Analytical Instruments Two-Electrode Conductivity Sensors

Top Mount Installation for DP Flowmeters in Steam Service

Insertion/Submersion Flow Through Sensor

General Purpose ph/orp Sensors

Rosemount 3300HT/3300HTVP/3400HT/ 3400HTVP/3500P/3500VP

Instruction Manual. Model HC1 Series Electrodless Conductivity Sensors

ENDURANCE Conductivity Sensors

Rosemount Orifice Series Differential Pressure Flow

Powers Controls TT 184 Temperature Transmitters

Rosemount 485 Annubar Flanged Assembly

NEW QUICK CABLE-TO-SENSOR RELEASE,

PRESSURE/TEMPERATURE RATINGS ASME B16.34 VALVES

Damcos. SC Actuators SC Actuators for Gate Valves Linear Double-Acting Duplex Piston Actuator. Product Data Sheet March 2013 SD E03

Anderson Greenwood MB Series Integral Manifolds

Rosemount 285 Annubar Pak-Lok Assembly

TUpH 396, 396VP, 396P, 396PVP, 396R, 396RVP

Fisher Multi-Port Flow Selector Valve

Rosemount 285 Annubar Primary Element Series

ph/orp Sensor Model 399 ph/orp

Rosemount TGU 53 Tank Radar Gauge, Still Pipe Antenna for LNG

Retractable ph/orp Sensors

Damcos Accumulator Rack Stand Alone System. Product Data Sheet May 2014 SD E03

V550 Spring Lock Flanged Connection with Packing Gland

Rosemount 1195 Integral Orifice Primary Element

Baumann Way Control Valve

Keystone Figure 9 Butterfly Valve

ANDERSON GREENWOOD M25/M25A/M25B/M251/M251B MANIFOLDS

Models 396/396P/396R. Retraction/Submersion/Insertion ph/orp Sensor

SIGNET 2760 DryLoc ph/orp Preamplifier

INSTALLATION, CALIBRATION & TROUBLESHOOTING MANUAL

Signet Conductivity/Resistivity Electrodes

GUIDE OF CHANGE MANAGEMENT. Replacement of Fisher POSI-SEAL A81 High-Performance Butterfly Valve with Fisher 8580 High-Performance Butterfly Valve

Model Q45H/ Residual Chlorine Monitor...

Instruction Manual PN /rev.C June Models 140, 141, 142. Conductivity Sensor Assemblies

Baumann 24000C Carbon Steel Little Scotty Control Valve Instructions

Liquid Conductivity Two & Four Electrode Sensors

, General Instructions for Handling and Installation of Rosemount 1199 Seal Systems

Rosemount 405 Compact Primary Element. Quick Start Guide , Rev HA June 2016

Electronic Temperature Sensor

VALVCHEQ BACKFLOW PREVENTERS FIGURE DC03

Quick Start Guide , Rev CB March Rosemount DP Level Transmitters and 1199 Diaphragm Seal Systems

Rosemount 485 Annubar Pak-Lok Assembly

Rosemount 585 Annubar Flanged Flo-Tap Assembly

Baumann Series Flexsleev Control Valve Instructions

Quick Start Guide , Rev AB June Rosemount 585 Annubar Flanged Assembly

Type 80 Wafer and Type 81 Bolt-Thru Isolation Rings. Installation, Maintenance and Safety Instructions

Dissolved Oxygen, ph, and Conductivity

Rosemount 485 Annubar Threaded Flo-Tap Assembly

Fisher TBX Hydro Plug Fixture

Retractable ph/orp Sensors

740G Double Disc Check. Valve. Operation / Maintenance Manual. General Information 2. Installation/Operation 3

Fisher CVX Hydro Plug Fixture

Pasve Rotary Retraction Valve

ABB Automation. Variable Area Dial Flow Indicator Series 10A2227. Series 10A2227 Variable Area Dial Flow Indicator

V200S. ±1% of flow rate; up to +/-0.5% if calibrated ANSI Class* 600# 150# 150# 600# 600# Drive Rods Single Double (150mm-1050mm)

Micro Motion Model D and DL Coriolis Flow and Density Meters

RTD and Thermocouple Assemblies Reference Manual

Signet Conductivity/Resistivity Electrodes

Rosemount Multipoint Thermocouple and RTD Profiling Sensors

Keystone Butterfly valves ParaSeal Installation and maintenance instructions

Model 3051 Sensor Module Replacement

Anderson Greenwood Single Active SSV Installation and Maintenance Instructions

Regular Models. V150 Spring Lock Threaded Components

Dissolved Oxygen Measurement System with Air Blast Cleaner

Type 80 Wafer and Type 81 Bolt-Thru Isolation Rings. Installation, Maintenance and Safety Instructions I&M /14

Model Specifications V400S V400D Sensor Code Sensor Diameter 7/16 (11mm) 7/8 (22mm) 1-3/8 (35mm) 7/8 (22mm) 1-3/8 (35mm) Accuracy

Foxboro Dew Point Measurement System Model 2761 Mechanical DEWCEL Element Model 2781 Electrical DEWCEL Element

Baumann 24000S Stainless Steel Control Valve

Rosemount 385. ph/orp Sensors. Instruction Manual LIQ-MAN-385 Rev. E April 2017

Baumann Pneumatic Pressure Controller (for Industrial and Sanitary Applications)

Rosemount Manifolds. Rosemount Manifolds. Product Data Sheet , Rev MA August Contents

Sanitary Sensors. High Quality, Precision. Sanitary Sensors. THORNTON Leading Pure Water Analytics

Installation/Start-up Manual CMB_MAN_ABR_CH88 September CH88 In-Situ Combustion O2. Analyzer System

Fisher D2T FloPro Control Valve

Tissue Machine Bearing Failure and PeakVue Problem Resolution

Eddy Current Displacement Transducer Specifications

Rosemount Manifolds. Rosemount Manifolds. Product Data Sheet , Rev NB January Contents

Rosemount 405 Compact Orifice Series

General Specifications

Figure DC03. Double check valves for medium hazard rated applications BSP screwed connections. Features

F-2600 SERIES INLINE VORTEX FLOW METER

Fisher RSS Lined Globe Valve

Fisher 3024C Diaphragm Actuator

Transcription:

Rosemount TM 222 Toroidal Flow-Through Conductivity Sensor Instruction Manual LIQ-MAN-222 Rev.D June 2017

SPECIFICATIONS Wetted Materials: Teflon-lined carbon steel pipe, with carbon steel outer flanges. Option-21 has 316 SS outer flanges. Temperature and Pressure: Flange Option Temperature Pressure 150 lb -01 and -02 41 F(5 C) - 360 F (182 C) 125 psig (963 kpa abs) 300 lb -05 and -06 41 F(5 C) - 360 F (182 C) 250 psig (1825 kpa abs) Pressure (for CRN registration only): Flange Option Pressure (max) 150 lb -01 and -02, and -01-21 125 psig (963 kpa abs) 300 lb -05 (1 inch) 200 psig (1480 kpa) 300 lb -06 (2 inch) 250 psig (1825 kpa abs) Outside flanges: ANSI B16.5 raised face, threaded. INSTALLATION First, decide whether the initial calibration will be done in the shop before installing the sensor or in the process piping after installing the sensor. Refer to the Calibration section for information about in-shop and in-process calibrations. NOTE Install the sensor in a location where it will be completely filled with process liquid. A vertical pipe run with the flow from bottom to top is best. 1. Remove the grounding strap from the outer flanges. See Figure 1. Save the strap and all the hardware for reassembly. 2. Carefully remove the nuts, bolts, insulating bushings, and washers from the flanges. Save the parts. They will be needed later and must be in good condition. Separate the flange sets. 3. Remove and save the flange gaskets. 4. Install the outer flanges on the process piping, observing the dimensions noted in Figures 2 and 3. Use pipe joint compound or pipe tape to ensure the connections do not leak. 5. Install a ½ inch FNPT thermowell in the process piping within 6 ft. (1.8m) of the sensor. For best results place the thermowell as close as possible to the sensor. 6. Position the sensor between the process mating flanges with the flange gaskets inserted between each set of flanges. If the process piping is lined with a non-conductive material, a metal orifice plate (contact ring) must be installed between the flanges. Consult the factory for more information. 7. Align the bolt holes. 8. Insert an insulating sleeve in each bolt hole. See Figure 1. 9. Place a metal washer on each bolt, followed by an insulating washer. Insert the bolt through the insulating sleeve. 10. Place an insulating washer followed a metal washer on each bolt.

222 INSTALLATION NOTE Before tightening the bolts (step 11), be sure the flange gaskets are installed between the system piping and the sensor and that the insulating sleeves and washers are in place. For the sensor to operate properly there must no metal to metal contact between the sensor and the process piping. 11. Screw a nut onto each bolt and tighten according to the table. Follow the torquing sequence shown in Figure 1. Flange Torque 1 inch flange bolts 10 ft-lb (7.37 N-m) 2 inch flange bolts 25 ft-lb (18.43 N-m) Do not over tighten the bolts. 12. Connect the grounding strap between the two outer flanges using the screws and washers removed in step 1. If an orifice plate contact ring is being used, connect the shorting strap to the two contact rings. 13. Install the temperature sensor in the thermowell. Use Teflon tape on the pipe threads. The insertion length is adjustable from 1.4 to 4.0 inches (36 to 102 mm). The temperature sensing zone, which extends 1.3 inches (33 mm) from tip of the sensor, must be inside the thermowell DWG. NO. REV. 40022208 D FIGURE 1. 222 Toroidal Conductivity Sensor/Assembly Installation 2

222 INSTALLATION MILLIMETER INCH Model 222-01 Model 222-02 DWG. NO. REV. 40022210 A DWG. NO. REV. 40022211 B FIGURE 2. Code-01 and -02 Dimensions 3

222 INSTALLATION MILLIMETER INCH 222-05 222-06 DWG. NO. REV. 40022212 A DWG. NO. REV. 40022213 B FIGURE 3. Code-05 and -06 Dimensions 4

222 WIRING WIRING Keep sensor wiring away from ac conductors and high current demanding equipment. Do not cut cable. Cutting the cable may void the warranty. FIGURE 4. Wire Functions 222 FIGURE 5. Wiring 222 sensor to 1056 and 56 analyzers 222 FIGURE 6. Wiring 222 sensor to 54eC analyzer 5

222 WIRING 222 FIGURE 7. Wiring 222 sensor to Xmt-T panel mount transmitter 222 FIGURE 8. Wiring 222 sensor to Xmt-T pipe/wall mount transmitter TB2 TB1 RTN SENSE RTD IN SHLD RCV B RCV A RSHLD DRV B DRV A GREEN WHITE CLEAR BLACK GREEN BLACK WHITE DSHLD 22282-524 FIGURE 9. Wiring 222 sensor to 1066 transmitter 222 FIGURE 10. Wiring 222 sensor to 5081-T transmitter 6

222 WIRING WIRING THROUGH A REMOTE JUNCTION BOX 222 FIGURE11. Wiring sensor through a remote junction box Wire cable point to point. For wiring at the analyzer end, refer to the appropriate analyzer wiring diagram. FIGURE 12. Remote Junction Box (PN 23550-00) 7

222 TROUBLESHOOTING CALIBRATION The nominal cell constant of the 1-inch diameter sensor is 6/cm and the nominal cell constant of the 2-inch diameter sensor is 4/cm. The error in the cell constant is about ±10%, so conductivity readings made using the nominal cell constant will have an error of at least ±10%. For higher accuracy the sensor must be calibrated. The sensor can be calibrated using a standard solution or a previously calibrated sensor and analyzer. Calibration against a standard solution requires that the sensor and outer flanges be removed from the process piping. Generally it is a useful method only when the sensor is first installed. Otherwise, the sensor should be calibrated in place against a referee sensor and analyzer. To calibrate against a standard solution, screw a short length of metal pipe into one of the outer flanges and cap the open end of the pipe. Stand the sensor on the capped end and fill it with standard to the level of the upper surface of the second outer flange. Be sure the shorting strap is connected to both flanges. Adjust the analyzer reading to match the known conductivity of the standard. Do not place a temperature sensor or any object inside the conductivity sensor during calibration. Doing so will alter the measured conductivity and introduce an error in the measurement. Once the sensor has been installed in the process piping, removing it for calibration is impractical. In this case, calibrate the sensor against a referee sensor and analyzer, ideally while both sensors are simultaneously measuring the same process liquid. If this is not practical, calibrate the sensor against the results of a measurement made on a grab sample. For more information about calibrating toroidal conductivity sensors, particularly precautions to take during inprocess calibrations, refer to application sheet ADS 43-025, available on the Rosemount Analytical website. 8

222 CALIBRATION TROUBLESHOOTING PROBLEM PROBABLE CAUSE SOLUTION Off-scale reading Wiring is wrong. Verify and correct wiring. RTD is open or shorted. Check RTD for open or shorts. See Figure 13. Sensor is damaged. Perform isolation checks. See Figure 13. Perform toroid check. Noisy reading Fluctuating process liquid level in the sensor. Sensor cable is run near high voltage conductors. Sensor cable is moving. Confirm that the sensor is installed in the process piping so that it is always filled with liquid. Installation in a vertical pipe run with flow from the bottom is best. Move the cable away from high voltage conductors. Keep the sensor cable stationary. Reading seems wrong (lower or higher than expected) Bubbles are trapped in the sensor Increase the flow if possible. Sensor is not filled with process liquid. Confirm that the sensor is installed in the process piping so that it is always filled with liquid. Installation in a vertical pipe run with flow from the bottom is best. Cell constant is wrong. Wrong temperature correction algorithm is being used. Temperature reading is inaccurate. Measured temperature does not match temperature at the sensor. Toroids are damaged. Calibrate the sensor. Check that the temperature correction is appropriate for the sample. See analyzer manual for more information. Disconnect the RTD leads (Figure 13) and measure the resistance between the in and common leads. The resistance should be close to the value in Table 1. Move the thermowell and RTD closer to the sensor. Perform toroid check. 9

222 MAINTENANCE FIGURE 13. Disconnect wires from analyzer before measuring resistance. TABLE 1. Temperature Resistance 10 C 103.9 Ω 20 C 107.8 Ω 25 C 109.7 Ω 30 C 111.7 Ω 40 C 115.5 Ω 50 C 119.4 Ω Checking toroid operation Use the following procedure to check the operation of the toroids. 1. Disconnect the shorting strap from one of the outer flanges. The conductivity reading will drop to zero. 2. Pass a short piece of heavy gauge wire through the space between the toroid assembly and the pipe. 3. Connect the ends of the wire to a resistance decade box. 4. Turn off temperature correction in the analyzer. If raw conductivity is available as a temperature compensation selection, choose raw. If raw is not available, choose manual temperature correction and set the temperature to 25 C (77 F). 5. Adjust the resistance to the values shown in the table below. The conductivity reading displayed by the analyzer should be close to the values shown. Resistance 1-inch sensor K = 6/cm 2-inch sensor K = 4/cm 100 Ω 60 ms/cm 40 ms/cm 200 Ω 30 ms/cm 20 ms/cm The toroids are working properly if increasing the resistance by a factor of two causes the displayed conductivity to decrease by a factor of two. 10

222 TROUBLESHOOTING REPLACEMENT PARTS PN Description 2002557 Insulation kit, 1 inch, 150 lb flange, 2 sets (See Note) 2002558 Insulation kit, 1 inch, 300 lb flange, 2 sets (See Note) 2002559 Insulation kit, 2 inch, 150 lb flange, 2 sets (See Note) 2002560 Insulation kit, 2 inch, 300 lb flange, 2 sets (See Note) 8950101 Pt 100 RTD assembly 23294-00 Interconnecting cable, specify length (maximum 100 ft (30.5m)) Note: Each insulation kit contains two flange gaskets and sufficient insulating sleeves, insulating washers, and stainless steel washers to replace both flange seals of one sensor. The kit does not contain flange bolts or nuts. 11

LIQ-MAN-222 Rev. D June 2017 www.emerson.com/rosemountliquidanalysis Youtube.com/user/Rosemount Twitter.com/Rosemount_News Analyticexpert.com facebook.com/rosemount Emerson Automation Solutions 8200 Market Blvd. Chanhassen, MN 55317, USA Tel +1 800 999 9307 Fax +1 952 949 7001 Liquid.CSC@Emerson.com 2017 Emerson Automation Solutions. All rights reserved. The Emerson logo is a trademark and service mark of Emerson Electric Co. Rosemount is a mark of one of the Emerson family of companies. All other marks are the property of their respective owners. The contents of this publication are presented for information purposes only, and while effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. All sales are governed by our terms and conditions, which are available on request. We reserve the right to modify or improve the designs or specifications of our products at any time without notice.