MAGNETIC EFFECT OF ELECTRIC CURRENT

Similar documents
CHAPTER 13 MAGNETIC EFFECTS OF ELECTRIC CURRENT

MAGNETIC EFFECTS OF ELECTRIC CURRENT

Question 2: Around the bar magnet draw its magnetic fields. Answer:

1. Why does a compass needle get deflected when brought near a bar magnet?

Page 1 of 19. Website: Mobile:

Intext Exercise 1 Question 1: Why does a compass needle get deflected when brought near a bar magnet?

MAGNETIC FIELD DUE TO A CURRENT CARRYING CONDUCTOR

Magnetic Effects of Electric Current

Magnetic Effects of Electric Current

(d) The magnetic field lines, produced around a straight current-carrying conductor, are concentric circles. Their centres lie on the wire.

MAGNETIC EFFECTS OF ELECTRIC CURRENT

MAGNETIC EFFECTS OF ELECTRIC CURRENT. To understand Magnetic effects of Electric current, first we should know what is the Magnet?

MAGNETIC EFFECTS OF CURRENT

MAGNETIC EFFECTS OF CURRENT MAGNET:

CHAPTER -13 MAGNETIC EFFECT OF ELECTRIC CURRENT

MAGNETIC EFFECTS OF CURRENT

Magnetic Effects of Electric Current

All About Electromagnetism

Describe an experiment to demonstrate that there is a magnetic field around a current carrying conductor.

Magnetic Effect of Electric Current P-1

Magnetism - General Properties

If we place a compass near to a electric current carrying wire we can observe a deflection in

ELECTRO MAGNETIC INDUCTION

Al-Saudia Virtual Academy Online Tuition Pakistan Pakistan Online Tutor Magnet and Electromagnetism

Chapter 22: Electric motors and electromagnetic induction

CHAPTER 8: ELECTROMAGNETISM

1 A strong electromagnet is used to attract pins. core. current. coil. pins. What happens when the current in the coil is halved?

Ch 20 Inductance and Faraday s Law 1, 3, 4, 5, 7, 9, 10, 11, 17, 21, 25, 30, 31, 39, 41, 49

1. What type of material can be induced to become a temporary magnet? A) diamagnetic B) ferromagnetic C) monomagnetic D) paramagnetic

21.2 Electromagnetism

Section 1: Magnets and Magnetic Fields Section 2: Magnetism from Electric Currents Section 3: Electric Currents from Magnetism

Electromagnetic Induction Chapter Questions. 1. What is the Electromagnetic Force (EMF)? What are the units of EMF?

CURRENT ELECTRICITY - II

ELECTROMAGNETISM. 1. the number of turns. 2. An increase in current. Unlike an ordinary magnet, electromagnets can be switched on and off.

Update. This week A. B. Kaye, Ph.D. Associate Professor of Physics. Michael Faraday

ELECTRIC POWER AND HOUSEHOLD CIRCUITS

AP Physics B: Ch 20 Magnetism and Ch 21 EM Induction

EXPERIMENT 13 QUALITATIVE STUDY OF INDUCED EMF

1. Which device creates a current based on the principle of electromagnetic induction?

Chapter 17 Notes. Magnetism is created by moving charges.

11/2/2011. Magnetic field =surrounds a magnet and can exert magnetic forces.

INTRODUCTION Principle

Electromagnetic Induction

Unit 8 ~ Learning Guide Name:

Magnetism and Electricity ASSIGNMENT EDULABZ. the mere presence of magnet, is called...

Electromagnetic Induction (approx. 1.5 h) (11/9/15)

Q1. Figure 1 shows a straight wire passing through a piece of card.

ELECTROMAGNETIC INDUCTION. Faraday s Law Lenz s Law Generators Transformers Cell Phones

UNIT 2. INTRODUCTION TO DC GENERATOR (Part 1) OBJECTIVES. General Objective

Physics12 Unit 8/9 Electromagnetism

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS

DC Generator. - The direction of current flow in the conductor is given by Fleming s right hand rule. Figure 2: Change in current direction

Magnetism from Electricity

Photographs of large cities, such as Seattle, Washington, are visible reminders of how much people rely on electrical energy.

Induced Emf and Magnetic Flux *

Materials can be classified 3 ways

INDUCED ELECTROMOTIVE FORCE (1)

Imagine not being able to use anything that plugs into an electrical socket.

Fig There is a current in each wire in a downward direction (into the page).

Copyright 2011 Nelson Education Ltd. Chapter 12: Electromagnetism 12-2

Motional emf. as long as the velocity, field, and length are mutually perpendicular.

DC MOTOR. Prashant Ambadekar

CLASSIFIED 5 MAGNETISM ELECTROMAGNETIC INDUCTION GENERATOR MOTOR - TRANSFORMER. Mr. Hussam Samir

CHAPTER 8: ELECTROMAGNETISM

Electromagnets & Induction Vocabulary

The Starter motor. Student booklet

1. This question is about electrical energy and associated phenomena.

MS.RAJA ELGADFY/ELECTROMAGENETIC PAPER3

PURE PHYSICS ELECTRICITY & MAGNETISM (PART I)

Chapter 31. Faraday s Law

KS3 Revision. 8J Magnets and Electromagnets

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Ordinary Level Physics ANSWERS : ELECTROMAGNETIC INDUCTION. Solutions

The Electromagnet. Electromagnetism

Introduction: Electromagnetism:

ALTERNATING CURRENT - PART 1

reflect energy: the ability to do work

Ch. 3 Magnetism and Electromagnetism

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit.

Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus:

Magnets and magnetism

Electromagnetic Induction, Faraday s Experiment

Electromagnetism. Investigations

Unit 2: Electricity and Energy Resources

3/31/2016. Unit 2: Electricity and Energy Resources. Magnets. Magnets. Magnetic Force. Magnetic Field. Chapter 8: Magnetism and Its Uses

DISSECTIBLE TRANSFORMER - large

4) With an induced current, thumb points force/velocity and palm points current

Class X Chapter 09 Electrical Power and Household circuits Physics

Figure 1: Relative Directions as Defined for Faraday s Law

Experiment 6: Induction

Chapter 18 Magnetism Student Notes

2006 MINI Cooper S GENINFO Starting - Overview - MINI

Phys102 Lecture 20/21 Electromagnetic Induction and Faraday s Law

I.E.S. Cristo Del Socorro de Luanco. Magnetism

SPH3U UNIVERSITY PHYSICS

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit.

HSC Physics. Module 9.3. Motors and. Generators

EE6352-ELECTRICAL ENGINEERING AND INSTRUMENTATION UNIT I D.C. MACHINES PART A

Faraday s Law. HPP Activity 75v1. Exploration. Obtain. 50 or 100 turn wire coil bar magnet galvanometer

INDUCTANCE FM CHAPTER 6

Transcription:

BAL BHARATI PUBLIC SCHOOL, PITAMPURA Class X MAGNETIC EFFECT OF ELECTRIC CURRENT 1. Magnetic Field due to a Current through a Straight Conductor (a) Nature of magnetic field: The magnetic field lines due to a straight current carrying conductor forms a pattern of concentric circles with their centers on the wire. These concentric circles become larger & larger as we move away from it. (b) The direction of this field can be found by Right hand thumb rule, which states that: If a straight current carrying wire is imagined to be held in the right hand, with the thumb stretched along the direction of current, then the direction of the magnetic field produced by the current is in the direction in which the fingers are curled. (c) If the current in the wire increases then the needle of the compass needle placed at that point gets deflected by a larger angle. The strength of magnetic field at a point due to this current carrying conductor is directly proportional to the current. It means the strength of magnetic field increases with increase in the value of current. (d) The strength of magnetic field is inversely proportional to the distance. This means that the strength of the magnetic field reduces with distance from the wire. (e) If we reverse the direction of current in the straight conductor then the direction of deflection of needle of compass also reverses. Class Ten Page 1

2. Magnetic Field due to a current through a circular loop. (a) At every point of a current-carrying circular loop, the concentric circles representing the magnetic field around it would become larger and larger as we move away from the wire. By the time we reach at the centre of the circular loop, the arcs of these big circles would appear as straight lines. Note: The magnetic field is nearly uniform at the centre of the circular loop. (b) The strength of magnetic field at a point due to this current carrying circular loop is directly proportional to the current. The strength of magnetic field is inversely proportional to the distance. (d) The direction of magnetic field lines can be changed by reversing the direction of current. (e) If there is a circular coil having n turns, the field produced is n times as large as that produced by a single turn. This is because the current in each circular turn has the same direction, and the field due to each turn then just adds up. Class Ten Page 2

3. Magnetic field produced by a current in a solenoid (a) A coil of many circular turns of insulated copper wire wrapped closely in the shape of a cylinder is called a solenoid. (b) The magnetic field lines of a current carrying solenoid is equivalent to that of the bar magnet. One end of the solenoid behaves as a magnetic north pole, while the other behaves as the south pole. Outside the solenoid the direction of magnetic field lines is from south pole to north pole. And inside the solenoid the field lines are in the form of parallel straight lines. This indicates that the magnetic field lines is same at all points ie is field is uniform inside the solenoid. A strong magnetic field produced inside a solenoid can be used to magnetize a piece of magnetic material, like soft iron, when placed inside the coil. The magnet so formed is called an electromagnet. (d) The strength of magnetic field at a point due to this current carrying solenoid is directly proportional to the current. Class Ten Page 3

(e) The direction of magnetic field lines can be changed by reversing the direction of current. FORCE ON A CURRENT-CARRYING CONDUCTOR IN A MAGNETIC FIELD Take a small aluminum rod AB (of about 5 cm). Using two connecting wires suspend it horizontally from a stand, as shown in Fig. 13.12. Place a strong horse-shoe magnet in such a way that the rod lies between the two poles with the magnetic field directed upwards. For this put the north pole of the magnet vertically below and south pole vertically above the aluminum rod (Fig. 13.12). Connect the aluminum rod in series with a battery, a key and a rheostat. Now pass a current through the aluminum rod from end B to end A. It is observed that the rod is displaced towards the left. You will notice that the rod gets displaced. Reverse the direction of current flowing through the rod and observe the direction of its displacement. It is now towards the right. Why does the rod get displaced? A current-carrying rod, AB, experiences a force perpendicular to its length and the magnetic field the direction of the force on the conductor depends upon The direction of current the direction of the magnetic field. Experiments have shown that the displacement of the rod is largest (or the magnitude of the force is the highest) when the direction of current is at right angles to the direction of the magnetic field. Class Ten Page 4

NOTE: The force on the conductor depends upon: The magnetic field The current flowing through the wire The length of the conductor F=BIL F=BqL/t=Bqv A STATIONARY CHARGE KEPT IN A MAGNETIC FIELD DOES NOT EXPERIENCXE THE FORCE Fleming s left-hand rule. According to this rule, stretch the thumb, forefinger and middle finger of your left hand such that they are mutually perpendicular. If the first finger points in the direction of magnetic field and the second finger in the direction of current, then the thumb will point in the direction of motion or the force acting on the conductor. Devices that use current-carrying conductors and magnetic fields include electric motor, loudspeakers, microphones and measuring instruments. ELECTRIC MOTOR An electric motor is a rotating device that converts electrical energy to mechanical energy. Electric motor is used as an important component in electric fans, refrigerators, mixers, washing machines, computers, MP3 players PRINCIPLE A current-carrying conductor when placed in a magnetic field experiences a force perpendicular to its length ELECTROMAGNETIC INDUCTION let us imagine a situation in which a conductor is moving inside a magnetic field or a magnetic field is changing around a fixed conductor. What will happen? This was first studied by English physicist Michael Faraday, discovering how a moving magnet can be used to generate electric currents. To observe this effect, let us perform the following activity. Class Ten Page 5

ACTIVITY 1(fig.13.16) Take a coil of wire AB having a large number of turns. Connect the ends of the coil to a galvanometer as shown in Fig. Take a strong bar magnet and move its north pole towards the end B Do you find any change in the galvanometer needle? There is a momentary deflection in the needle of the galvanometer, say to the right. This indicates the presence of a current in the coil AB. The deflection becomes zero the moment the motion of the magnet stops. Now withdraw the north pole of the magnet away from the coil. Now the galvanometer is deflected toward the left, showing that the current is now set up in the direction opposite to the first. Place the magnet stationary at a point near to the coil, keeping its north pole towards the end B of the coil. We see that the galvanometer needle deflects toward the right when the coil is moved towards the north pole of the magnet. Similarly the needle moves toward left when the coil is moved away. When the coil is kept stationary with respect to the magnet, the deflection of the galvanometer drops to zero. What do you conclude motion of a magnet with respect to the coil produces an induced potential difference, which sets up an induced electric current in the circuit. A galvanometer is an instrument that can detect the presence of a current in a circuit. The pointer remains at zero (the centre of the scale) for zero current flowing through it. It can deflect either to the left or to the right of the zero mark depending on the direction of current. ACTIVITY 2(fig.13.17) Take two different coils of copper wire having large number of turns Connect the coil-1, having larger number of turns, in series with a battery and a plug key. Also connect the other coil-2 with a galvanometer as shown. Plug in the key. You will observe that the needle of the galvanometer instantly jumps to one side and just as quickly returns to zero, indicating a momentary current in coil-2. Disconnect coil-1 from the battery. You will observe that the needle momentarily moves, but to the opposite side. It means that now the current flows in the opposite direction in coil-2. Class Ten Page 6

we conclude that a potential difference is induced in the coil-2 whenever the electric current through the coil 1 is changing (starting or stopping). Coil-1 is called the primary coil and coil-2 is called the secondary coil. As the current in the first coil changes, the magnetic field associated with it also changes. Thus the magnetic field lines around the secondary coil also change. Hence the change in magnetic field lines associated with the secondary coil is the cause of induced electric current in it. This process, by which a changing magnetic field in a conductor induces a current in another conductor,is called electromagnetic induction The induced current is found to be the highest whenthe direction of motion of the coil is at right angles to the magnetic field. Rule to know the direction of the induced current. (fig.13.18) Stretch the thumb, forefinger and middle finger of right hand so that they are perpendicular to each other, as shown in Fig. 13.18. If the forefinger indicates the direction of the magnetic field and the thumb shows the direction of motion of conductor, then the middle finger will show the direction of induced current. This simple rule is called Fleming s right-hand rule. The difference between the direct and alternating currents 1. The direct current always flows in one direction, whereas the alternating current reverses its direction periodically. In India, the AC changes direction after every 1/100 second, that is, the frequency of AC is 50 Hz. 2. An important advantage of AC over DC is that electric power can be transmitted over long distances without much loss of energy. DOMESTIC CIRCUITS 1) Short Circuit: Sometimes live & neutral wire comes in direct contact with each other. This may happens when the insulation of wires is damaged or there is a fault in the appliances due to which resistance of the circuit decreases to a very small value & consequently the current becomes very large. This is called Short Circuiting. This may even cause firing in the building. Class Ten Page 7

2) Earth wire: It is necessary to connect an earth wire to electrical appliances having metallic body to ensure that any leakage of current to metallic body does not give any severe shock to a user. For this one end of the earth wire is connected to the metallic body & other end is usually connected to a metal plate, which is buried deep inside the earth near the house. If there is any leakage of current in the metallic body, earth wire provides a low resistance-conducting path for the current & keeps its potential to that of the earth & user may not get severe shock. 3) Fuse wire: The function of fuse wire is to protect the circuits due to short-circuiting or overloading of the circuits. Fuse wire is always connected in series with the live wire Fuse wire is made from an alloy of tin & copper. Fuse wire is having low melting point & high resistance. Rating of a fuse The maximum current which can flow through a fuse without melting it, is called its rating. For example, a fuse rated at 15A, can stand current upto 15A. 4) Overloading of an electrical circuit: The current flowing through an electric circuit depends upon the power rating of the electrical appliances connected to it. When the total power rating of the electrical appliances connected in the circuit exceeds certain limit, they draw large current. If this current exceeds the safety limit of the wiring, it may get overheated. Overloading is also due to short circuiting & voltage fluctuation. The overheating of electrical wiring in any circuit due to the flow of large current through it is called overloading of the electrical circuit. Class Ten Page 8