Super precision BearingS

Similar documents
SUPER PRECISION BEARINGS

Spherical Roller Bearings. NSKHPS, redefining the standard.

Deep Groove Ball Bearings

Bearing specification tables

Technical features. Precision combined bearings

Roller Bearings for Machine Tools. Precision Ball & Roller Bearings for Machine Tools

Technical features. Precision combined bearings

Cylindrical Roller Bearings

Split spherical roller bearings. Costs savings through rapid bearing replacement at difficult to access bearing locations

Full complement cylindrical roller bearings

Triple-Sealed Bearings for Bearing Units

1. TYPES AND FEATURES OF ROLLING BEARINGS Part B BEARING HANDLING. Part C ANGULAR CONTACT BALL BEARINGS SPHERICAL ROLLER BEARINGS. Part D.

Ball and Roller Bearings

Large Size Tapered Roller Bearings ULTAGE Metric Series

Standard Styles inch/metric

Ball & Roller Bearings

Precision Rolling Bearings

Inch Series TAPERED ROLLER BEARINGS

Technical Information. Deep Groove Ball Brgs. Angular Contact Ball Brgs. Cylindrical Roller Brgs. Full-Complement Cylindrical Roller Brgs.

Cylindrical Roller Bearings EW Series

Eaton EMEA Core Hydraulic Hose Products Brochure. Success made simple. The new standard for hydraulic hose and fittings.

The contents of this catalogue are the copyright of ESE and may not be reproduced unless permission is granted.

X-life High-Speed Spindle Bearings M. High-performance series for maximum productivity and low operating costs

Single Row Deep Groove Ball Bearings

MAE 412 Machines and Mechanisms 2: Catapult Project 12/13/02

Ro R l o lliln i g n g B e B a e r a i r n i g n s g

Split spherical roller bearings. Costs savings through rapid bearing replacement at difficult to access bearing locations

Ceramic&Exsev bearing series

Eaton Aeroquip Triple Crown

Tungsten carbide burrs with ALU cut High-capacity burrs for aluminium

timken MiniatUre and thin-section bearings catalog

7. BOUNDARY DIMENSIONS AND IDENTIFYING NUMBERS FOR BEARINGS

A Study on Sensor Design for Measurement of Automobile Engine Oil Degradation and Level

Crossed Roller Bearings. Technical Information.

Spherical Roller Bearings

General Bearings LARGE SIZE BALL & ROLLER BEARINGS CAT. NO. B2002E

NEEDLE BUSHES. Polígono Indutrial O Rebullón s/n Mos - España -

Angles Hot rolled, weldable structural steel sections

Up to 100 % higher stock removal performance when used on stainless steel (INOX) in comparison to conventional cross cut burrs

General Bearings LARGE SIZE BALL & ROLLER BEARINGS CAT. NO. B2002E-2

The standard cages used are pressed steel cages. Additionally Copper alloy machined cages are also available.

THE NEW FIFTH EDITION OF API 618 FOR RECIPROCATING COMPRESSORS WHICH PULSATION AND VIBRATION CONTROL PHILOSOPHY SHOULD YOU USE?

FRICTION POTENTIAL AND SAFETY : PREDICTION OF

Tungsten carbide burrs with STEEL cut High-capacity burrs for steel and cast steel

RPG. Characteristics&Advantages

Rubber Insulating Products, Safety Equipment & Dielectric Testing Services

High-Speed Precision Bearings

Development, Study, and Testing of Small-Scale Refrigeration System for Electronics Cooling Using Cold Plate Evaporators

CERAMIC INSERTS For Turning, Grooving and Milling

SECTION 32 - PAD-MOUNTED CAPACITORS TABLE OF CONTENTS

UNIWORX PLUS. All-purpose corner radius/high-feed milling cutter for countless finishing options

Simulink Modeling for Hybrid Vehicle Dynamic Characteristics

Design of Planetary Plug-in Hybrid Powertrain and Its Control Strategy

Bearings and Related Products for Continuous Casting Machines

Table of Contents Super Precision Machine Tool Bearings

Analysis of the Vane Contact Force and the Vane Side Friction Loss of the Various Revolving Vane Expander Designs

Sustainable Transport: Synergies from a multibrand company. Pierre Lahutte, Iveco Brand President

Chemical Composition(%)

CLEAN FITTING (C SERIES / CL SERIES)

Safety detection solutions Safety interlock switches by actuator, with solenoid, turret head Metal, type XCS LF Plastic, type XCS LE

AIR STANDARD ASSUMPTIONS

Model Predictive Control for Vehicle Yaw Stability

Tungsten carbide burrs with CAST cut High-capacity burrs for cast iron

Yukon Bureau of Statistics

Limit Switches Matsushita Electric Works, Ltd. Matsushita Electric Works, Ltd. Limit Switches ARCT1B272E Please contact...

EAS -element clutch EAS -elements

A small UAV deviation control roll research. Tianxiang Hu

GESTRA Product Overview. The optimum components for every application

INSTALLATION INSTRUCTIONS

CHEMICAL. TIE PLUGGER Model NETP-1 TABLE OF CONTENTS

Diesel engine vibration monitoring based on a statistical model

squareworx For every eventuality: Square shoulder, slotting and chamfering milling with only one insert

HUATONG Medium & Low Voltage Power Cables 0.6/1kV~18/30kV According to IEC 60502, 61034, 60754

INSTALLING 200 AMP PRIMARY SPLICES: LC SHIELDED CABLE TO LC SHIELDED CABLE INSTALLING 200 AMP PRIMARY SPLICES: LC SHIELDED CABLE TO LC SHIELDED CABLE

Design of Optimal Coasting Speed for MRT Systems Using ANN Models

TABLE OF CONTENTS FLOATING BALL VALVES 9 STANDARD 10 METAL SEATED 24 TRUNNION BALL VALVES 29 STANDARD 30 DOUBLE BLOCK AND BLEED 40 FULL WELDED 44

slotworx Square shoulder face milling and slotting cutters with highly modern cutting edge geometry for universal applications

STAGE MANAGEMENT PRODUCTS - CHOIR STICK MICS

Railway Hose Brochure. High-performance railway hose meets R22/R23 test requirements for hazard levels 3 and 3

Drum Line. Technique Packet. Contents

END USE BASED MODEL FOR RESIDENTIAL POWER CONSUMPTION FORECASTING IN NAIROBI REGION, KENYA

Operating Instructions High-pressure pumps

THE TCCS SYSTEM UTILIZES A MICROCOMPUTER AND MAINTAINS OVERALL CONTROL OF THE E/G, T/M, ETC. AN OUTLINE OF ENGINE CONTROL IS GIVEN HERE.

Steering Control of Six-wheeled Vehicles using LQR Techniques

CYLINDRICAL ROLLER BEARINGS

This version supersedes all previous ones. Please be informed that the bearings

2-3 COMPANY ROTORA: 2008 BRAKE GUIDE CIRCUIT BRAKER

TWIN-SAF SYSTEM TURNING / PARTING & GROOVING / PROGRAM OVERVIEW PARTING TN-P00 GROOVING TN-P00 TURNING TN-P00 PROFILING TN-F00 TN-F90 FACE GROOVING

PANEL SPLICE SEE DETAIL A1.3 FLOATING TRIM SEE DETAIL A1.7 TRIM NOT SHOWN FOR CLARITY

Working Press. (PSI) Min. Burst Pressure. mm in fraction mm in fraction bar psi bar psi Kg/m lbs/ft feet

INSTALLING 200 AMP PRIMARY SPLICES: LC SHIELDED CABLE TO LC SHIELDED CABLE INSTALLING 200 AMP PRIMARY SPLICES: LC SHIELDED CABLE TO LC SHIELDED CABLE

Tools for Aluminum. New Expanded Offering. ISO 9001 Certified

Equipment: Cow magnet and long copper tube and long aluminum tube, or cow magnet slug

Railway Hose Brochure. High-performance railway hose meets R22/R23 test requirements for hazard levels 3 and 3

Solutions for a wide variety of applications

A.4. INDIVIDUAL PROOF OF WEAPONS

MACHINE TOOL SPINDLE BEARING SELECTION & MOUNTING GUIDE

ENGINE CONTROL (5S-FE)

IMECE ROBOTIC HIGHWAY SAFETY MARKERS

RCP2/RCA/RCS2/RCS3 Actuator Slider Type/Rod Type/ Arm Type/Flat Type First Step Guide Eighth Edition

Transcription:

Supe pecision BeaingS

SUPER PRECISION BEARINGS Pat1 Contents Pat1. NSK Supe Pecision Beaings Global Suppot Capabilities P6 Development Capabilities P8 Quality Contol and Poduction Capabilities P 4 5

Global Suppot Capabilities Pat1 Pat 2 Pat 3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8 Unifom suppot system anywhee in the wold NSK is committed to manufactuing and selling poducts with consistently high quality anywhee in the wold unde the leadeship of Technology Centes in the fou majo global makets. NSK s sales offices, with expet staff that constantly exploe custome needs, pomote global netwok management that encompasses Technology Centes as well as poduction sites. NSK can espond quickly and effectively to the vaious needs of customes and suppots thei business development effots in any egion. Euope Asia Japan 77 4 Head Office Building NSK Fujisawa Plant The Ameicas Fujisawa Technology Cente Headquates Newak Plant Euope Technology Cente China Technology Cente Ameican Technology Cente Sales office, Plant Technical office Global netwok management povides optimal, high-quality poducts Technology Cente custome suppot Custom poducts fo unique custome applications Ou global suppot netwok is available wheeve ou customes ae located NSK has established a highly-developed infomation netwok centeed on Technology Centes located in the fou majo makets of the wold Euope, the United States, Asia and Japan. With this netwok, we ae able to gathe infomation, in eal time, elated to the changes and tends in any maket in the wold. As a esult, we can eact quickly to meet changing custome needs to supply optimal, high-quality poducts. Infomation system diectly linked to customes Technology Centes in fou majo makets povide technical suppot to customes in thei espective egions. This suppot enables ou customes to use NSK s poducts unde ideal conditions and achieve the best possible pefomance. Each Technology Cente woks closely with ou customes to detemine thei pecise application needs. In doing so, we assist them in identifying the ight NSK poduct fo each application to ealize maximum efficiency and cost effectiveness. Upon equest, we can also supply completely customized poducts to satisfy highly-specialized custome needs. Ou extensive global netwok is able to eceive odes and supply poducts anywhee in the wold. NSK s distibutos cove the globe and maintain an inventoy of all citical poducts in evey majo maket and location, making it possible to supply poducts to customes without delay. NSK also povides technical suppot woldwide to help customes detemine the best beaing fo each application, espond quickly to any questions, and immediately addess any poblems ou customes may encounte. http://www.nsk.com 6 7

Development Capabilities Pat1 Pat 2 Pat 3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8 NSK s key technology NSK s key technology is Tibology, the science of fiction and wea. Tibology is a technology that focuses on saving enegy and conseving esouces by educing fiction and wea as well as peventing machine failue and theeby inceasing eliability. NSK pomotes the development of new poducts with a focus on fou coe technologies deived fom Tibology. Analysis Technology NSK developed its own softwae, BRAIN (Beaing Analysis In NSK), which enables digital simulations of fiction-elated movement and pefomance by applying Tibology. The combined use of this simulation data with an effective facto method (EFM) ealizes advanced compute-aided engineeing (CAE). Lubication Technology Though the elentless application of Tibology, NSK s key technology, NSK has pusued lubication technologies that allow machines to delive maximum pefomance and NSK s accomplishments in these effots contibute to saving enegy and esouces, theeby conseving the global envionment. Evaluation Technology NSK has established an evaluation technology that spans a wide ange of applications by employing advanced technologies such as nano-ode unout measuement using ulta high-pecision measuing instuments. Ou evaluation technology contibutes to the development of cutting-edge poducts that coespond with inceasingly sophisticated maket needs. Mateial Technology Reseach and development acoss a wide ange of mateial technologies has been conducted to poduce eve-highe pefoming poducts. Poducts made of NSK s popietay mateials delive long life unde hash conditions, ae maintenance-fee, and also suppot all industies. 8 9

Quality Contol and Poduction Capabilities Pat1 Pat 2 Pat 3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8 The highest level of quality in the wold NSK pecision beaings delive the highest level of accuacy, suppoted by ou poduction capability, state-of-the-at equipment and extensive manufactuing expetise, as well as ou commitment to applying the same igoous quality contol pocedues at each stage of the poduction pocess in evey NSK facility. NSK focuses its effots at its global poduction sites in Japan and England on offeing poducts with high accuacy to quickly meet the divese needs of customes woldwide. 1 Heat teatment 2 Ginding 3 Component inspection 4 5 Finished Assembly goods inspection 6 Packaging Manufactuing technologies to poduce high accuacy poducts To maintain ou eputation fo manufactuing pecision beaings with the highest degee of accuacy in the wold, all pecision beaings ae checked to nanomete accuacy. Global poduction in England and Japan NSK s pecision beaings ae made in both England and Japan. The combined expetise and locations of these manufactuing facilities allow us to meet evey custome need. NSK Newak Plant NSK Fujisawa Plant NSK symbol NSK s golden box guaantees the highest level of accuacy. Complete quality contol and envionmental esponsibility As membes of an ISO 9001-cetified entepise, all NSK plants adhee to stict intenational standads fo quality contol. NSK is also making an all-out, companywide effot to addess envionmental concens as a top pioity. ISO 9001 Cetification ISO 14001 Cetification 11

High Pefomance in the Next Geneation Pat2 NSK continually challenges the status quo to exploe new possibilities. As ou design philosophy does not allow us to compomise quality in manufactuing, we ae diven to develop total solution technologies. By using the latest mateial and analysis technologies we ae able to design and manufactue exceptional, high pefomance pecision beaings. NSK will always stive to achieve the quality and pefomance that will be equied in next geneation beaings. Contents Pat2. Featues of Pecision Beaings Metallugical Technologies to Extend Beaing Life P14 Ceamic Rolling Elements P16 Cages P18 Beaing Components Poduct Range Pefomance of Each Beaing Type P20 P22 P24 12 13

Metallugical Technologies to Extend Beaing Life Pat 1 Pat2 Pat 3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8 Thee types of steel mateials suppot the long life and high pefomance of NSK supe-pecision beaings NSK has established goundbeaking evaluation techniques fo inclusions in steel and steel-making pocedues. These technologies make it possible to develop mateials fo long-life, high-pefomance olling beaings. Thee types of steel mateials SHX steel that withstands ulta high-speed otation envionments, EP steel that exhibits high eliability unde heavy load envionments, and Z steel that achieves extended opeation life unde geneal conditions suppot NSK supe-pecision beaings. Z Steel as a Standad Mateial fo Supe-Pecision Beaings Z Steel Life, L Cycle 8 7 6 0 Standad Long Life Mateial 1.8 Times Longe Fatigue Life than Conventional Vacuum Degassed Steel It is well known that the olling fatigue life of high cabon chome beaing steel (SAE520, SUJ2) used fo olling beaings is significantly affected by non-metallic inclusions. Life tests show that oxide non-metallic inclusions exet a paticulaly advese affect on olling fatigue life. Z Steel, with lowe oxide non-metallic inclusions, exhibits impoved pefomance. Featues of Z Steel Z Steel is poduced by educing non-metallic inclusions, oxides and othe inclusions such as Ti, o S, inside the steel. Beaings made of this steel delive significantly extended sevice life, up to 1.8 times longe, compaed to conventional vacuum degassed steel. Oxygen Content in Steel and Opeating Life Z Steel Vacuum degassed steel fo the beaings in a wide vaiety of industies. 5 20 30 Oxygen Content in Steel, ppm EP Steel fo Highe Reliability unde Heavy Load Envionments EP Steel Numbe of Paticles 200 180 160 140 120 0 80 60 40 20 0 Exta Long Life and High Reliability 3 Times Longe Fatigue Life than SUJ2 Steel Development of innovative techniques fo evaluating oxide nonmetallic inclusions and the establishment of steel-making pocedues esulted in EP steel that achieved a damatic advance in beaing eliability. Featues of EP Steel Beaings made fom EP Steel exhibit inceased eliability due to minimal vaiation in life esulting fom the new evaluation technique and significantly educed impuities. The establishment of a new evaluation technique NSK established the NSK-ISD2 Method, an image analysis system and a special steel-making pocedue, to impove the evaluation of oxide non-metallic inclusions. Impovement of steel-making pocedues The intoduction of this technique into steel manufactuing technology significantly impoved puity and educed nonmetallic inclusions compaed to Z Steel. EP Steel contains fewe lage paticles than eithe Vacuum Ac Remelted (VAR) o conventionally efined Z Steel. Puity compaison though image analysis EP Steel SUJ2 EP 3 µ m 40C. >5 µ m 5C. > µ m 0C. [O] : (5.5)ppm 1 200 View 5 15 Oxide Paticle Size, µ m Numbe of Paticles Cumulative failue pobability, % 200 180 160 140 120 0 80 60 40 20 0 99 90 80 70 60 50 40 30 20 0 1 5 4 3 2 1 Z Steel 5 15 Oxide Paticle Size, µ m Test conditions (Beaing: 6206) P/C: 0.71 Speed: 3 900 min 1 Lubication: Foced ciculation lubication SUJ2 Z 3 µ m 404C. >5 µ m 0C. > µ m 8C. [O] : (8)ppm 1 200 View Fatigue Life Subsuface oiginated flaking test EP Steel Z Steel SHX Steel Endues Ulta Speed Rotation Envionments SHX Steel Wea Resistance Amount of wea, g Time until seizue, sec Cumulative failue pobability, % 0.07 0.06 0.05 0.04 0.03 0.02 0.01 600 500 400 300 200 0 0 0 99.9 99 90 50 Wea esistance of each mateial (2 cylindical olles wea test) 0 0 SHX SUJ2 M50 Seizue Resistance Fatigue Life SHX SUJ2 500 1 000 1 500 Sliding distance, m Dy seizue limit test (4 balls test) SHX Mateial Clean lubication Test conditions (Beaing: 6206) 5 P/C: 0.71 Tempeatue: 160 C Speed: 4 900 min 1 Oil film paamete ( ): 5 1 2 3 4 Life, h M50 Subsuface oiginated flaking test Poducts made of Z Steel Poducts made of EP steel Poducts made of SHX Steel Heat Resistant Steel Extends the Life of Beaings Used in Ulta High-Speed Applications 4 Times Longe Fatigue Life than SUJ2 Steel, at 20% Highe Speed SHX is a heat-esistant steel esulting fom NSK s special heat teatment technology. Featues of SHX Steel SHX steel exhibits simila heat esistant pefomance to M50 steel, which is used fo beaings on the main shaft of jet engine applications whee tempeatues each 300 C, and featues lowe fiction pefomance, while at the same time exceeding M50 steel in wea and seizue esistance and fatigue life. This level of heat esistance, lowe fiction pefomance and indentation esistance epesent ideally suited steel chaacteistics fo ulta high-speed machine tool beaings. Patent Numbe: 2961768JP 2 000 PV value, kgf/mm 2 m/s Cumulative failue pobability, % Load 1 600 1 200 800 400 99.9 99 90 50 2 cylindical olles wea test Lubicant 7 min 1 min 1 SUJ2 SHX SUJ2 M50 Test conditions Suface pessue : 880 MPa Sliding atio : 30% Lubication : Spindle oil (2 cc/min) Tempeatue : Room tempeatue Oil bath seizue limit test (4 balls test) M50 Mateial Contaminated lubication Test conditions (Beaing: 6206) P/C: 0.28 Tempeatue: 140 C Speed: 4 900 min 5 1 Foeign debis Hadness: Hv540 Size: 74 147 µ m 1 1 2 3 Life, h SHX Suface oiginated flaking test 4 balls test Load Rotating Fixed NSK uses Z Steel as a standad mateial Ball Scew Suppot Beaings Ulta High-Speed ROBUST Seies fo Ulta High-Speed Machine Tool Main Spindles 14 15

Ceamic Rolling Elements Pat 1 Pat2 Pat 3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8 Less heat is geneated, making possible ulta high-speed otation. Ceamic hybid beaings have many excellent pefomance chaacteistics such as heat esistance, extended life, light weight, lowe themal expansion, electically non-conductive, and thus can be used in an infinite numbe of applications as a new geneation mateial. Ealy on NSK s knowledge of mateials and beaing manufactuing led us to utilize one ceamic in paticula, silicon nitide (Si 3 N 4 ), fo the olling elements in ceamic hybid beaings. Hybid beaings with ceamic elements have eaned a good eputation in the field fo ulta high speed combined with ulta high accuacy, a pefomance combination that is not achievable in beaings with steel olling elements. Seizue Resistance Relative to steel balls, ceamic balls have a highe seizue esistance. Oute ing tempeatue ise, C 0 Steel balls Seizue Ceamic balls Oil Inteuption Test Result, s Resupply 30 Cutting by NSK Spindle using Ceamic Ball Beaing End Mill: 16 Wok Mateial: A5052 Rotational speed: 20 000 min 1 2 500 cm 3 /min High speed and low-heat geneation Light weight As the density is 40% lowe than that of steel, the centifugal foce applied to the olling elements is smalle, thus extending beaing life. Low coefficient of linea expansion In applications involving high speed opeation, although the tempeatue of the beaing is high, this low coefficient esults in lowe peload and lowe heat geneation. Low fiction The slip of the olling element duing opeation is educed, and this means less heat is geneated. Calculated esult of heat geneation 500 500 Less heat is geneated, making possible ulta highspeed otation. High Rigidity Ceamic balls have a Young s Modulus that is 50% highe than that of steel, making it an ideal mateial fo use in machine tool spindles equiing igid cutting pefomance. Cutting by NSK Spindle using Ceamic Ball Beaing Axial displacement, µ m 30 20 0 65BNRS (Steel balls) 65BNRH (Ceamic balls) 65BARS (Steel balls) 65BARH (Ceamic balls) 65BTRS (Steel balls) 65BTRH (Ceamic balls) 1 000 2 000 3 000 Axial load, N Face Mill: 80 Wok Mateial: S50C Rotational speed: 1 200 min 1 504 cm 3 /min Dynamic fictional loss, w 400 300 200 0 Rolling fiction between balls and aceways Spin Slip Gyoscopic Slip Othes Dynamic fictional loss, w 400 300 200 0 Rolling fiction between balls and aceways Spin Slip Othes Gyoscopic Slip High Accuacy NSK s expetise in the manufactuing of balls and olles ove the yeas along with impovements in the sinteing pocess and the gade of mateials used enables NSK to poduce ceamic balls and cylindical olles that featue a highe level of accuacy 98 than steel mateials. Beaings using these high-accuacy ceamic olling elements suppot high-accuacy machining. 0 0 1 2 3 4 5 6 7 8 Speed, min 1 3 0 0 1 2 3 4 5 6 7 8 Speed, min 1 3 183 0 The Oute Ring Tempeatue Rise in High Speed Opeation Oute ing tempeatue ise, C 80 70 60 50 40 30 20 Steel balls Ceamic balls NSK Spindle that achieved 4 million d m n using ceamic ball beaings Size: 9/32'' Magnification: 50 000 times Roundness of ceamics ball Ceamic ball beaing 278 Roundness of mateial being gound 0.14 µm 1 µm/div High magnification (200 000 times) Spheicity measuing equipment 0 0 5 000 000 15 000 20 000 25 000 Speed, min 1 Ceamic olle beaing 16 17 Ceamic ball beaing

Cages Pat 1 Pat2 Pat 3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8 Engineeed polyme cages with highe speed capability and lowe fiction Because of light weight (polyme density is 1/6 that of bass), easy fomability, and high coosion esistance, polyme mateials ae used widely in beaing cages. Polymes can be engineeed to have lowe fiction and thus lowe heat geneation and highe speed capability. Polymes can be engineeed fo low wea, thus extending gease life. The engineeed polyme cage is well suited fo beaings used in machine tool main spindles. Cage fo Angula Contact Ball Beaings Ball Guided Polyamide Cage (TYN) Low Noise Oute Ring Guided Phenolic Cage Rolle Guided Machine Bass Cage Rolle Guided PPS Cage Oute Ring Guided PEEK Cage Ball Guided Polyamide Cage This special design allows the beaing to have lowe fiction and lowe noise. This cage is effective with gease lubication. The intenal fee space of the beaing in this cage is lage than that with oute ing guided cage so, it is possible to keep moe gease inside of the beaing. The peiod of the gease unning-in pocedue fo a beaing with this cage is shote than that of a beaing, with a phenolic cage. Cage fo Double-Row Cylindical Rolle Beaings Rolle Guided PPS Cage (TB) Engineeed Polyme High Rigidity Optimal olle-guided cage design with consideation fo stength and fiction. Excellent physical popeties include highe stength, toughness, wea and fatigue esistance compaed to cuent polyamide cage mateial. High tempeatue esistance up to a maximum of 220 C. Ulta High-Speed Angula Contact Ball Beaings ROBUST Seies Cage Pefomance Test Result Oute ing tempeatue ise, C 70 60 50 40 30 20 T cage TYN cage Beaing: 65BNRH-DB Peload afte mounted: Position peload 300N Lubication: Gease The tempeatue ise of the beaing with a TYN cage is lowe than that with a Phenolic cage at a otational speed lowe than 1.4 million d mn Cage fo Single-Row Cylindical Rolle Beaings Oute Ring Guided PEEK Cage (TP) Engineeed Polyme Double ow CRB High Rigidity Seies Ulta High-Speed 0 Speed 0 5 000 000 15 000 20 000 25 000 min 1 4 d m n 0 50 0 150 200 Minimizing cage defomation to pemit stable high-speed otation. High tempeatue esistance up to a maximum of 240 C. Excellent wea-esistant pefomance and suited to minimal oil lubication. Physical popeties include high stength, toughness, wea and fatigue esistance. Oute Ring Guided Phenolic Cage (T, TR) Ulta High-Speed The otational movement of the oute ing guided cage is moe stable in high-speed opeation. Standad Seies Angula Contact Ball Beaings Standad Seies Ulta High-Speed Angula Contact Ball Beaings ROBUST Seies Rolle Guided Machined Bass Cage (MB, MR) This cage demonstates high tempeatue esistance, high stength, and high igidity. Ulta High-Speed Single Row CRB Robust Seies Geneal Pupose 18 19

Beaing Components Pat 1 Pat2 Pat 3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8 NSK supe-pecision beaings with optimal mateials and intenal design Angula Contact Ball Beaings (Standad Seies) Cylindical Rolle Beaings Cages Rolling elements Ceamics SUJ2 Cage Polyamide Phenolic Rolling elements SUJ2 Rings SUJ2 NN30 PPS Bass Type Rings Rolling elements Cages Rings SUJ2 Standad SUJ2 SUJ2 PPS(TB)/ Bass (MB) Cage Angula Contact Ball Beaings (ROBUST Seies) Type Rings Rolling elements Cage SUJ2 type SUJ2 SUJ2 Polyamide 46 (TYN) Ceamic ball type SUJ2 Ceamics Phenolic (TR) Rolling elements Ceamics SHX SUJ2 Rings SHX SUJ2 N PEEK Bass Type Rings Rolling elements Cage Standad RS SUJ2 SUJ2 SUJ2 SUJ2 Bass (MR) RX SHX SHX PEEK(TP) RXH SHX Ceamics Rolling elements Ceamics SUJ2 Cage Polyamide Phenolic PEEK Angula Contact Thust Ball Beaings fo Ball Scew Suppot Rings SHX SUJ2 Rolling elements SUJ2 Cage Polyamide Bass Type Rings Rolling elements Cage S H X SUJ2 SUJ2 SHX SUJ2 Ceamics Ceamics Polyamide 46 (TYN) Phenolic (T) PEEK (T42) Rings SUJ2EP SUJ2 Type Rings Rolling elements Cage Fo machine tool applications Fo injection molding applications SUJ2EP SUJ2 SUJ2 SUJ2 Polyamide 66 Polyamide 46/ Bass 20 21

Supe Pecision Beaings Poduct Range Seveal types of supe pecision beaings ae available fom NSK, including the ROBUST seies of high pefomance beaings, the special seies of beaings fo unique and specialized applications, and the standad seies beaings. High Pecision Angula Contact Ball Beaings Standad Seies Basic NSK supe pecision beaings manufactued to confom to ISO standad. Standad Seies 70xx, 72xx, 79xx seies Thee types of contact angle: 15 (C), 25 (A5), 30 (A) Two types of cage design: Select eithe phenolic (TR) o polyamide (TYN), depending on application equiements Pat 1 Pat2 Pat 3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8 Ulta High-Speed Single Row Cylindical Rolle Beaings ROBUST Seies Standad Seies High pefomance cylindical beaings designed fo ulta high-speed applications, such as machining cente spindles. Two types of cage mateial: Bass (MR) (1) and PEEK esin (TP) Thee types of olle mateial: Steel, SHX and Ceamic Ulta high-speed ROBUST RXH design can be used up to 2.2 million d m n (1) MR cage is used in the standad seies ROBUST seies is the high pefomance seies of NSK supe pecision beaings. ROBUST Seies Standad Seies Ulta High-Speed Angula Contact Ball Beaings ROBUST Seies Double Row Cylindical Rolle Beaings Standad Seies ROBUST Seies (BNR, BER) High pefomance beaings developed fo high-speed opeation with low tempeatue ise. Suitable fo ulta high pecision machining applications, and ulta high-speed applications. Two types of contact angle: 18 (BNR), 25 (BER) Two types of ball mateial: steel (S type) and Ceamic (H and X type) Two types of cage design: Select eithe phenolic (T) o polyamide (TYN), depending on application equiements ROBUST seies also can be used fo ulta high-speed applications of ove 3 million d m n High Rigidity Seies Designed to delive high igidity in high-speed applications such as lathe spindles. Two types of cage mateial: Bass (MB), PPS esin (TB) Standad specification E44: Oute ing oil holes and goove Sealed Angula Contact Ball Beaings Special Seies Angula Contact Thust Ball Beaings fo Ball Scew Suppot Special Seies Special Seies Pegeased and sealed to educe handling poblems. Suitable fo maintenance of machine tool spindles. Standad seies supe pecision angula contact ball beaings ROBUST seies high-speed angula contact ball beaings Boe size ange: 30 0 mm in ISO seies and 19 (70xx and 79xx) fo Machine Tool Applications High igidity thust beaings designed specifically fo ball scew suppot applications in machine tools. Contact angle: 60 Can be univesally matched to any equied igidity specification o life cycle A pegeased line using special gease is also available A new seies is available, supplied with contact seals and watepoof gease High-Speed Angula Contact Thust Ball Beaings ROBUST Seies Angula Contact Thust Ball Beaings fo Ball Scew Suppot Special Seies ROBUST Seies (BAR, BTR) High igidity thust beaings fo lathe applications. Two types of contact angle: 30 (BAR), 40 (BTR) Two types of ball mateial: steel (S type) and Ceamic (H type) fo Injection Molding Machines The high load capacity design delives five times the life expectancy compaed to ball scew suppot beaings fo machine tool applications of a simila size. The numbe of ows can also be educed. Easie handling than tapeed olle beaings o thust spheical olle beaings as a esult of non sepaable configuation Optimum ball beaing design esults in lowe otational toque Can be univesally matched to any equied igidity specification o life cycle Ulta High Pecision Angula Contact Ball Beaings ROBUST Seies High Pecision Deep-Goove Ball Beaings Special Seies ROBUST Seies (BGR) High Pefomance beaings developed specifically fo intenal ginding o high-speed moto applications unde sping peload. Boe size ange: 6 25 mm, contact angle: 15 Two types of ball mateial: steel (S type) and Ceamic (H and X type) Non sepaable type Univesal combinations (DU and SU) Special Seies Suitable fo high-speed and high pecision motos. Two types of cage: Ball guided polyamide cage (T1X,TYA) Fo quiet opeation, with low vibation 22 23

ROBUST Seies Ulta High-Speed Angula Contact Ball Beaings Pat 1 Pat2 Pat 3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8 Designed to achieve high-speed opeation combined with low heat geneation ROBUST Seies High pefomance Benefits 1 2 3 4 Low Heat Geneation High Seizue Resistance Bette Tempeatue Stability Robustness Stable duing High-Speed Opeation Featues of XE seies High-Speed Pefomance (in Position Peload) High-speed pefomance in position peload to a maximum of 2.5 million d m n with jacket cooling (Max. 2.7 million d m n without jacket cooling). Silent Opeation Silent opeation 3-5 db quiete than conventional oil-ai lubication. Oientation Remains stable in eithe vetical o hoizontal spindle oientation. Reduced Ai Consumption Ai consumption can be 1/3 elative to conventional oil-ai lubication. Spinshot @ XE Type Suitable fo silent opeation due to educed ai-noise achieved though oil-ai lubication design Mateial of Inne/Oute Rings: Heat Resistant Steel SHX Ceamic Balls Cage selection based on speed equiements Oute Ring Guided Phenolic Cage: up to 2.5 million d m n Oute Ring Guided PEEK Cage: ove 2.5 million d m n ROBUST Seies X Type High pefomance beaings demonstating high wea and seizue esistance duing ulta high-speed opeation Analysis Data Sophisticated analysis softwae takes into account the slip inside the beaing and simulates tempeatue ise to establish optimum design specifications. By educing the heat geneated, ROBUST seies beaings emain much moe stable duing high-speed opeation than cuent seies beaings. Heat geneation, W 140 120 0 80 60 40 20 Heat Geneation with Gease Lubication Analytical Value ( 65 mm) Standad beaings ROBUST Seies 0 0 5 15 20 Speed (min 1 3 ) Tempeatue ise of oute ing, C 50 40 30 20 Oute Ring Tempeatue Rise with Gease Lubication Test Result ( 65 mm) 0 0 5 15 20 Speed Standad beaings ROBUST Seies (min 1 3 ) Mateial of Inne/Oute Rings: Heat Resistant Steel SHX Ceamic Balls Oute Ring Guided Phenolic Cage Test Data ROBUST Seies H Type High pefomance beaings that combine high-speed opeation with low heat geneation Mateial of Inne/Oute Rings: Steel Ceamic Balls Cage selection based on speed equiements Ball Guided Polyamide Cage: up to 1.4 million d m n Oute Ring Guided Phenolic Cage: ove 1.4 million d m n Oute ing tempeatue ise, C 60 50 40 30 20 0 0 Tempeatue Data with Gease Lubication X type H type S type Beaing: 65BNR-DBB Peload afte mounted: 300 N Lubication: MTE Gease 5 000 000 15 000 20 000 25 000 Speed min 1 6 d mn 0 0.5 1 1.5 2 Oute ing tempeatue ise, C 80 70 60 50 40 30 20 0 0 Tempeatue Data of Spinshot @ With cooled housing Without cooled housing Beaing: 65BNRXETDB Peload afte mounted: 200 N Lubication: VG32, 0.03 cc/8 min, 2 nozzles Speed 5 000 000 15 000 20 000 25 000 30 000 35 000 min 1 6 d mn 0 1 2 3 ROBUST Seies S Type Steel ball beaings fo optimal cost Mateial of Inne/Oute Rings: Steel Steel Balls Ball Guided Polyamide Cage High speed Oute ing tempeatue ise, C 50 40 30 20 0 0 Tempeatue Data with Oil-Ai Lubication X type H type Beaing: 70BNR-TDB Peload afte mounted: 150 N Lubication: VG22, 0.03 cc/8 min, 2 nozzles With cooled housing Speed 5 000 000 15 000 20 000 25 000 30 000 35 000 min 1 6 d mn 0 1 2 3 Noise, db 88 86 84 82 80 78 76 XE type (Spinshot @) X type Noise Compaison 74 72 Speed 0 5 000 000 15 000 20 000 25 000 min 1 6 d mn 0 0.5 1 1.5 2 24 25

ROBUST Seies Standad Seies High Pefomance Cylindical Rolle Beaings Pat 1 Pat2 Pat 3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8 Designed to achieve high speed pe fomance combined with high igidity Benefits 1 2 Low Heat Geneation Impoved Seizue Resistance Featues of High Rigidity Double Row Cylindical Rolle Beaings Longe Beaing Life The PPS (engineeed polyme) cage is heat esistant and povides high igidity. As compaed to a bass cage, this cage eliminates any wea paticles, allowing an extended gease life. 3 Stable Opeation in Ulta High Speed Limiting Speed Tempeatue Rise with Gease Lubication High pefomance Ulta High-Speed Single Row Cylindical Rolle Beaings ROBUST Seies RXH Type Highest pefomance fo optimum seizue esistance duing ulta high-speed opeation Mateial of Inne/Oute Rings: Heat Resistant Steel SHX Ceamic Rolles Oute Ring Guided PEEK Cage Limiting Speed, min 1 15 000 000 5 000 0 Rings & olles: Steel Gease Lubication 0.85 million 60 65 70 75 80 85 90 95 0 5 1 Boe, mm Oute ing tempeatue ise, C 30 25 20 15 5 0 Beaing with new plastic cage (PPS) Beaing with cuent plastic cage (Polyamide) Beaing: NN3019 Lubication: gease Cleaance afte mounted: 0 µ m 0 0 2 000 4 000 6 000 8 000 000 12 000 0.6 1.2 Speed min 1 6 d mn Double Row Cylindical Rolle Beaings High Rigidity Seies High pefomance seies with a newly developed polyme cage Mateial of Inne/Oute Rings: Steel Rolle Guided PPS Cage o Rolle Guided Bass Cage (Selection based on application equiements) Ulta High-Speed Single Row Cylindical Rolle Beaings ROBUST Seies RX Type High pefomance with wea and seizue esistance duing ulta high speed opeation Mateial of Inne/Oute Rings: Heat Resistant Steel SHX SHX Rolles Oute Ring Guided PEEK Cage Featues of the ROBUST seies Ulta High-Speed Single Row Cylindical Rolle Beaings Low Heat Geneation Intenal design and advanced cage mateial esult in low heat geneation. Seizue Resistance RX and RXH types ae made with SHX steel esulting in impoved seizue esistance. High Speed Capability RS, RX and RXH types have cages made of heat esistant PEEK mateial fo ulta high speed opeation (ove 2.0 million d m n). Single Row Cylindical Rolle Beaings Standad Seies Standad type beaing with bass cage Mateial of Inne/Oute Rings: Steel Rolle Guided Bass Cage Ulta High-Speed Single Row Cylindical Rolle Beaings ROBUST Seies RS Type Designed to delive cost effective high-speed pefomance Mateial of Inne/Oute Rings: Steel Steel Rolles Oute Ring Guided PEEK Cage High speed Limiting speed, min 1 40 000 35 000 30 000 25 000 20 000 15 000 000 5 000 Oil-ai lubication RS type: 1.4 million Limiting Speed RXH type: 2.2 million 0 40 50 60 70 80 90 Boe, mm Oute ing tempeatue ise, C 70 60 50 40 30 20 0 0 0 Tempeatue Rise with Oil-Ai Lubication Test conditions Beaing: N14RXHTP Lubication: oil-ai (VG22) Cleaance afte mounted: 0 µ m 5 000 000 15 000 20 000 25 000 30 000 35 000 40 000 0.5 1 1.5 2 2.5 3 3.5 Speed min 1 6 d mn 26 27

ROBUST Seies High-Speed Angula Contact Thust Ball Beaings ROBUST Seies Ulta High Pecision Angula Contact Ball Beaings High pefomance beaings that combine high-speed capability with high igidity ROBUST Seies Ulta high-speed intenal ginding spindle beaings fo high accuacy and longe life ROBUST Seies (BGR) 1 High-Speed Capability 1 Optimum Intenal Design Benefits 2 Low Heat Geneation Benefits 2 Easy Handling Due to Non Sepaable Featue 3 High Accuacy 3 Fee Choice of Aangement with Univesal Combination High-Speed Angula Contact Thust Ball Beaings BTR Seies 40 contact angle and high axial igidity and low heat geneation. Intechangeable with TAC seies. High-Speed Angula Contact Thust Ball Beaings BAR Seies 30 contact angle delives highe speed capability. Intechangeable with BTR and TAC seies. Double Row Angula Contact Thust Ball Beaings TAC Seies 60 contact angle with the highest axial igidity. Featues of Angula Contact Thust Ball Beaings Featues of the BGR Seies High Accuacy Due to the high degee of accuacy, they ae paticulaly suited fo lathe spindle applications. Themocouple 0BARSTYN 0BTRSTYN Themocouple Optimum Design Optimum oute ing guided cage design fo bette lubication. Inne ing shoulde elieved to enable a stable supply of oil into the beaing. Intechangeable To adjust spindle stiffness chaacteistics, BTR and BAR seies can be intechanged with TAC seies, with minimal modification of the spindle. (See figue on the ight). Data with Gease Lubication 0TAC20X NN3020KR Test machine stuctue NN3017KR Axial Load and Axial Displacement Longe Life Heat esistant SHX steel fo longe life. Easy Handling Non sepaable stuctue makes handling easy. Ulta High Accuacy ISO class 2 (ABMA ABEC9) is the standad. Oute ing tempeatue ise, C 25 20 15 5 0 0TAC20X (α 0 =60 ) 0BTRSTYNDB (α 0 =40 ) 0BARSTYNDB (α 0 =30 ) Gease lubication (Isoflex NBU15) 0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 0 20 30 40 50 60 70 80 Speed min 1 4 d m n Axial displacement, µ m 25 20 15 5 0BARSTYNDB (α 0=30 ) 0BTRSTYNDB (α 0 =40 ) 0TAC20X (α 0 =60 ) 0 0 2 000 4 000 6 000 8 000 000 Axial load, N Univesal Combination Beaings can be configued in the usual aangements of DB/DF/DT, as well as a vaiety of othe aangements. Oil supply 15 28 29

Special Seies Ball Scew Suppot Angula Contact Thust Ball Beaings Special Seies Ball Scew Suppot Angula Contact Thust Ball Beaings (fo Machine Tool Applications) (fo Injection Molding Machines) High pefomance special beaings with high igidity TAC B Seies These special high pefomance beaings can simplify machine design and educe costs TAC 02, 03 Seies 1 Longe Life 1 Space Saving, High Load Capacity Benefits 2 3 Lowe Toque Easy Handling Benefits 2 3 High Reliability Easy Handling 4 High Accuacy 4 Reduced Toque fom Optimized Design Featues of Ball Scew Suppot Beaings fo Machine Tools Featues of Ball Scew Suppot Beaings fo Injection Molding Machines Longe Life Components made fom longe life EP extemely puified steel. High Rigidity Special intenal design (60 contact angle and moe balls) fo highe axial igidity. Lowe Toque Lowe stating toque than eithe tapeed o cylindical olle beaings means high otation accuacy even at low diven powe. Univesal Combination Beaings can be configued in the usual aangements of DB/DF/DT, as well as a vaiety of othe aangements. A pegeased option is also available (with Alvania No.2 gease). Easy Handling and Inceased Reliability New seies with contact seals and watepoof gease has highe eliability and easie handling. Single univesal combination (SU) is the standad fo this seies. High Running Accuacy New polyamide cage fo high unning accuacy. High Reliability High load capacity design delives five times the life value compaed to the similaly sized TAC B seies. Easy Handling Easie to handle and use than tapeed olle beaings o thust spheical olle beaings due to the non sepaable design. Simplified Design Leads to Reduced Costs Peload is peset so assembly is fast and without any peload adjustment. Design of special pats fo peload adjustment is unnecessay, which saves time and cost. Lowe Rotational Toque Optimal intenal design fo lowe toque (i.e., in cases whee olle beaings ae cuently being used because of lage load, these beaings can be used to educe the beaing toque geneated by olle beaings). Coss Section of the Beaing fo Machine Tools and Injection Molding Machines Coss Section of TAC B With Seal Coss Section of TAC B Coss Section of TAC03AT85 30 31

Special Seies Sealed Angula Contact Ball Beaings Othe Poducts High Pefomance Geases fo Machine Tool Spindles Suitable fo spindle maintenance ROBUST Seies and Standad Seies MTS, MTE, ENS Featues of Sealed Angula Contact Ball Beaings Featues of Geases fo Machine Tool Spindles Easy Handling No need to gease the beaing duing spindle assembly. Envionmentally Fiendly Sealed design avoids gease loss. MTS MTE ENS Contains uea thickene and delives highe heat esistance. Recommended fo use with ulta high speed machine tool spindles Fomulated to handle highe load capacities. Recommended fo use in high speed machine tool spindles. Envionmentally fiendly thanks to biodegadability. ROBUST Seies with T cage ROBUST Seies with TYN cage Standad Seies with TR cage Othe Poducts Sealed Pecision Spaces MTE and MTS ae available in 0 g tubes as well as 1 kg cans, and ENS is available in 2.5 kg cans. Sealed spaces eliminate the possibility of contamination Pecision spaces available fo machine tool spindles Chaacteistics of each gease Items Condition MTS MTE ENS Test Method Featues of Sealed Pecision Spaces Thickene Uea Baium Complex Uea Envionmentally Fiendly Sealed design pevents gease loss. High Reliability Reduced contamination fom dust o coolant in gease lubicated spindles. Labyinth stuctue Sealed space Base Oil Mixed Synthetic Oil Este Oil Este Oil Kinematic Viscosity of Base Oil JIS K2220 40 C 22 20 32 (mm 2 /S) 5.19 Woked Penetation 25 C, 60 W 2 3 2 2 JIS K2220 5.3 Dopping Point ( C) > 220 > 220 > 260 Evapoation (mass%) 99 C 22 H 0.3 0.4 0.4 Oil Sepaation (mass%) 0 C 24 H 0.4 1.0 1.1 JIS K2220 5.4 JIS K2220 5.6B JIS K2220 5.7 Oil outlet 32 33

Selecting the Right Beaing is Citical Pecision beaings ae designed to delive the high accuacy, high otational speed, and high igidity needed fo demanding machine tool applications. As each application has its own unique equiements, and each type of beaing has diffeent chaacteistics, it is essential to select the type of beaing based on the specific demands of a given application. Take Advantage of NSK Technical Suppot when Selecting Beaings NSK is committed to helping customes select the pope beaings that will delive the best pefomance based on the application involved. When designing a new spindle, including ulta high speed, specialized o custom applications, o making you beaing selection, please don t hesitate to ask us fo technical assistance. We have the expeience and expetise in state-of-theat, high speed, main shaft spindle technology to assue that you get the vey best beaings fo you application. Fo moe infomation on the latest NSK technology, please visit ou Web site o call today. Contents Pat3 Pat3. Beaing Selection P36 Typical High-Speed Main Shaft Spindle Stuctues P38 Othe Spindle Stuctues P40 Featues of Angula Contact Ball Beaings P42 Featues of Cylindical Rolle Beaings P44 NSK Web Site http://www.nsk.com 34 35

BEARING SELECTION Pat 1 Pat 2 Pat3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8 The chat below outlines the coect five step pocedue to follow when selecting the pope beaing fo a typical high-speed spindle application, including the factos to be consideed in each stage of the selection pocess. Remembe, NSK technical suppot is always at you disposal when designing a new spindle, an ulta high-speed spindle o a spindle fo a unique specialized application. We offe customes ou expeience and ou expetise in advanced technology. When designing a new main shaft spindle, we ecommend a thoough analysis of the desied 1 Main Shaft Spindle Concept Speed Rigidity Spindle Heat Geneation Running Accuacy Life Reliability spindle pefomance befoe selecting the beaing. In designing the spindle, it is necessay to detemine which pefomance facto is most impotant. Fo example, deciding if the otational speed is moe impotant than the igidity, o vice vesa. Once the pefomance factos ae pioitized poceed to the next step. Afte the pefomance analysis of the main shaft has been completed, the next step is to detemine the stuctue of Beaing Type Dive Type the main shaft. To detemine the optimum stuctue, consideation must be given to each individual component: the 2 Main Shaft Stuctue Beaing Aangement Lubication beaing design (ball beaing o olle beaing); combination (the numbe of ows); type of dive (belt, gea, coupling o integal moto); and lubication system (gease, oil-ai, oil mist, o jet). Cae must be taken to ensue that the stuctue Pat 3 Peload Method Jacket Cooling is compatible with the citeia and pioity established in you analysis of spindle pefomance. Please efe to the chat on Pages 38 39, which shows the elationship between the main shaft stuctue and its igidity and speed. 3 Main Shaft Size Shaft Diamete and Length Distance between Beaings Limiting Speed Main Shaft Rigidity Natual Fequency of the Shaft Beaing Seies Afte the stuctue has been detemined, the dimensions of the shaft must be detemined, including diamete, length, and distance between the beaings. The size of the main shaft will detemine the limiting speed of the beaing, the igidity of the main shaft, and the natual fequency of the main shaft. As the size, type, combination of beaing used, and the method of lubication all affect the limiting speed, please efe to Pat 4 and Pat 5 befoe making a final Pat 4 Pat 5 detemination. Once the size and type of the beaing ae selected, the specification of the beaing should be Fatigue Life Peload detemined. In ode to select the appopiate cleaance, o peload, of the beaing it is necessay 4 Beaing Pefomance Rigidity Beaing Heat Geneation Lubication Life Cleaance Running Accuacy Static Load Capacity to conside such factos as fatigue life, axial and adial igidity, and heat geneation. Cleaance o peload must be selected caefully, as these factos have the lagest impact on oveall spindle pefomance, especially duing high speed opeation. If the peload is wong it may cause poblems such as ealy failue o seizue. Sometimes it is necessay to epeat step 3, o even steps 2 and 3, befoe the most accuate spindle design is achieved. Pat 5 Afte the specification of the main shaft is complete, the final stage is the specification of the Shaft Run out Nut Tightening Foce assembly method. Accuacy of the shaft and housing at the beaing seats is impotant. Specify 5 Main Shaft Assembly Housing Accuacy Fit and Cleaance Checking Peload Checking Cleaance the fit and cleaance of the beaings to the shaft and housing. Use the coect nut tightening foce to fix the beaings. And double check that the peload, o cleaance, afte the beaing has been mounted is coect. Pat 6 Compession Amount of Retaining Cove Quantity of Oil Supply 36 37

TYPICAL HIGH-SPEED MAIN SHAFT SPINDLE STRUCTURES (Speeds Highe than 0.7 million d m n) Pat 1 Pat 2 Pat3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8 1 Beaing Aangement 1 Oil-ai lubication Gease lubication d m n 3.5M d m n 2.0M Font side: Ulta high-speed angula contact ball beaing duplex sets (DT) Rea side: Ulta high-speed angula contact ball beaing duplex sets (DT) Spindles with this aangement ae suited fo ulta high speed opeation and use constant pessue peload. Although this spindle has lowe igidity it delives highe speed capability with a lowe tempeatue ise pefomance elative to a spindle with position peload. Applications: Machining Cente, Ginding Machine, High Fequency Spindle, etc. 2 Beaing Aangement 2 Rotational Speed (dmn) Oil-ai lubication Gease lubication d m n 2.5M d m n 1.5M Beaing Aangement 3 Font side: Ulta high-speed angula contact ball beaing quad sets (DBB) Rea side: Ulta high-speed single ow cylindical olle beaing (In case of angula contact ball beaings, eithe position o constant pessue peload is applicable) Spindles with this aangement will have lowe speed capability, and highe adial and axial igidity elative to Beaing Aangement2. Applications: NC Lathe, NC Milling Machine, Machining Cente, etc. Font side: Ulta high-speed angula contact ball beaing duplex sets (DB) Rea side: Ulta high-speed single ow cylindical olle beaing (In case of angula contact ball beaings, eithe position o constant pessue peload is applicable) Spindles with this aangement ae suited fo ulta high-speed opeation and use position peload. They achieve highe adial and axial igidity than spindles with Beaing Aangement1. It is possible to use a cylindical olle beaing on the ea side, fo bette slide pefomance. Applications: Machining Cente, Ginding Machine, High Fequency Spindle, etc. 3 4 Oil-ai lubication Gease lubication d m n 2.2M d m n 1.3M Oil-ai lubication Gease lubication d m n 2.2M d m n 1.3M Beaing Aangement 4 Font side: Ulta high-speed single ow cylindical olle beaing, angula contact ball beaing duplex sets (DB) Rea side: Ulta high-speed single ow cylindical olle beaing (In case of angula contact ball beaing, eithe position o constant pessue peload is applicable) Spindles with this aangement have high-speed capability simila to spindles with Beaing Aangement 3. As thee is a cylindical olle beaing in the font side, the adial igidity is high, so it is possible to have both high speed and heavy cuts. Applications: NC Lathe, NC Milling Machine, Machining Cente, etc. Beaing Aangement 5 5 6 Beaing Aangement 6 Oil-ai lubication Gease lubication d m n 1.0M d m n 0.8M Font side: Ulta high-speed angula contact ball beaing tiplex sets (DBD) Rea side: Ulta high-speed single ow cylindical olle beaing (In case of angula contact ball beaing, eithe position o constant pessue peload is applicable ) Spindles with this aangement will have lowe speed capability, and highe adial and axial igidity elative to Beaing Aangement 2, and lowe speed capability and igidity elative to Beaing Aangements3and 4. Applications: NC Lathe, NC Milling Machine, Machining Cente, etc. Oil-ai lubication Gease lubication d m n 1.8M d m n 1.2M Rigidity of the Main Shaft Font side: High igidity double ow cylindical olle beaing, angula contact ball beaing duplex sets (DB) Rea side: High igidity double ow cylindical olle beaing Although spindles with this aangement have lowe speed capability, the adial and axial igidity of these spindles ae highest. Applications: NC Lathe, NC Milling Machine, Machining Cente, etc. 38 39

OTHER SPINDLE STRUCTURES Pat 1 Pat 2 Pat3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8 Boing Head High Pecision Spindle fo Lathe Ginding Spindle Live Cente High Fequency Spindle Wok Head Spindle 40 41

FEATURES OF ANGULAR CONTACT BALL BEARINGS Pat 1 Pat 2 Pat3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8 The main featues of the Angula Contact Ball Beaing (ACBB) A pedefined contact angle They ae used in matched combinations with peload In selecting Angula Contact Ball Beaings, it is impotant to conside the above two featues, as each angula contol ball beaing has specific featues and pefomance. Be sue to caefully conside the effects of changes in contact angle and peload on pefomance so that you select the ACBB that is best suited to the application. The following gaphs summaize the elative pefomance of each type of ACBB (by seies and dimensional seies), depending on the contact angle, peload, and combination. The Effect of Contact Angle As the contact angle inceases, Angula Contact Ball Beaings have a highe axial load capacity, but a lowe speed capability. Thus, the ACBB with a smalle contact angle is bette suited fo high speed and high adial load applications. The figue below compaes the igidity, limiting speed and tempeatue ise of a 7020 Angula Contact Ball Beaing with diffeent contact angles: C angle (15 ), A5 angle (25 ) and A angle (30 ). Unde the same light peload level (L), the beaing with C angle has highe adial igidity with lowe tempeatue ise elative to the beaing with A angle. The beaing with A angle has the highest axial igidity, thee times highe than that of the beaing with C angle, but the limiting speed is lowe than the othes. Pefomance Compaison of Each Type of Beaing (boe size 70 mm, DB combination, L peload) High Pecision ACBB Standad Seies 79_C 79_A5 70_C 70_A5 70_A Rotational Speed Radial Rigidity Axial Rigidity Dynamic Load Rating Gease Lubication Oil-ai Lubication Rigidity, N/ µ m Axial igidity Radial igidity Limiting d mn value 800 700 600 500 400 300 200 0 0 7020_DB (L peload) C (15 ) A5 (25 ) A (30 ) 0 95 90 85 80 75 70 65 60 55 50 Limiting dmn, 4 Beaing tempeatue ise, C Beaing tempeatue LIFE 7020_DB (L peload) 25 20 15 5 0 C (15 ) A5 (25 ) A (30 ) 000 000 1 000 000 0 000 000 Rolling fatigue life, h Ulta High-Speed ROBUST Seies 72_C 72_A5 72_A BNR19S BNR19H BNR19X BNR19XE BER19S BER19H BER19X BER19XE BNRS BNRH BNRX BNRXE BERS BERH BERX The Effect of Peload Peload affects pefomance of ACBBs in much the same way that the contact angle does. As peload inceases, the igidity inceases but the speed capability deceases. NSK has defined standad peload levels as Exta Light (EL), Light (L), Medium (M) and Heavy (H). The figue below compaes the pefomance of a 7020CDB with each peload level. Even if the contact angle is held constant, when the peload is lage, both axial and adial igidity ae inceased. Howeve the tempeatue also ises, so the limiting speed and calculated life become lowe. In ode to maintain high igidity, it is necessay to sacifice highe speed. Similaly to accomplish highe speed, it is necessay to sacifice high igidity. Caution must be execised. If too high a peload is combined with high opeation speed, thee is a possibility of seizue. Rigidity, N/ µ m Axial igidity Radial igidity Limiting d mn value 1 400 1 200 1 000 800 600 400 200 0 7020CDB (Contact angle 15 ) L peload M peload H peload The Effect of Combination 0 95 90 85 80 75 70 65 60 55 50 Limiting dmn, 4 Beaing tempeatue ise, C Beaing tempeatue LIFE 7020CDB (Contact angle 15 ) 25 20 15 5 0 L peload M peload H peload 000 000 1 000 000 0 000 000 Rolling fatigue life, h Thust ACBB BERXE BARS BARH BTRS BTRH 0 000 20 000 30 000 40 000 0 500 0 500 1 000 0 50 0 150 (min 1 ) (N/ m) (N/ m) (kn) µ µ ACBBs ae usually used as multiple beaing sets. Thee ae thee types of combinations Back-to-Back (DB), Face-to-Face (DF) and Tandem (DT). Two ow, thee ow, and fou ow ae the most popula multiple beaing sets. When the combination is held constant, and the numbe of ows is inceased, the igidity and the load capacity become lage, but the limiting speed becomes lowe. Rigidity, N/ µ m Axial igidity Radial igidity Limiting d mn value 1 600 1 400 1 200 1 000 800 600 400 200 0 7020C_L (peload) Single ow DB DBD DBB 130 120 1 0 90 80 70 Limiting dmn, 4 42 43

FEATURES OF CYLINDRICAL ROLLER BEARINGS Pat 1 Pat 2 Pat3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8 Cylindical Rolle Beaing (CRB) Cylindical olle beaings suppot only adial loads, but have the advantage of a lage adial load capacity ating than ACBBs. Double ow cylindical olle beaings (NN and NNU types) and single ow cylindical beaings (N type) ae available. In geneal, double ow cylindical olle beaings ae used fo high igidity applications such as lathes, while single ow cylindical olle beaings ae used in high-speed applications such as machining centes. The following gaphs display cylindical olle beaing pefomance depending on the type of beaing (by seies and dimensional seies) and the adial cleaance involved. Pefomance Compaison Relative to CRB Type: (boe size 0 mm) Double Row CRB High Rigidity Seies NN3020MB NN3020TB NN3920MB NN4920MB Rotational Speed Gease Lubication Oil-ai Lubication Radial Rigidity Dynamic Load Rating The Effect of the Radial Cleaance When using cylindical olle beaings, it is impotant to contol the adial cleaance since it will have the geatest impact on beaing pefomance. As the adial cleaance inceases, both igidity and calculated fatigue life decease. With highe adial cleaances heat geneation duing opeation also deceases. Convesely, as the figue below illustates, igidity is not inceased if the adial cleaance dops below 0.003 mm, while the calculated fatigue life continues to decease. Theefoe, the optimum cleaance taget to achieve high igidity and long life is zeo o just slightly negative cleaance. Fo applications involving high speed, it is necessay to contol the cleaance duing opeation. Popely adjusting the adial cleaance when the beaing is installed to compensate fo the effects of high speed opeation does this. Radial displacement, mm 0.0012 0.00 0.0008 0.0006 0.0004 0.0002 0 0.008 Beaing Rigidity 0.006 0.004 0.002 0 Radial cleaance, mm Beaing: NN3020MBKR Radial load: 1 000 N 0.002 0.004 0.006 0.008 Life atio 1.2 1.0 0.8 0.6 0.4 0.2 0 0.008 Life Ratio 0.006 0.004 0.002 0 Radial cleaance, mm Beaing: NN3020MBKR Radial load: 1 000 N 0.002 0.004 0.006 0.008 NNU4920MB The Relationship Between Radial Cleaance and Tempeatue Rise Single Row CRB Standad Seies N20MR 0 5 000 000(min 1 ) 0 1 000 2 000 (N/ m) 0 0 200(kN) Pefomance Compaison Relative to CRB Type: (boe size 70 mm ) Rotational Speed Radial Rigidity µ Dynamic Load Rating The figue at the ight shows test esult of the tempeatue ise of CRB. Afte-mounted Radial Cleaance Beaing (1): 0 µm Beaing (2): 30 µm The tempeatue ise of beaing (2) is lage and the limiting speed is lowe than beaing (1), clealy demonstating the impotance of popely contolling the cleaance. Oute ing tempeatue ise, C 20 18 Beaing numbe: N14 (oute and inne ings and olles: SHX) (1): Cleaance afte mounted: 0 µ m, Gease lubication (NBU15) 16 (2): Cleaance afte mounted: 30 µ m 14 Discontinued 12 8 6 4 2 0 0 2 000 4 000 6 000 8 000 000 12 000 14 000 16 000 18 000 20 000 Speed, min 1 Double Row CRB High Rigidity Seies NN3014MB NN3014TB Gease Lubication Oil-ai Lubication A CRB with a tapeed boe is used to contol adial cleaance duing spindle assembly because it is easy to adjust the adial cleaance to any value. Fo a CRB with a tapeed boe, the popula unmounted nonintechangeable adial cleaance classes ae CC9, CC0, and CC1. The specific featues of each ae outlined below. Single Row CRB Standad Seies N14MR NSK s ecommended cleaance CC0 Matched cleaance ange less than CC1. This ange ovelaps with the uppe values of CC9 and lowe values of CC1. As this cleaance is easy fo customes to taget this ange, it is the ecommended cleaance offeed fo CRB with tape boe. Ulta High-speed Single Row CRB ROBUST Seies N14RS N14RX N14RXH 0 000 20 000 30 000 (min 1 ) 0 1 000 (N/ m) 0 50 0(kN) µ CC1 cleaance Matched cleaance ange is geate than CC0. While not the standad, this cleaance is most popula in the field. When cleaance is at its maximum, special cae is equied to accomodate expansion of the inne ing. If cae is not used, and the spindle s coss-section is thin, defomation of the beaing o shaft may occu. CC9 cleaance Matched cleaance ange is less than CC0. This cleaance will help avoid potential defomation of the inne ing o the shaft when thee is little toleance fo inne ing expansion. Since the adial cleaance is educed to the minimum, the intefeence between the inne ing and the shaft becomes small. In high speed applications, this may cause loosening of the inne ing fom the shaft and esult in some ceep damage. 44 45

1. ANGULAR CONTACT BALL BEARINGS Pat4 High Pecision Angula Contact Ball Beaings Standad Seies Ulta High-Speed Angula Contact Ball Beaings ROBUST Seies Ulta High-Speed Angula Contact Ball Beaings Spinshot TM II Ulta High Pecision Angula Contact Ball Beaings BGR Seies Angula Contact Ball Beaings 1High Pecision Angula Contact Ball Beaings (Standad Seies) P48-60 Featues Numbeing System Beaing Tables Miniatue Seies, BSA Seies fo Ball Scew Suppot 79 Seies 70 Seies 72 Seies Ulta High-Speed Angula Contact Ball Beaings (ROBUST Seies) P62-79 Featues Numbeing System Beaing Tables BNR19, BER19 Seies BNR, BER Seies BNR19XE/XE, BER19XE/XE Seies (Spinshot II) BNR29, BER29 Seies (Wide Seies) BNR20, BER20 Seies (Wide Seies) Ulta High Pecision Angula Contact Ball Beaings (ROBUST Seies BGR) P80-84 Featues Numbeing System Beaing Tables BGR19 Seies BGR Seies BGR02 Seies Angula Contact Ball Beaings Angula Contact Ball Beaings 46 47

1. ANGULAR CONTACT BALL BEARINGS High Pecision Angula Contact Ball Beaings (Standad Seies) Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Featues Single-ow angula contact ball beaings have a line connecting the contact points dawn in the adial diection, which is called the contact angle. The contact angle makes this beaing suitable fo accommodating adial loads, single diection axial loads, and a combination of both. Futhemoe, since an axial component is geneated when a adial load is applied, these beaings ae geneally used in pais, tiplex sets, quaduplex sets, o multiplex sets. Contact Angle Fig. 1.2 Ball diamete F a / Numbe of balls F a Contact point 30 Load acting on olling element 30 contact angle Dimension Seies F a / Numbe of balls F a Contact point 15 Load acting on olling element 15 contact angle Fig. 1.1 F a Contact angle Effective load cente F When a load is applied to an angula contact ball beaing, elastic defomation and the amount of stess at the contact point changes as a esult of the vaying load conditions of the balls, inne ing, and oute ing accoding to the contact angle of the beaing. Figue 1.2 illustates loads acting on two olling elements fo a 30 contact angle, and a 15 contact angle. The elation between an axial load being applied to the beaing and esulting load acting on the olling element can be fomulated as: Fa/(Numbe of balls sinα). Theefoe, the lage the contact angle, the smalle the load acting on the olling element. Load at the contact point, and its consequential defomation, is educed thus esulting in longe life. When a adial load is applied, the smalle the contact angle, the smalle the load acting on the olling element, thus esulting in educed load at the contact point. (See Pages 42 and 43 fo contact angle specifics.) Numbeing System of High Pecision Angula Contact Ball Beaings (Standad Seies) Refeence pages 7 Beaing type 7: single-ow angula contact ball beaing 42-43, 48 0 Dimension 9: 19 seies, 0: seies, 2: 02 seies 42-43, 48 13 Boe numbe Less than 03, Beaing boe 00: mm, 01: 12 mm 02: 15 mm, 03: 17 mm Ove 04, Beaing boe Boe numbe 5 (mm) 50-60 C Contact angle C: 15, A5: 25, A: 30 42-43, 48 Mateial No symbol: beaing steel (SUJ2) SN24: ceamic ball (Si 3 N 4 ) ( 1 ) 14-17 TYN DB (Beaing numbe example) Beaing type symbol Dimension symbol Boe numbe Contact angle symbol Mateial symbol 7 0 13 C TYN DB L P4 Accuacy symbol Peload symbol Aangement symbol Seal symbol Cage symbol Cage TYN: ball guided polyamide esin cage; limiting speed d m n = 1 400 000; opeational tempeatue limit = 120 C TR: oute ing guided phenolic esin cage; opeational tempeatue limit = 120 C 18-19 Seal No symbol: open type V1V: non-contact ubbe seal ( 2 ) 32 SU: univesal aangement (single ow) DU: univesal aangement (double ow) Aangement DB: Back-to-back aangement DF: Face-to-face aangement DT: tandem aangement 42-43 148-151 DBD, DFD, DTD, DUD: tiplex set aangement DBB, DFF, DBT, DFT, DTT, QU: quaduplex set aangement Standad Angula Contact Ball Beaings Fig. 1.3 L Peload EL: exta light peload, L: light peload, M: medium peload, H: heavy peload 42-43 CP: special peload, CA: special axial cleaance 152-160 P4 Accuacy P2: ISO Class 2, P4: ISO Class 4, P5: ISO Class 5 P3: special class (dimensional accuacy: ISO Class 4; otating accuacy: ISO Class 2) P4Y: special class (Boe diamete and outside diamete ae exclusive to NSK. All othes ae ISO Class 4.) 151 176-179 ( 1 ) Angula contact ceamic ball beaing coespondence numbes 79, 70: Boe diamete= -0 mm. ( 2 ) Sealed angula contact ball beaings ae standadized fo SU aangement and ISO Class 3. Sealed angula contact ball beaing coespondence numbes 79, 70: Boe diamete= 30-0 mm. 72 70 79 48 49

1. ANGULAR CONTACT BALL BEARINGS High Pecision Angula Contact Ball Beaings (Miniatue Seies) 70 Seies 72 Seies Boe Diamete 5-8 mm Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (g) (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) (mm) (min) (min) (Dynamic) (Static) (kn) a (appox) Gease Oil 725C 5 16 5 0.3 0.15 1.700 0.660 0.545 3.91 4.5 1 000 167 000 725A 5 16 5 0.3 0.15 1.6 0.620 0.665 5.53 4.5 72 000 96 000 706C 6 17 6 0.3 0.15 2.150 0.845 0.765 4.54 5.5 0 000 153 000 706A 6 17 6 0.3 0.15 2.030 0.795 0.725 6.32 5.5 66 000 87 000 726C 6 19 6 0.3 0.15 2.390 1.000 0.835 4.67 7.8 92 000 140 000 726A 6 19 6 0.3 0.15 2.240 0.940 0.395 6.61 7.8 60 000 80 000 707C 7 19 6 0.3 0.15 2.390 1.000 0.835 4.67 7.4 89 000 135 000 707A 7 19 6 0.3 0.15 2.240 0.940 0.375 6.61 7.4 58 000 77 000 708C 8 22 7 0.3 0.15 3.550 1.540 1.300 5.51 12.0 77 000 117 000 708A 8 22 7 0.3 0.15 3.350 1.450 1.020 7.84 12.0 50 000 67 000 728C 8 24 8 0.3 0.15 3.600 1.580 1.330 6.14 16.0 72 000 1 000 728A 8 24 8 0.3 0.15 3.350 1.480 0.6 8.62 16.0 47 000 63 000 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. When a ceamic ball is used, limiting speed value will be 1.25 times the value of steel ball. Note: Beaing numbes with a C suffix: nominal contact angle 15 Beaing numbes with an A suffix: nominal contact angle 30 High Pecision Angula Contact Ball Beaings (BSA Seies fo ball scew suppot) Seies Boe Diamete 8-15 mm D D 1 B a B a 1 d d 79 Seies Boe Diamete -55 mm Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 High Pecision Angula Contact Ball Beaings (Standad Seies) Fo additional infomation: Dynamic equivalent load Page No. 139 Static equivalent load 146 Peload and igidity 152 Abutment and fillet dimensions 186 Nozzle position 192 Quantity of packed gease 175 Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Facto Cente (kg) Sealed (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) f o (mm) (appox) Design (min) (min) (Dynamic) (Static) (kn) a Gease Oil 7900C 22 6 0.3 0.15 3.00 1.52 1.23 14.1 5.1 0.0 71 900 9 400 7900A5 22 6 0.3 0.15 2.88 1.45 1.44 6.7 0.009 62 500 93 800 7901C 12 24 6 0.3 0.15 3.35 1.86 1.45 14.7 5.4 0.011 63 900 97 300 7901A5 12 24 6 0.3 0.15 3.20 1.77 1.71 7.2 0.011 55 600 83 400 7902C 15 28 7 0.3 0.15 4.75 2.64 1.93 14.5 6.4 0.016 53 500 81 400 7902A5 15 28 7 0.3 0.15 4.55 2.53 2.22 8.5 0.016 46 600 69 800 7903C 17 30 7 0.3 0.15 5.00 2.94 2.09 14.8 6.6 0.017 49 000 74 500 7903A5 17 30 7 0.3 0.15 4.75 2.80 2.21 9.0 0.017 42 600 63 900 7904C 20 37 9 0.3 0.15 6.95 4.25 3.20 14.9 8.3 0.036 40 400 61 500 7904A5 20 37 9 0.3 0.15 6.60 4.05 3.55 11.1 0.037 35 0 52 700 7905C 25 42 9 0.3 0.15 7.85 5.40 3.90 15.5 9.0 0.043 34 400 52 300 7905A5 25 42 9 0.3 0.15 7.45 5.15 4.40 12.3 0.043 29 900 44 800 7906C 30 47 9 0.3 0.15 8.30 6.25 4.40 15.9 9.7 0.049 29 900 45 500 7906A5 30 47 9 0.3 0.15 7.85 5.95 4.95 13.5 0.050 26 000 39 000 7907C 35 55 0.6 0.3 12.1 9.15 6.60 15.7 11.0 0.074 25 600 38 900 7907A5 35 55 0.6 0.3 11.4 8.70 7.20 15.5 0.075 22 300 33 400 7908C 40 62 12 0.6 0.3 15.1 11.7 8.40 15.7 12.8 0.9 22 600 34 400 7908A5 40 62 12 0.6 0.3 14.3 11.2 8.90 17.9 0.1 19 700 29 500 7909C 45 68 12 0.6 0.3 16.0 13.4 8.55 16.0 13.6 0.129 20 400 31 000 7909A5 45 68 12 0.6 0.3 15.1 12.7 9.95 19.2 0.130 17 700 26 600 79C 50 72 12 0.6 0.3 16.9 15.0 9.45 16.2 14.2 0.130 18 900 28 700 79A5 50 72 12 0.6 0.3 15.9 14.2 11.0 20.2 0.132 16 400 24 600 7911C 55 80 13 1.0 0.6 19.1 17.7 11.0 16.3 15.5 0.182 17 0 26 000 7911A5 55 80 13 1.0 0.6 18.1 16.8 12.5 22.2 0.184 14 900 22 300 Standad Angula Contact Ball Beaings 50 Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (g) (min 1 ) Numbes d D B 1 C C o Load ( 1 ) (mm) (min) (min) (Dynamic) (Static) (kn) a (appox) Gease 8BSAT1X 8 22 7 0.3 0.15 2.350 0.840 0.805 12.2 11.0 40 000 BSAT1X 26 8 0.3 0.15 3.250 1.200 0.960 14.4 16.6 33 300 12BSAT1X 12 28 9 0.3 0.15 3.600 1.430 1.7 16.0 18.7 30 000 15BSAT1X 15 32 0.3 0.15 3.900 1.690 1.950 18.6 27.7 25 500 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. When a ceamic ball is used, limiting speed value will be 1.25 times the value of steel ball. Note: Beaing type BSA: nominal contact angle 30 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. When a ceamic ball is used, limiting speed value will be 1.25 times the value of steel ball. Note: Beaing numbes with a C suffix: nominal contact angle 15 Beaing numbes with an A5 suffix: nominal contact angle 25 51

1. ANGULAR CONTACT BALL BEARINGS High Pecision Angula Contact Ball Beaings (Standad Seies) 79 Seies Boe Diamete 60-280 mm Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Facto Cente (kg) Sealed (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) f o (mm) (appox) Design (min) (min) (Dynamic) (Static) (kn) a Gease Oil 7912C 60 85 13 1.0 0.6 19.4 18.7 11.5 16.5 16.2 0.195 15 900 24 200 7912A5 60 85 13 1.0 0.6 18.3 17.7 13.0 23.4 0.198 13 800 20 700 7913C 65 90 13 1.0 0.6 20.2 20.5 12.5 16.7 16.9 0.208 14 900 22 600 7913A5 65 90 13 1.0 0.6 19.1 19.4 14.2 24.6 0.211 13 000 19 400 7914C 70 0 16 1.0 0.6 28.1 27.8 17.3 16.4 19.4 0.338 13 600 20 600 7914A5 70 0 16 1.0 0.6 26.5 26.3 20.3 27.8 0.341 11 800 17 700 7915C 75 5 16 1.0 0.6 28.6 29.3 18.0 16.6 20.1 0.358 12 800 19 500 7915A5 75 5 16 1.0 0.6 26.9 27.7 21.2 29.0 0.355 11 200 16 700 7916C 80 1 16 1.0 0.6 29.0 30.5 18.7 16.7 20.7 0.377 12 200 18 500 7916A5 80 1 16 1.0 0.6 27.3 29.0 22.1 30.2 0.381 600 15 800 7917C 85 120 18 1.1 0.6 39.0 40.5 25.9 16.5 22.7 0.534 11 300 17 0 7917A5 85 120 18 1.1 0.6 36.5 38.5 30.0 32.9 0.541 9 800 14 700 7918C 90 125 18 1.1 0.6 41.5 46.0 29.1 16.6 23.4 0.568 700 16 300 7918A5 90 125 18 1.1 0.6 39.5 43.5 33.5 34.1 0.560 9 400 14 000 7919C 95 130 18 1.1 0.6 42.5 48.0 30.0 16.7 24.1 0.597 300 15 600 7919A5 95 130 18 1.1 0.6 40.0 45.5 35.0 35.2 0.603 8 900 13 400 7920C 0 140 20 1.1 0.6 50.0 54.0 33.0 16.5 26.1 0.800 9 600 14 600 7920A5 0 140 20 1.1 0.6 47.5 51.5 39.5 38.0 0.808 8 400 12 500 7921C 5 145 20 1.1 0.6 51.0 57.0 34.5 16.6 26.7 0.831 9 200 14 000 7921A5 5 145 20 1.1 0.6 48.0 54.0 41.0 39.2 0.820 8 000 12 000 7922C 1 150 20 1.1 0.6 52.0 59.5 35.5 16.7 27.4 0.867 8 900 13 500 7922A5 1 150 20 1.1 0.6 49.0 56.0 43.0 40.3 0.877 7 700 11 600 7924C 120 165 22 1.1 0.6 72.0 81.0 50.5 16.5 30.1 1.160 8 0 12 300 7924A5 120 165 22 1.1 0.6 67.5 77.0 59.5 44.2 1.150 7 0 600 D B a 1 d 79 Seies (continued) Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Fo additional infomation: Page No. Dynamic equivalent load 139 Static equivalent load 146 Peload and igidity 152 Abutment and fillet dimensions 186 Nozzle position 192 Quantity of packed gease 175 Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Facto Cente (kg) Sealed (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) f o (mm) (appox) Design (min) (min) (Dynamic) (Static) (kn) a Gease Oil 7926C 130 180 24 1.5 1.0 78.5 91.0 55.0 16.5 32.8 1.500 7 500 11 300 7926A5 130 180 24 1.5 1.0 74.0 86.0 63.5 48.1 1.540 6 500 9 700 7928C 140 190 24 1.5 1.0 79.5 95.5 58.0 16.7 34.1 1.630 7 000 700 7928A5 140 190 24 1.5 1.0 75.0 90.0 68.0 50.5 1.630 6 0 9 0 7930C 150 2 28 2.0 1.0 2 122 74.0 16.6 38.1 2.960 6 400 9 800 7930A5 150 2 28 2.0 1.0 96.5 115 84.5 56.0 2.970 5 600 8 400 7932C 160 220 28 2.0 1.0 6 133 80.0 16.7 39.4 3.0 6 0 9 300 7932A5 160 220 28 2.0 1.0 0 125 93.5 58.3 3.120 5 300 7 900 7934C 170 230 28 2.0 1.0 113 148 88.5 16.8 40.8 3.360 5 800 8 800 7934A5 170 230 28 2.0 1.0 6 140 3 60.6 3.360 5 000 7 500 7936C 180 250 33 2.0 1.0 145 184 111 16.6 45.3 4.900 5 400 8 200 7936A5 180 250 33 2.0 1.0 137 174 127 66.6 4.940 4 700 7 000 7938C 190 260 33 2.0 1.0 147 192 115 16.7 46.6 4.980 5 200 7 800 7938A5 190 260 33 2.0 1.0 139 182 131 69.0 5.120 4 500 6 700 7940C 200 280 38 2.1 1.1 189 244 144 16.5 51.2 6.850 4 800 7 300 7940A5 200 280 38 2.1 1.1 178 231 169 75.0 6.920 4 200 6 300 7944C 220 300 38 2.1 1.1 190 256 235 16.7 53.8 6.665 4 500 6 800 7944A5 220 300 38 2.1 1.1 179 242 174 79.6 6.665 3 900 5 800 7948C 240 320 38 2.1 1.1 200 286 260 16.8 56.5 7.224 4 200 6 300 7948A5 240 320 38 2.1 1.1 189 270 193 84.3 7.224 3 600 5 400 7952C 260 360 46 2.1 1.1 256 365 340 16.6 64.5 11.936 3 800 5 700 7952A5 260 360 46 2.1 1.1 241 345 252 95.3 11.936 3 300 4 900 7956C 280 380 46 2.1 1.1 272 4 380 16.7 67.2 12.853 3 500 5 400 7956A5 280 380 46 2.1 1.1 256 390 283 99.9 12.853 3 0 4 600 Standad Angula Contact Ball Beaings ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. When a ceamic ball is used, limiting speed value will be 1.25 times the value of steel ball. Note: Beaing numbes with a C suffix: nominal contact angle 15 Beaing numbes with an A5 suffix: nominal contact angle 25 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing numbes with a C suffix: nominal contact angle 15 Beaing numbes with an A5 suffix: nominal contact angle 25 52 53

1. ANGULAR CONTACT BALL BEARINGS High Pecision Angula Contact Ball Beaings (Standad Seies) 70 Seies Boe Diamete -75 mm Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Facto Cente (kg) Sealed (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) f o (mm) (appox) Design (min) (min) (Dynamic) (Static) (kn) a Gease Oil 7000C 26 8 0.3 0.15 5.30 2.49 2.16 12.6 6.4 0.019 63 900 97 300 7000A5 26 8 0.3 0.15 5.15 2.41 2.48 8.2 0.019 55 600 83 400 7000A 26 8 0.3 0.15 5.00 2.34 1.91 9.2 0.019 41 700 55 600 7001C 12 28 8 0.3 0.15 5.80 2.90 2.40 13.2 6.7 0.021 57 500 87 500 7001A5 12 28 8 0.3 0.15 5.60 2.79 2.82 8.7 0.021 50 000 75 000 7001A 12 28 8 0.3 0.15 5.40 2.71 2.13 9.8 0.021 37 500 50 000 7002C 15 32 9 0.3 0.15 6.25 3.40 2.63 14.1 7.6 0.030 49 000 74 500 7002A5 15 32 9 0.3 0.15 5.95 3.25 3.05.0 0.030 42 600 63 900 7002A 15 32 9 0.3 0.15 5.80 3.15 2.36 11.3 0.030 32 000 42 600 7003C 17 35 0.3 0.15 6.60 3.80 2.85 14.5 8.5 0.039 44 300 67 400 7003A5 17 35 0.3 0.15 6.30 3.65 3.35 11.1 0.040 38 500 57 700 7003A 17 35 0.3 0.15 6. 3.50 2.59 12.5 0.040 28 900 38 500 7004C 20 42 12 0.6 0.3 11.1 6.55 4.80 14.0.1 0.067 37 0 56 500 7004A5 20 42 12 0.6 0.3.6 6.25 5.45 13.2 0.067 32 300 48 400 7004A 20 42 12 0.6 0.3.3 6. 4.20 14.9 0.068 24 200 32 300 7005C 25 47 12 0.6 0.3 11.7 7.40 5.20 14.7.8 0.078 32 000 48 700 7005A5 25 47 12 0.6 0.3 11.1 7. 5.95 14.4 0.077 27 800 41 700 7005A 25 47 12 0.6 0.3.7 6.85 4.55 16.4 0.079 20 900 27 800 7006C 30 55 13 1.0 0.6 15.1.3 6.85 14.9 12.2 0.114 27 0 41 200 7006A5 30 55 13 1.0 0.6 14.4 9.80 8.05 16.4 0.114 23 600 35 300 7006A 30 55 13 1.0 0.6 13.9 9.45 6.20 18.8 0.116 17 700 23 600 7007C 35 62 14 1.0 0.6 19.1 13.7 9.35 15.0 13.5 0.151 23 800 36 0 7007A5 35 62 14 1.0 0.6 18.2 13.0 11.4 18.3 0.151 20 700 31 000 7007A 35 62 14 1.0 0.6 17.5 12.6 8.75 21.0 0.153 15 500 20 700 D B a 1 d 70 Seies (continued) Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Fo additional infomation: Page No. Dynamic equivalent load 139 Static equivalent load 146 Peload and igidity 152 Abutment and fillet dimensions 186 Nozzle position 192 Quantity of packed gease 175 Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Facto Cente (kg) Sealed (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) f o (mm) (appox) Design (min) (min) (Dynamic) (Static) (kn) a Gease Oil 7008C 40 68 15 1.0 0.6 20.6 15.9.6 15.4 14.7 0.189 21 300 32 500 7008A5 40 68 15 1.0 0.6 19.5 15.1 12.0 20.1 0.188 18 600 27 800 7008A 40 68 15 1.0 0.6 18.8 14.6 9.15 23.1 0.191 13 900 18 600 7009C 45 75 16 1.0 0.6 24.4 19.3 12.4 15.4 16.0 0.238 19 200 29 200 7009A5 45 75 16 1.0 0.6 23.1 18.3 14.5 22.0 0.250 16 700 25 000 7009A 45 75 16 1.0 0.6 22.3 17.7 11.1 25.3 0.241 12 500 16 700 70C 50 80 16 1.0 0.6 26.0 21.9 13.9 15.7 16.7 0.259 17 700 27 000 70A5 50 80 16 1.0 0.6 24.6 20.8 16.2 23.2 0.270 15 400 23 0 70A 50 80 16 1.0 0.6 23.7 20.1 12.5 26.8 0.262 11 600 15 400 7011C 55 90 18 1.1 0.6 34.0 28.6 18.9 15.5 18.7 0.380 15 900 24 200 7011A5 55 90 18 1.1 0.6 32.5 27.2 21.8 25.9 0.383 13 800 20 700 7011A 55 90 18 1.1 0.6 31.0 26.3 16.6 29.9 0.385 400 13 800 7012C 60 95 18 1.1 0.6 35.0 30.5 19.9 15.7 19.4 0.405 14 900 22 600 7012A5 60 95 18 1.1 0.6 33.0 29.1 23.0 27.1 0.408 13 000 19 400 7012A 60 95 18 1.1 0.6 32.0 28.1 17.6 31.4 0.4 9 700 13 000 7013C 65 0 18 1.1 0.6 37.0 34.5 22.0 15.9 20.0 0.435 14 000 21 300 7013A5 65 0 18 1.1 0.6 35.0 32.5 25.4 28.2 0.455 12 200 18 200 7013A 65 0 18 1.1 0.6 33.5 31.5 19.5 32.8 0.441 9 0 12 200 7014C 70 1 20 1.1 0.6 47.0 43.0 26.8 15.7 22.1 0.606 12 800 19 500 7014A5 70 1 20 1.1 0.6 44.5 41.0 32.0 31.0 0.625 11 200 16 700 7014A 70 1 20 1.1 0.6 42.5 39.5 24.6 36.0 0.613 8 400 11 200 7015C 75 115 20 1.1 0.6 48.0 45.5 28.1 15.9 22.7 0.643 12 200 18 500 7015A5 75 115 20 1.1 0.6 45.5 43.5 33.5 32.1 0.652 600 15 800 7015A 75 115 20 1.1 0.6 43.5 41.5 25.9 37.4 0.650 7 900 600 Standad Angula Contact Ball Beaings ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. When a ceamic ball is used, limiting speed value will be 1.25 times the value of steel ball. Note: Beaing numbes with a C suffix: nominal contact angle 15 Beaing numbes with an A5 suffix: nominal contact angle 25 Beaing numbes with an A suffix: nominal contact angle 30 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. When a ceamic ball is used, limiting speed value will be 1.25 times the value of steel ball. Note: Beaing numbes with a C suffix: nominal contact angle 15 Beaing numbes with an A5 suffix: nominal contact angle 25 Beaing numbes with an A suffix: nominal contact angle 30 54 55

1. ANGULAR CONTACT BALL BEARINGS High Pecision Angula Contact Ball Beaings (Standad Seies) 70 Seies Boe Diamete 80-200 mm Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Facto Cente (kg) Sealed (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) f o (mm) (appox) Design (min) (min) (Dynamic) (Static) (kn) a Gease Oil 7016C 80 125 22 1.1 0.6 58.5 55.5 34.5 15.7 24.7 0.855 11 300 17 0 7016A5 80 125 22 1.1 0.6 55.5 52.5 41.0 34.9 0.880 9 800 14 700 7016A 80 125 22 1.1 0.6 53.5 50.5 31.5 40.6 0.864 7 400 9 800 7017C 85 130 22 1.1 0.6 60.0 58.5 38.0 15.9 25.4 0.898 700 16 300 7017A5 85 130 22 1.1 0.6 57.0 55.5 43.0 36.1 0.904 9 400 14 000 7017A 85 130 22 1.1 0.6 54.5 53.5 33.0 42.0 0.907 7 000 9 400 7018C 90 140 24 1.5 1.0 71.5 69.0 44.5 15.7 27.4 1.160 000 15 300 7018A5 90 140 24 1.5 1.0 68.0 65.5 52.0 38.8 1.170 8 700 13 0 7018A 90 140 24 1.5 1.0 65.0 63.5 40.5 45.2 1.180 6 600 8 700 7019C 95 145 24 1.5 1.0 73.5 73.0 47.0 15.9 28.1 1.2 9 600 14 600 7019A5 95 145 24 1.5 1.0 69.5 69.5 52.5 40.0 1.4 8 400 12 500 7019A 95 145 24 1.5 1.0 67.0 67.0 40.5 46.6 1.230 6 300 8 400 7020C 0 150 24 1.5 1.0 75.5 77.0 49.0 16.0 28.7 1.270 9 200 14 000 7020A5 0 150 24 1.5 1.0 71.0 73.5 57.5 41.1 1.450 8 000 12 000 7020A 0 150 24 1.5 1.0 68.5 70.5 44.5 48.1 1.280 6 000 8 000 7021C 5 160 26 2.0 1.0 88.0 89.5 57.0 15.9 30.7 1.580 8 700 13 300 7021A5 5 160 26 2.0 1.0 83.5 85.0 66.5 43.9 1.820 7 600 11 400 7021A 5 160 26 2.0 1.0 80.0 81.5 51.0 51.2 1.600 5 700 7 600 7022C 1 170 28 2.0 1.0 6 4 68.5 15.6 32.7 1.940 8 300 12 500 7022A5 1 170 28 2.0 1.0 0 99.0 79.5 46.6 2.260 7 200 800 7022A 1 170 28 2.0 1.0 96.5 95.5 61.0 54.4 1.960 5 400 7 200 7024C 120 180 28 2.0 1.0 112 117 75.5 15.8 34.1 2.090 7 700 11 700 7024A5 120 180 28 2.0 1.0 6 111 87.5 49.0 2.430 6 700 000 7024A 120 180 28 2.0 1.0 2 7 67.5 57.3 2.120 5 000 6 700 D B a 1 d 70 Seies (continued) Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Fo additional infomation: Page No. Dynamic equivalent load 139 Static equivalent load 146 Peload and igidity 152 Abutment and fillet dimensions 186 Nozzle position 192 Quantity of packed gease 175 Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Facto Cente (kg) Sealed (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) f o (mm) (appox) Design (min) (min) (Dynamic) (Static) (kn) a Gease Oil 7026C 130 200 33 2.0 1.0 129 137 86.0 15.9 38.6 3.220 7 000 700 7026A5 130 200 33 2.0 1.0 122 130 99.5 55.0 3.660 6 0 9 0 7026A 130 200 33 2.0 1.0 117 125 76.5 64.1 3.260 4 600 6 0 7028C 140 2 33 2.0 1.0 132 145 90.0 16.0 39.9 3.4 6 600 000 7028A5 140 2 33 2.0 1.0 125 138 4 57.3 3.870 5 800 8 600 7028A 140 2 33 2.0 1.0 120 133 80.5 67.0 3.440 4 300 5 800 7030C 150 225 35 2.1 1.1 151 168 5 16.0 42.6 4.150 6 200 9 400 7030A5 150 225 35 2.1 1.1 143 160 123 61.2 4.690 5 400 8 000 7030A 150 225 35 2.1 1.1 137 154 95.0 71.6 4.190 4 000 5 400 7032C 160 240 38 2.1 1.1 171 193 118 16.0 45.8 5.1 5 800 8 800 7032A5 160 240 38 2.1 1.1 162 183 138 65.6 5.7 5 000 7 500 7032A 160 240 38 2.1 1.1 155 176 6 76.7 5.160 3 800 5 000 7034C 170 260 42 2.1 1.1 205 234 149 15.9 49.8 6.880 5 400 8 200 7034A5 170 260 42 2.1 1.1 193 223 168 71.1 7.830 4 700 7 000 7034A 170 260 42 2.1 1.1 186 214 129 83.1 6.940 3 500 4 700 7036C 180 280 46 2.1 1.1 228 276 175 15.8 53.8.40 5 000 7 700 7036A5 180 280 46 2.1 1.1 216 262 195 76.6.40 4 400 6 600 7036A 180 280 46 2.1 1.1 207 252 151 89.4 9.270 3 300 4 400 7038C 190 290 46 2.1 1.1 247 305 192 15.9 55.2 11.20 4 800 7 300 7038A5 190 290 46 2.1 1.1 233 291 222 79.0 11.20 4 200 6 300 7038A 190 290 46 2.1 1.1 224 280 172 92.3 11.30 3 200 4 200 7040C 200 3 51 2.1 1.1 265 340 213 15.9 59.7 13.60 4 600 6 900 7040A5 200 3 51 2.1 1.1 250 325 245 85.0 13.70 4 000 5 900 7040A 200 3 51 2.1 1.1 240 3 190 99.1 13.70 3 000 4 000 Standad Angula Contact Ball Beaings ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. When a ceamic ball is used, limiting speed value will be 1.25 times the value of steel ball. Note: Beaing numbes with a C suffix: nominal contact angle 15 Beaing numbes with an A5 suffix: nominal contact angle 25 Beaing numbes with an A suffix: nominal contact angle 30 ( 1 ) Fo pemissible axial load, please efe to Page 14. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing numbes with a C suffix: nominal contact angle 15 Beaing numbes with an A5 suffix: nominal contact angle 25 Beaing numbes with an A suffix: nominal contact angle 30 56 57

58 1. ANGULAR CONTACT BALL BEARINGS High Pecision Angula Contact Ball Beaings (Standad Seies) 72 Seies Boe Diamete -5 mm Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Facto Cente (kg) (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) f o (mm) (appox) (min) (min) (Dynamic) (Static) (kn) a Gease Oil 7200C 30 9 0.6 0.3 5.40 2.61 2.16 13.2 7.2 0.032 57 500 87 500 7200A5 30 9 0.6 0.3 5.20 2.51 2.49 9.2 0.031 50 000 75 000 7200A 30 9 0.6 0.3 5.05 2.44 1.92.3 0.032 37 500 50 000 7201C 12 32 0.6 0.3 7.90 3.85 3.45 12.5 7.9 0.036 52 300 79 600 7201A5 12 32 0.6 0.3 7.65 3.70 3.55.1 0.036 45 500 68 200 7201A 12 32 0.6 0.3 7.45 3.65 2.72 11.4 0.030 34 0 45 500 7202C 15 35 11 0.6 0.3 8.65 4.55 3.85 13.2 8.8 0.045 46 000 70 000 7202A5 15 35 11 0.6 0.3 8.35 4.35 3.95 11.3 0.044 40 000 60 000 7202A 15 35 11 0.6 0.3 8. 4.25 3.00 12.7 0.045 30 000 40 000 7203C 17 40 12 0.6 0.3.9 5.85 4.85 13.3 9.8 0.065 40 400 61 500 7203A5 17 40 12 0.6 0.3.4 5.60 5.30 12.6 0.064 35 0 52 700 7203A 17 40 12 0.6 0.3.1 5.45 4.05 14.2 0.065 26 400 35 0 7204C 20 47 14 1.0 0.6 14.6 8.05 6.30 13.3 11.5 0.3 34 400 52 300 7204A5 20 47 14 1.0 0.6 14.0 7.75 7.40 14.8 0.2 29 900 44 800 7204A 20 47 14 1.0 0.6 13.6 7.55 5.75 16.7 0.4 22 400 29 900 7205C 25 52 15 1.0 0.6 16.6.2 7.50 14.0 12.7 0.127 29 900 45 500 7205A5 25 52 15 1.0 0.6 15.9 9.80 9.05 16.5 0.130 26 000 39 000 7205A 25 52 15 1.0 0.6 15.4 9.45 6.95 18.6 0.129 19 500 26 000 7206C 30 62 16 1.0 0.6 23.0 14.7.3 13.9 14.2 0.194 25 000 38 0 7206A5 30 62 16 1.0 0.6 22.1 14.1 12.0 18.7 0.194 21 800 32 700 7206A 30 62 16 1.0 0.6 21.3 13.6 9.20 21.3 0.197 16 400 21 800 7207C 35 72 17 1.1 0.6 30.5 19.9 14.4 13.9 15.7 0.280 21 500 32 800 7207A5 35 72 17 1.1 0.6 29.1 19.1 16.6 21.0 0.277 18 700 28 0 7207A 35 72 17 1.1 0.6 28.2 18.5 12.7 23.9 0.284 14 0 18 700 7208C 40 80 18 1.1 0.6 36.5 25.2 17.6 14.1 17.0 0.366 19 200 29 200 7208A5 40 80 18 1.1 0.6 34.5 24.1 20.6 23.0 0.362 16 700 25 000 7208A 40 80 18 1.1 0.6 33.5 23.3 15.8 26.3 0.370 12 500 16 700 7209C 45 85 19 1.1 0.6 41.0 28.8 19.6 14.2 18.2 0.406 17 700 27 000 7209A5 45 85 19 1.1 0.6 39.0 27.6 23.3 24.7 0.402 15 400 23 0 7209A 45 85 19 1.1 0.6 37.5 26.7 18.0 28.3 0.4 11 600 15 400 72C 50 90 20 1.1 0.6 43.0 31.5 21.1 14.5 19.4 0.457 16 500 25 000 72A5 50 90 20 1.1 0.6 41.0 30.5 25.2 26.3 0.453 14 300 21 500 72A 50 90 20 1.1 0.6 39.5 29.3 19.4 30.2 0.462 800 14 300 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing numbes with a C suffix: nominal contact angle 15 Beaing numbes with an A5 suffix: nominal contact angle 25 Beaing numbes with an A suffix: nominal contact angle 30 D B a 1 d 72 Seies (continued) Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Facto Cente (kg) (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) f o (mm) (appox) (min) (min) (Dynamic) (Static) (kn) a Gease Oil 7211C 55 0 21 1.5 1.0 53.0 40.0 27.6 14.5 20.9 0.601 14 900 22 600 7211A5 55 0 21 1.5 1.0 50.5 38.0 32.5 28.6 0.596 13 000 19 400 7211A 55 0 21 1.5 1.0 49.0 37.0 25.0 32.9 0.609 9 700 13 000 7212C 60 1 22 1.5 1.0 64.0 49.0 34.0 14.4 22.4 0.780 13 600 20 600 7212A5 60 1 22 1.5 1.0 61.0 47.0 40.0 30.8 0.773 11 800 17 700 7212A 60 1 22 1.5 1.0 59.0 45.5 30.5 35.5 0.789 8 900 11 800 7213C 65 120 23 1.5 1.0 73.0 58.5 40.0 14.6 23.9 1.0 12 500 19 000 7213A5 65 120 23 1.5 1.0 69.5 56.0 46.5 33.1 1.000 900 16 300 7213A 65 120 23 1.5 1.0 67.5 54.0 36.0 38.2 1.020 8 200 900 7214C 70 125 24 1.5 1.0 79.5 64.5 43.0 14.6 25.1 1.090 11 800 18 000 7214A5 70 125 24 1.5 1.0 76.0 61.5 49.5 34.7 1.080 300 15 400 7214A 70 125 24 1.5 1.0 73.0 59.5 38.0 40.1 1.0 7 700 300 7215C 75 130 25 1.5 1.0 83.0 70.0 46.0 14.8 26.2 1.190 11 300 17 0 7215A5 75 130 25 1.5 1.0 79.0 66.5 53.0 36.4 1.180 9 800 14 700 7215A 75 130 25 1.5 1.0 76.0 64.5 40.5 42.1 1.200 7 400 9 800 7216C 80 140 26 2.0 1.0 93.0 77.5 54.5 14.7 27.7 1.430 500 16 000 7216A5 80 140 26 2.0 1.0 88.5 74.0 62.0 38.6 1.420 9 0 13 700 7216A 80 140 26 2.0 1.0 85.5 71.5 47.5 44.8 1.450 6 900 9 0 7217C 85 150 28 2.0 1.0 7 90.5 60.5 14.7 29.7 1.790 9 800 14 900 7217A5 85 150 28 2.0 1.0 2 86.5 70.0 41.4 1.790 8 600 12 800 7217A 85 150 28 2.0 1.0 98.5 83.5 53.5 47.9 1.800 6 400 8 600 7218C 90 160 30 2.0 1.0 123 5 72.0 14.6 31.7 2.200 9 200 14 000 7218A5 90 160 30 2.0 1.0 117 0 83.5 44.1 2.3 8 000 12 000 7218A 90 160 30 2.0 1.0 113 96.5 64.5 51.1 2.230 6 000 8 000 7219C 95 170 32 2.1 1.1 133 112 76.0 14.6 33.7 2.640 8 700 13 300 7219A5 95 170 32 2.1 1.1 127 7 87.0 46.9 2.630 7 600 11 400 7219A 95 170 32 2.1 1.1 122 3 67.0 54.2 2.670 5 700 7 600 7220C 0 180 34 2.1 1.1 149 127 88.5 14.5 35.7 3.180 8 300 12 500 7220A5 0 180 34 2.1 1.1 142 121 3 49.6 3.160 7 200 800 7220A 0 180 34 2.1 1.1 137 117 79.5 57.4 3.2 5 400 7 200 7221C 5 190 36 2.1 1.1 162 143 97.5 14.5 37.7 3.780 7 800 11 900 7221A5 5 190 36 2.1 1.1 155 137 111 52.4 3.770 6 800 200 7221A 5 190 36 2.1 1.1 150 132 85.0 60.6 3.820 5 0 6 800 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing numbes with a C suffix: nominal contact angle 15 Beaing numbes with an A5 suffix: nominal contact angle 25 Beaing numbes with an A suffix: nominal contact angle 30 Fo additional infomation: Dynamic equivalent load Page No. 139 Static equivalent load 146 Peload and igidity 152 Abutment and fillet dimensions 186 Nozzle position 192 Quantity of packed gease 175 Standad Angula Contact Ball Beaings 59

1. ANGULAR CONTACT BALL BEARINGS High Pecision Angula Contact Ball Beaings (Standad Seies) B 1 Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 72 Seies Boe Diamete 1-150 mm Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Facto Cente (kg) (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) f o (mm) (appox) (min) (min) (Dynamic) (Static) (kn) a Gease Oil 7222C 1 200 38 2.1 1.1 176 160 8 14.5 39.8 4.450 7 500 11 300 7222A5 1 200 38 2.1 1.1 168 153 126 55.1 4.450 6 500 9 700 7222A 1 200 38 2.1 1.1 162 148 97.0 63.7 4.490 4 900 6 500 7224C 120 215 40 2.1 1.1 199 192 132 14.6 42.4 5.420 6 900 500 7224A5 120 215 40 2.1 1.1 189 184 150 59.1 5.420 6 000 9 000 7224A 120 215 40 2.1 1.1 183 177 116 68.3 5.450 4 500 6 000 7226C 130 230 40 3.0 1.1 206 209 144 14.9 44.1 6.230 6 400 9 800 7226A5 130 230 40 3.0 1.1 196 199 163 62.0 6.220 5 600 8 400 7226A 130 230 40 3.0 1.1 189 193 127 72.0 6.280 4 200 5 600 7228C 140 250 42 3.0 1.1 238 254 172 14.8 47.1 7.9 5 900 9 000 7228A5 140 250 42 3.0 1.1 226 242 194 66.5 7.9 5 200 7 700 7228A 140 250 42 3.0 1.1 218 234 150 77.3 7.970 3 900 5 200 7230C 150 270 45 3.0 1.1 270 305 205 14.7 50.6 11.0 5 500 8 400 7230A5 150 270 45 3.0 1.1 258 290 231 71.5 11.0 4 800 7 200 7230A 150 270 45 3.0 1.1 248 280 179 83.1 11.200 3 600 4 800 D a d Standad Angula Contact Ball Beaings ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing numbes with a C suffix: nominal contact angle 15 Beaing numbes with an A5 suffix: nominal contact angle 25 Beaing numbes with an A suffix: nominal contact angle 30 60 61

1. ANGULAR CONTACT BALL BEARINGS Ulta High-Speed Angula Contact Ball Beaings (ROBUST Seies) Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Featues Optimum Design Long Life Robust design achieved with NSK s popietay analytical technology. Optimum design achieved by compute simulation of tempeatue ise esulting fom ball skid. New SHX steel mateial povides supeio heat and wea esistance. Enhanced sevice life measues include aising the seizue limit unde low lubication and high-speed opeating conditions. Numbeing System of Ulta High-Speed Angula Contact Ball Beaings (ROBUST Seies) (Beaing numbe example) Nominal beaing boe Beaing type symbol Dimension symbol Mateial symbol 80 BNR H TYN DBB EL P4 Accuacy symbol Peload symbol Aangement symbol Seal symbol Cage symbol ROBUST Angula Contact Ball Beaings High Accuacy Rolling element mateial can be tailoed to match the application. Ceamic balls ae used fo ROBUST seies angula contact ball beaings. Highly accuate P2 seies is available. NSK s expeience and know-how ensue beaing specifications with a high degee of accuacy. Refeence pages 80 Nominal beaing boe Boe diamete (mm) 64-79 BNR Beaing type BNR: 18 contact angle, BER: 25 contact angle 42-43, 48 Dimension : seies, 19: 19 seies, 20: 20 seies, 29: 29 seies ( 1 ) 42-43, 62 High Speed Cage engineeed fo high-speed opeations. Benefits of the lightweight, high stength engineeed esin cage include heat esistance and high igidity, making this cage indispensable fo high-speed applications. Type Rings Mateial Rolling elements H Mateial S Beaing steel (SUJ2) Beaing steel (SUJ2) H Beaing steel (SUJ2) Ceamics (Si 3 N 4 ) 14-17 24-25 Low Noise Quiete unning high-speed spindle featuing Spinshot TM II lubication system. Eliminates noise caused by compessed ai of the oil-ai lubication system. X Heat esistant steel (SHX) Ceamics (Si 3 N 4 ) XE (Spinshot TM II) Heat esistant steel (SHX) Ceamics (Si 3 N 4 ) TYN Cage TYN: ball guided polyamide esin cage; limiting speed d m n = 1 400 000; opeational tempeatue limit = 120 C T: phenolic esin cage with oute ing guide; opeational tempeatue limit = 120 C 18-19 Dimension Seies Seal No symbol: open type V1V: non-contact ubbe seal ( 2 ) 32 Fig. 1.4 DBB Aangement SU: univesal aangement (single ow) DU: univesal aangement (double ow) DB: Back-to-back aangement DF: Face-to-face aangement DT: tandem aangement DBD, DFD, DTD, DUD: tiplex set aangement DBB, DFF, DBT, DFT, DTT, QU: quaduplex set aangement 42-43 148-151 EL Peload EL: exta light peload, L: light peload, M: medium peload, H: heavy peload CP: special peload, CA: special axial cleaance 42-43 152-155 161-164 P2: ISO Class 2, P4: ISO Class 4, P5: ISO Class 5 P4 Accuacy P3: special class (dimensional accuacy: ISO Class 4; otating accuacy: ISO Class 2) P4Y: special class (Boe diamete and outside diamete ae exclusive to NSK. All othes ae ISO Class 4.) 151 176-179 BNR BER BNR19 BER19 BNR20 BER20 Seies BNR29 BER29 Seies Spinshot II (XE type) ( 1 ) Seies 20 and 29 ae exclusively fo sealed angula contact ball beaings. ( 2 ) Sealed angula contact ball beaings ae standadized fo SU aangement and ISO Class 3 standads. Sealed angula contact ball beaings coespondence numbes BNR19, BNR29, BER19, BER29, BNR, BNR20, BER and BER20: Boe diamete=30 0 mm 62 63

64 1. ANGULAR CONTACT BALL BEARINGS Ulta High-Speed Angula Contact Ball Beaings (ROBUST Seies) BNR19 Seies BER19 Seies Boe Diamete 25-80 mm Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (kg) Sealed (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) (mm) (appox) Design (min) (min) (Dynamic) (Static) (kn) a Gease Oil 25BNR19S 25 42 9 0.3 0.15 4.95 0.042 41 800 59 800 25BNR19H 25 42 9 0.3 0.15 5.95 3.50 9.9 0.038 53 800 83 600 25BNR19X 25 42 9 0.3 0.15 3.25 0.038 62 700 98 600 25BER19S 25 42 9 0.3 0.15 5.90 0.042 35 900 50 800 25BER19H 25 42 9 0.3 0.15 5.70 3.40 12.3 0.038 47 800 74 700 25BER19X 25 42 9 0.3 0.15 3.95 0.038 56 800 89 600 30BNR19S 30 47 9 0.3 0.15 5.75 0.048 36 400 52 000 30BNR19H 30 47 9 0.3 0.15 6.30 4.05.8 0.043 46 800 72 800 30BNR19X 30 47 9 0.3 0.15 3.80 0.043 54 600 85 800 30BER19S 30 47 9 0.3 0.15 6.80 0.048 31 200 44 200 30BER19H 30 47 9 0.3 0.15 6.00 3.90 13.5 0.043 41 600 65 000 30BER19X 30 47 9 0.3 0.15 4.60 0.043 49 400 78 000 35BNR19S 35 55 0.6 0.3 8.55 0.072 31 200 44 500 35BNR19H 35 55 0.6 0.3 9.20 6.00 12.3 0.063 40 000 62 300 35BNR19X 35 55 0.6 0.3 5.60 0.063 46 700 73 400 35BER19S 35 55 0.6 0.3.0 0.072 26 700 37 800 35BER19H 35 55 0.6 0.3 8.80 5.75 15.5 0.063 35 600 55 600 35BER19X 35 55 0.6 0.3 6.80 0.063 42 300 66 700 40BNR19S 40 62 12 0.6 0.3.8 0.5 27 500 39 300 40BNR19H 40 62 12 0.6 0.3 11.5 7.65 14.3 0.092 35 300 55 000 40BNR19X 40 62 12 0.6 0.3 7. 0.092 41 200 64 800 40BER19S 40 62 12 0.6 0.3 12.8 0.5 23 600 33 400 40BER19H 40 62 12 0.6 0.3 11.0 7.35 17.9 0.092 31 400 49 0 40BER19X 40 62 12 0.6 0.3 8.65 0.092 37 300 58 900 45BNR19S 45 68 12 0.6 0.3 12.4 0.125 24 800 35 400 45BNR19H 45 68 12 0.6 0.3 12.1 8.70 15.2 0.111 31 900 49 600 45BNR19X 45 68 12 0.6 0.3 8. 0.111 37 200 58 500 45BER19S 45 68 12 0.6 0.3 14.6 0.125 21 300 30 0 45BER19H 45 68 12 0.6 0.3 11.6 8.35 19.2 0.111 28 400 44 300 45BER19X 45 68 12 0.6 0.3 9.85 0.111 33 700 53 0 50BNR19S 50 72 12 0.6 0.3 13.9 0.127 23 000 32 800 50BNR19H 50 72 12 0.6 0.3 12.8 9.75 15.9 0.111 29 600 46 000 50BNR19X 50 72 12 0.6 0.3 9. 0.111 34 500 54 0 50BER19S 50 72 12 0.6 0.3 16.3 0.127 19 700 27 900 50BER19H 50 72 12 0.6 0.3 12.3 9.35 20.2 0.111 26 300 41 000 50BER19X 50 72 12 0.6 0.3 11.0 0.111 31 200 49 200 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing type BNR: nominal contact angle 18 Beaing type BER: nominal contact angle 25 D 1 B a 1 d BNR19 Seies (continued) BER19 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing type BNR: nominal contact angle 18 Beaing type BER: nominal contact angle 25 Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Fo additional infomation: Dynamic equivalent load Page No. 139 Static equivalent load 146 Peload and igidity 152 Abutment and fillet dimensions 186 Nozzle position 192 Quantity of packed gease 175 Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (kg) Sealed (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) (mm) (appox) Design (min) (min) (Dynamic) (Static) (kn) a Gease Oil 55BNR19S 55 80 13 1.0 0.6 16.2 0.178 20 800 29 700 55BNR19H 55 80 13 1.0 0.6 14.4 11.4 17.5 0.158 26 700 41 500 55BNR19X 55 80 13 1.0 0.6.6 0.158 31 200 48 900 55BER19S 55 80 13 1.0 0.6 16.1 0.178 17 800 25 200 55BER19H 55 80 13 1.0 0.6 13.8.9 22.2 0.158 23 800 37 0 55BER19X 55 80 13 1.0 0.6 12.9 0.158 28 200 44 500 60BNR19S 60 85 13 1.0 0.6 17.1 0.190 19 400 27 600 60BNR19H 60 85 13 1.0 0.6 14.6 12.0 18.3 0.170 24 900 38 700 60BNR19X 60 85 13 1.0 0.6 11.2 0.170 29 000 45 600 60BER19S 60 85 13 1.0 0.6 20.1 0.190 16 600 23 500 60BER19H 60 85 13 1.0 0.6 14.0 11.5 23.4 0.170 22 0 34 500 60BER19X 60 85 13 1.0 0.6 13.6 0.170 26 300 41 400 65BNR19S 65 90 13 1.0 0.6 18.7 0.204 18 0 25 900 65BNR19H 65 90 13 1.0 0.6 15.2 13.2 19.1 0.181 23 300 36 200 65BNR19X 65 90 13 1.0 0.6 12.3 0.181 27 0 42 600 65BER19S 65 90 13 1.0 0.6 22.1 0.204 15 500 22 000 65BER19H 65 90 13 1.0 0.6 14.5 12.6 24.6 0.181 20 700 32 300 65BER19X 65 90 13 1.0 0.6 14.9 0.181 24 600 38 800 70BNR19S 70 0 16 1.0 0.6 26.1 0.328 16 500 23 600 70BNR19H 70 0 16 1.0 0.6 21.3 18.1 21.8 0.292 21 200 33 000 70BNR19X 70 0 16 1.0 0.6 17.1 0.292 24 800 38 900 70BER19S 70 0 16 1.0 0.6 30.5 0.328 14 200 20 000 70BER19H 70 0 16 1.0 0.6 20.4 17.3 27.8 0.292 18 900 29 500 70BER19X 70 0 16 1.0 0.6 20.7 0.292 22 400 35 300 75BNR19S 75 5 16 1.0 0.6 27.5 0.348 15 600 22 300 75BNR19H 75 5 16 1.0 0.6 21.6 19.0 22.6 0.3 20 000 31 200 75BNR19X 75 5 16 1.0 0.6 18.0 0.3 23 400 36 700 75BER19S 75 5 16 1.0 0.6 32.5 0.348 13 400 18 900 75BER19H 75 5 16 1.0 0.6 20.7 18.2 29.0 0.3 17 800 27 800 75BER19X 75 5 16 1.0 0.6 21.7 0.3 21 200 33 400 80BNR19S 80 1 16 1.0 0.6 28.9 0.366 14 800 21 0 80BNR19H 80 1 16 1.0 0.6 22.0 19.9 23.4 0.326 19 000 29 500 80BNR19X 80 1 16 1.0 0.6 18.9 0.326 22 200 34 800 80BER19S 80 1 16 1.0 0.6 34.0 0.366 12 700 17 900 80BER19H 80 1 16 1.0 0.6 21.0 19.1 30.1 0.326 16 900 26 400 80BER19X 80 1 16 1.0 0.6 22.8 0.326 20 000 31 600 ROBUST Angula Contact Ball Beaings 65

1. ANGULAR CONTACT BALL BEARINGS Ulta High-Speed Angula Contact Ball Beaings (ROBUST Seies) BNR19 Seies BER19 Seies Boe Diamete 85-150 mm Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (kg) Sealed (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) (mm) (appox) Design (min) (min) (Dynamic) (Static) (kn) a Gease Oil 85BNR19S 85 120 18 1.1 0.6 38.0 0.527 13 700 19 600 85BNR19H 85 120 18 1.1 0.6 29.4 26.3 25.7 0.456 17 600 27 400 24.8 85BNR19X 85 120 18 1.1 0.6 0.456 20 500 32 200 85BER19S 85 120 18 1.1 0.6 35.5 0.527 11 800 16 600 85BER19H 85 120 18 1.1 0.6 28.1 25.2 32.9 0.456 15 700 24 400 30.0 85BER19X 85 120 18 1.1 0.6 0.456 18 600 29 300 90BNR19S 90 125 18 1.1 0.6 43.0 0.552 13 0 18 700 90BNR19H 90 125 18 1.1 0.6 31.5 29.7 26.5 0.480 16 800 26 0 28.1 90BNR19X 90 125 18 1.1 0.6 0.480 19 600 30 700 90BER19S 90 125 18 1.1 0.6 50.5 0.552 11 200 15 900 90BER19H 90 125 18 1.1 0.6 30.0 28.5 34.1 0.480 14 900 23 300 34.0 90BER19X 90 125 18 1.1 0.6 0.480 17 700 28 000 95BNR19S 95 130 18 1.1 0.6 50.0 0.571 12 500 17 800 95BNR19H 95 130 18 1.1 0.6 32.0 31.0 28.3 0.497 16 000 24 900 32.5 95BNR19X 95 130 18 1.1 0.6 0.497 18 700 29 400 95BER19S 95 130 18 1.1 0.6 58.5 0.571 700 15 200 95BER19H 95 130 18 1.1 0.6 30.5 29.7 36.7 0.497 14 300 22 300 39.5 95BER19X 95 130 18 1.1 0.6 0.497 16 900 26 700 0BNR19S 0 140 20 1.1 0.6 50.5 0.770 11 700 16 700 0BNR19H 0 140 20 1.1 0.6 38.0 35.0 29.5 0.673 15 000 23 400 33.0 0BNR19X 0 140 20 1.1 0.6 0.673 17 500 27 500 0BER19S 0 140 20 1.1 0.6 59.5 0.770 000 14 200 0BER19H 0 140 20 1.1 0.6 36.0 33.5 38.0 0.673 13 400 20 900 40.0 0BER19X 0 140 20 1.1 0.6 0.673 15 900 25 000 5BNR19S 5 145 20 1.1 0.6 53.0 0.795 11 200 16 000 5BNR19H 5 145 20 1.1 0.6 38.5 36.5 31.5 0.693 14 400 22 400 39.0 5BNR19X 5 145 20 1.1 0.6 0.693 16 800 26 400 5BER19S 5 145 20 1.1 0.6 62.0 0.795 9 600 13 600 5BER19H 5 145 20 1.1 0.6 37.0 35.0 40.9 0.693 12 800 20 000 42.0 5BER19X 5 145 20 1.1 0.6 0.693 15 200 24 000 D 1 B a 1 d BNR19 Seies (continued) BER19 Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (kg) Sealed (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) (mm) (appox) Design (min) (min) (Dynamic) (Static) (kn) a Gease Oil 1BNR19S 1 150 20 1.1 0.6 55.5 0.838 800 15 400 1BNR19H 1 150 20 1.1 0.6 39.0 38.0 31.1 0.733 13 900 21 600 42.0 1BNR19X 1 150 20 1.1 0.6 0.733 16 200 25 400 1BER19S 1 150 20 1.1 0.6 65.0 0.838 9 300 13 0 1BER19H 1 150 20 1.1 0.6 37.5 36.5 40.3 0.733 12 400 19 300 44.0 1BER19X 1 150 20 1.1 0.6 0.733 14 700 23 0 120BNR19S 120 165 22 1.1 0.6 75.0 1.124 9 900 14 0 120BNR19H 120 165 22 1.1 0.6 54.0 52.0 34.2 0.949 12 700 19 700 49.0 120BNR19X 120 165 22 1.1 0.6 0.949 14 800 23 200 120BER19S 120 165 22 1.1 0.6 88.0 1.124 8 500 12 000 120BER19H 120 165 22 1.1 0.6 51.5 50.0 44.2 0.949 11 300 17 600 59.5 120BER19X 120 165 22 1.1 0.6 0.949 13 400 21 0 130BNR19S 130 180 24 1.5 1.0 59.5 58.5 85.0 37.2 1.477 9 0 13 000 130BNR19H 130 180 24 1.5 1.0 56.0 1.265 11 700 18 0 130BER19S 130 180 24 1.5 1.0 57.0 56.5 0 48.1 1.477 7 800 11 000 130BER19H 130 180 24 1.5 1.0 67.5 1.265 400 16 200 140BNR19S 140 190 24 1.5 1.0 60.0 61.5 89.5 38.8 1.567 8 500 12 200 140BNR19H 140 190 24 1.5 1.0 58.5 1.353 11 000 17 000 140BER19S 140 190 24 1.5 1.0 57.5 59.0 5 50.5 1.567 7 300 400 140BER19H 140 190 24 1.5 1.0 70.5 1.353 9 700 15 200 150BNR19S 150 2 28 2.0 1.0 77.0 78.5 114 43.2 2.459 7 800 11 200 150BNR19H 150 2 28 2.0 1.0 75.0 2.139 000 15 600 150BER19S 150 2 28 2.0 1.0 73.5 75.5 134 55.9 2.459 6 700 9 500 150BER19H 150 2 28 2.0 1.0 90.5 2.139 8 900 13 900 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing type BNR: nominal contact angle 18 Beaing type BER: nominal contact angle 25 Fo additional infomation: Dynamic equivalent load Page No. 139 Static equivalent load 146 Peload and igidity 152 Abutment and fillet dimensions 186 Nozzle position 192 Quantity of packed gease 175 ROBUST Angula Contact Ball Beaings 66 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing type BNR: nominal contact angle 18 Beaing type BER: nominal contact angle 25 67

68 1. ANGULAR CONTACT BALL BEARINGS Ulta High-Speed Angula Contact Ball Beaings (ROBUST Seies) BNR Seies BER Seies Boe Diamete 30-80 mm Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (kg) Sealed (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) (mm) (appox) Design (min) (min) (Dynamic) (Static) (kn) a Gease Oil 30BNRS 30 55 13 1.0 0.6 8.20 0.124 33 000 47 0 30BNRH 30 55 13 1.0 0.6 8.65 5.75 13.3 0.116 42 400 65 900 30BNRX 30 55 13 1.0 0.6 5.35 0.116 49 500 77 700 30BERS 30 55 13 1.0 0.6 9.65 0.124 28 300 40 000 30BERH 30 55 13 1.0 0.6 8.30 5.50 16.3 0.116 37 700 58 900 30BERX 30 55 13 1.0 0.6 6.50 0.116 44 800 70 600 35BNRS 35 62 14 1.0 0.6.2 0.164 28 900 41 300 35BNRH 35 62 14 1.0 0.6.1 7. 14.8 0.154 37 200 57 800 35BNRX 35 62 14 1.0 0.6 6.70 0.154 43 300 68 0 35BERS 35 62 14 1.0 0.6 12.0 0.164 24 800 35 0 35BERH 35 62 14 1.0 0.6 9.70 6.85 18.2 0.154 33 000 51 600 35BERX 35 62 14 1.0 0.6 8. 0.154 39 200 61 900 40BNRS 40 68 15 1.0 0.6 11.5 0.204 26 000 37 0 40BNRH 40 68 15 1.0 0.6.6 7.95 16.2 0.193 33 400 51 900 40BNRX 40 68 15 1.0 0.6 7.50 0.193 38 900 61 200 40BERS 40 68 15 1.0 0.6 13.5 0.204 22 300 31 500 40BERH 40 68 15 1.0 0.6.1 7.65 19.9 0.193 29 700 46 300 40BERX 40 68 15 1.0 0.6 9. 0.193 35 200 55 600 45BNRS 45 75 16 1.0 0.6 12.7 0.259 23 400 33 400 45BNRH 45 75 16 1.0 0.6 11.7 9.00 17.6 0.246 30 000 46 700 45BNRX 45 75 16 1.0 0.6 8.35 0.246 35 000 55 000 45BERS 45 75 16 1.0 0.6 15.0 0.259 20 000 28 400 45BERH 45 75 16 1.0 0.6 11.2 8.60 21.8 0.246 26 700 41 700 45BERX 45 75 16 1.0 0.6.1 0.246 31 700 50 000 50BNRS 50 80 16 1.0 0.6 14.0 0.281 21 600 30 800 50BNRH 50 80 16 1.0 0.6 12.2 9.90 18.4 0.266 27 700 43 0 50BNRX 50 80 16 1.0 0.6 9.20 0.266 32 400 50 800 50BERS 50 80 16 1.0 0.6 16.5 0.281 18 500 26 200 50BERH 50 80 16 1.0 0.6 11.6 9.50 23.0 0.266 24 700 38 500 50BERX 50 80 16 1.0 0.6 11.1 0.266 29 300 46 200 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing type BNR: nominal contact angle 18 Beaing type BER: nominal contact angle 25 D B a 1 d BNR Seies (continued) BER Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (kg) Sealed (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) (mm) (appox) Design (min) (min) (Dynamic) (Static) (kn) a Gease Oil 55BNRS 55 90 18 1.1 0.6 17.8 0.414 19400 27600 55BNRH 55 90 18 1.1 0.6 15.1 12.5 20.6 0.393 24 900 38 700 55BNRX 55 90 18 1.1 0.6 11.7 0.393 29 000 45 600 55BERS 55 90 18 1.1 0.6 21.0 0.414 16 600 23 500 55BERH 55 90 18 1.1 0.6 14.4 12.0 25.7 0.393 22 0 34 500 55BERX 55 90 18 1.1 0.6 14.1 0.393 26 300 41 400 60BNRS 60 95 18 1.1 0.6 19.5 0.443 18 0 25 900 60BNRH 60 95 18 1.1 0.6 15.6 13.7 21.5 0.419 23 300 36 200 60BNRX 60 95 18 1.1 0.6 12.8 0.419 27 0 42 600 60BERS 60 95 18 1.1 0.6 22.9 0.443 15 500 22 000 60BERH 60 95 18 1.1 0.6 15.0 13.1 26.9 0.419 20 700 32 300 60BERX 60 95 18 1.1 0.6 15.5 0.419 24 600 38 800 65BNRS 65 0 18 1.1 0.6 21.1 0.472 17 000 24 300 65BNRH 65 0 18 1.1 0.6 16.2 14.8 22.3 0.447 21 900 34 000 65BNRX 65 0 18 1.1 0.6 13.9 0.447 25 500 40 000 65BERS 65 0 18 1.1 0.6 24.9 0.472 14 600 20 700 65BERH 65 0 18 1.1 0.6 15.5 14.2 28.0 0.447 19 400 30 400 65BERX 65 0 18 1.1 0.6 16.8 0.447 23 0 36 400 70BNRS 70 1 20 1.1 0.6 28.6 0.645 15 600 22 300 70BNRH 70 1 20 1.1 0.6 22.3 19.8 24.5 0.605 20 000 31 200 70BNRX 70 1 20 1.1 0.6 18.8 0.605 23 400 36 700 70BERS 70 1 20 1.1 0.6 33.5 0.645 13 400 18 900 70BERH 70 1 20 1.1 0.6 21.3 18.9 30.8 0.605 17 800 27 800 70BERX 70 1 20 1.1 0.6 22.6 0.605 21 200 33 400 75BNRS 75 115 20 1.1 0.6 30.0 0.679 14 800 21 0 75BNRH 75 115 20 1.1 0.6 22.6 20.7 25.3 0.638 19 000 29 500 75BNRX 75 115 20 1.1 0.6 19.7 0.638 22 200 34 800 75BERS 75 115 20 1.1 0.6 35.0 0.679 12 700 17 900 75BERH 75 115 20 1.1 0.6 21.6 19.8 31.9 0.638 16 900 26 400 75BERX 75 115 20 1.1 0.6 23.7 0.638 20 000 31 600 80BNRS 80 125 22 1.1 0.6 35.5 0.921 13 700 19 600 80BNRH 80 125 22 1.1 0.6 26.5 24.5 27.5 0.867 17 600 27 400 80BNRX 80 125 22 1.1 0.6 23.4 0.867 20 500 32 200 80BERS 80 125 22 1.1 0.6 42.0 0.921 11 800 16 600 80BERH 80 125 22 1.1 0.6 25.3 23.5 34.6 0.867 15 700 24 400 80BERX 80 125 22 1.1 0.6 28.2 0.867 18 600 29 300 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing type BNR: nominal contact angle 18 Beaing type BER: nominal contact angle 25 Fo additional infomation: Dynamic equivalent load Page No. 139 Static equivalent load 146 Peload and igidity 152 Abutment and fillet dimensions 186 Nozzle position 192 Quantity of packed gease 175 ROBUST Angula Contact Ball Beaings 69

1. ANGULAR CONTACT BALL BEARINGS Ulta High-Speed Angula Contact Ball Beaings (ROBUST Seies) BNR Seies BER Seies Boe Diamete 85-150 mm Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (kg) Sealed (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) (mm) (appox) Design (min) (min) (Dynamic) (Static) (kn) a Gease Oil 85BNRS 85 130 22 1.1 0.6 37.5 0.962 13 0 18 700 85BNRH 85 130 22 1.1 0.6 26.8 25.7 28.4 0.906 16 800 26 0 24.5 85BNRX 85 130 22 1.1 0.6 0.906 19 600 30 700 85BERS 85 130 22 1.1 0.6 43.5 0.962 11 200 15 900 85BERH 85 130 22 1.1 0.6 25.6 24.6 36.1 0.906 14 900 23 300 29.5 85BERX 85 130 22 1.1 0.6 0.906 17 700 28 000 90BNRS 90 140 24 1.5 1.0 48.0 1.241 12 200 17 400 90BNRH 90 140 24 1.5 1.0 35.0 33.0 30.7 1.155 15 700 24 400 31.5 90BNRX 90 140 24 1.5 1.0 1.155 18 300 28 700 90BERS 90 140 24 1.5 1.0 56.0 1.241 500 14 800 90BERH 90 140 24 1.5 1.0 33.5 31.5 38.8 1.155 14 000 21 800 38.0 90BERX 90 140 24 1.5 1.0 1.155 16 600 26 0 95BNRS 95 145 24 1.5 1.0 50.0 1.298 11 700 16 700 95BNRH 95 145 24 1.5 1.0 35.5 34.5 31.3 1.209 15 000 23 400 32.5 95BNRX 95 145 24 1.5 1.0 1.209 17 500 27 500 95BERS 95 145 24 1.5 1.0 58.5 1.298 000 14 200 95BERH 95 145 24 1.5 1.0 34.0 33.0 39.7 1.209 13 400 20 900 39.5 95BERX 95 145 24 1.5 1.0 1.209 15 900 25 000 0BNRS 0 150 24 1.5 1.0 52.0 1.245 11 200 16 000 0BNRH 0 150 24 1.5 1.0 36.0 36.0 32.3 1.253 14 400 22 400 34.0 0BNRX 0 150 24 1.5 1.0 1.253 16 800 26 400 0BERS 0 150 24 1.5 1.0 61.0 1.245 9 600 13 600 0BERH 0 150 24 1.5 1.0 34.5 34.5 41.2 1.253 12 800 20 000 41.0 0BERX 0 150 24 1.5 1.0 1.253 15 200 24 000 5BNRS 5 160 26 2.0 1.0 59.5 1.698 600 15 0 5BNRH 5 160 26 2.0 1.0 41.0 41.0 34.5 1.585 13 600 21 200 39.0 5BNRX 5 160 26 2.0 1.0 1.585 15 900 25 000 5BERS 5 160 26 2.0 1.0 70.0 1.698 9 0 12 900 5BERH 5 160 26 2.0 1.0 39.0 39.5 43.9 1.585 12 0 18 900 47.5 5BERX 5 160 26 2.0 1.0 1.585 14 400 22 700 D B a 1 d BNR Seies (continued) BER Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (kg) Sealed (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) (mm) (appox) Design (min) (min) (Dynamic) (Static) (kn) a Gease Oil 1BNRS 1 170 28 2.0 1.0 68.0 2.133 000 14 300 1BNRH 1 170 28 2.0 1.0 46.0 47.0 36.7 1.996 12 900 20 000 44.5 1BNRX 1 170 28 2.0 1.0 1.996 15 000 23 600 1BERS 1 170 28 2.0 1.0 79.5 2.133 8 600 12 200 1BERH 1 170 28 2.0 1.0 44.0 45.0 46.7 1.996 11 500 17 900 54.0 1BERX 1 170 28 2.0 1.0 1.996 13 600 21 500 120BNRS 120 180 28 2.0 1.0 73.5 2.286 9 400 13 400 120BNRH 120 180 28 2.0 1.0 47.5 50.5 38.4 2.139 12 000 18 700 48.0 120BNRX 120 180 28 2.0 1.0 2.139 14 000 22 000 120BERS 120 180 28 2.0 1.0 86.0 2.286 8 000 11 400 120BERH 120 180 28 2.0 1.0 45.5 48.5 49.0 2.139 700 16 700 58.0 120BERX 120 180 28 2.0 1.0 2.139 12 700 20 000 130BNRS 130 200 33 2.0 1.0 60.0 61.5 89.5 43.0 3.408 8 500 12 200 130BNRH 130 200 33 2.0 1.0 58.5 3.194 11 000 17 000 130BERS 130 200 33 2.0 1.0 57.5 59.0 5 54.6 3.408 7 300 400 130BERH 130 200 33 2.0 1.0 70.5 3.194 9 700 15 200 140BNRS 140 2 33 2.0 1.0 62.5 66.5 97.0 44.6 3.647 8 000 11 500 140BNRH 140 2 33 2.0 1.0 63.5 3.419 300 16 000 140BERS 140 2 33 2.0 1.0 59.5 64.0 113 56.9 3.647 6 900 9 800 140BERH 140 2 33 2.0 1.0 76.5 3.419 9 200 14 300 150BNRS 150 225 35 2.1 1.0 114 4.405 7 500 700 73.5 78.0 47.6 150BNRH 150 225 35 2.1 1.0 74.5 4.129 9 600 15 000 150BERS 150 225 35 2.1 1.0 99.5 4.405 6 400 9 0 70.0 75.0 60.8 150BERH 150 225 35 2.1 1.0 90.0 4.129 8 600 13 400 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing type BNR: nominal contact angle 18 Beaing type BER: nominal contact angle 25 Fo additional infomation: Dynamic equivalent load Page No. 139 Static equivalent load 146 Peload and igidity 152 Abutment and fillet dimensions 186 Nozzle position 192 Quantity of packed gease 175 ROBUST Angula Contact Ball Beaings 70 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing type BNR: nominal contact angle 18 Beaing type BER: nominal contact angle 25 71

1. ANGULAR CONTACT BALL BEARINGS Ulta High-Speed Angula Contact Ball Beaings (Spinshot TM II Seies) BNR19XE Seies BER19XE Seies Boe Diamete 40-1 mm Bounday Dimensions Spinshot TM Space Dimension Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (mm) (kn) Axial Cente (kg) (min 1 ) Numbes d D B C 1 L 1 L 2 C C 0 Load ( 1 ) (mm) (appox) (min) (min) (appox) (appox) (Dynamic) (Static) (kn) a Oil 40BNR19XE 40 62 12 17 0.6 0.3 15 7.5 11.5 7.65 7. 19.3 0.6 64 800 40BER19XE 40 62 12 17 0.6 0.3 15 7.5 11.0 7.35 8.65 22.9 0.6 58 900 45BNR19XE 45 68 12 17 0.6 0.3 15 7.5 12.1 8.70 8. 20.2 0.128 58 500 45BER19XE 45 68 12 17 0.6 0.3 15 7.5 11.6 8.35 9.85 24.2 0.128 53 0 50BNR19XE 50 72 12 17 0.6 0.3 15 7.5 12.8 9.75 9. 20.9 0.129 54 0 50BER19XE 50 72 12 17 0.6 0.3 15 7.5 12.3 9.35 11.0 25.2 0.129 49 200 55BNR19XE 55 80 13 18 1.0 0.6 15 7.5 14.4 11.4.6 22.5 0.182 48 900 55BER19XE 55 80 13 18 1.0 0.6 15 7.5 13.8.9 12.9 27.2 0.182 44 500 60BNR19XE 60 85 13 18 1.0 0.6 15 7.5 14.6 12.0 11.2 23.3 0.196 45 600 60BER19XE 60 85 13 18 1.0 0.6 15 7.5 14.0 11.5 13.6 28.4 0.196 41 400 65BNR19XE 65 90 13 18 1.0 0.6 15 7.5 15.2 13.2 12.3 24.1 0.209 42 600 65BER19XE 65 90 13 18 1.0 0.6 15 7.5 14.5 12.6 14.9 29.6 0.209 38 800 70BNR19XE 70 0 16 21 1.0 0.6 15 7.5 21.3 18.1 17.1 26.8 0.328 38 900 70BER19XE 70 0 16 21 1.0 0.6 15 7.5 20.4 17.3 20.7 32.8 0.328 35 300 75BNR19XE 75 5 16 21 1.0 0.6 15 7.5 21.6 19.0 18.0 27.6 0.348 36 700 75BER19XE 75 5 16 21 1.0 0.6 15 7.5 20.7 18.2 21.7 34.0 0.348 33 400 80BNR19XE 80 1 16 21 1.0 0.6 15 7.5 22.0 19.9 18.9 28.4 0.366 34 800 80BER19XE 80 1 16 21 1.0 0.6 15 7.5 21.0 19.1 22.8 35.1 0.366 31 600 85BNR19XE 85 120 18 23 1.1 0.6 15 7.5 29.4 26.3 24.8 30.7 0.506 32 200 85BER19XE 85 120 18 23 1.1 0.6 15 7.5 28.1 25.2 30.0 37.9 0.506 29 300 90BNR19XE 90 125 18 23 1.1 0.6 15 7.5 31.5 29.7 28.1 31.5 0.532 30 700 90BER19XE 90 125 18 23 1.1 0.6 15 7.5 30.0 28.5 34.0 39.1 0.532 28 000 95BNR19XE 95 130 18 23 1.1 0.6 15 7.5 35.5 34.5 32.5 33.3 0.589 29 400 95BER19XE 95 130 18 23 1.1 0.6 15 7.5 34.0 33.0 39.5 41.7 0.589 26 700 0BNR19XE 0 140 20 25 1.1 0.6 15 7.5 38.0 35.0 33.0 34.5 0.739 27 500 0BER19XE 0 140 20 25 1.1 0.6 15 7.5 36.0 33.5 40.0 43.0 0.739 25 000 5BNR19XE 5 145 20 25 1.1 0.6 15 7.5 41.0 41.0 39.0 36.5 0.758 26 400 5BER19XE 5 145 20 25 1.1 0.6 15 7.5 39.0 39.5 47.5 45.9 0.758 24 000 1BNR19XE 1 150 20 25 1.1 0.6 15 7.5 39.0 38.0 36.5 36.1 0.804 25 400 1BER19XE 1 150 20 25 1.1 0.6 15 7.5 37.5 36.5 44.0 45.3 0.804 23 0 L 2 L 1 1 B C a 1 d D BNRXE Seies BERXE Seies Boe Diamete 40-1 mm Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Fo additional infomation: Dynamic equivalent load Bounday Dimensions Spinshot TM Space Dimension Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (mm) (kn) Axial Cente (kg) (min 1 ) Numbes d D B C 1 L 1 L 2 C C 0 Load ( 1 ) (mm) (appox) (min) (min) (appox) (appox) (Dynamic) (Static) (kn) a Oil 40BNRXE 40 68 15 20 1.0 0.6 15 7.5.6 7.95 7.50 21.2 0.217 61 200 40BERXE 40 68 15 20 1.0 0.6 15 7.5.1 7.65 9. 24.9 0.217 55 600 45BNRXE 45 75 16 21 1.0 0.6 15 7.5 11.7 9.00 8.35 22.6 0.273 55 000 45BERXE 45 75 16 21 1.0 0.6 15 7.5 11.2 8.60.1 26.8 0.273 50 000 50BNRXE 50 80 16 21 1.0 0.6 15 7.5 12.2 9.90 9.20 23.4 0.296 50 800 50BERXE 50 80 16 21 1.0 0.6 15 7.5 11.6 9.50 11.1 28.0 0.296 46 200 55BNRXE 55 90 18 23 1.1 0.6 15 7.5 15.1 12.5 11.7 25.6 0.433 45 600 55BERXE 55 90 18 23 1.1 0.6 15 7.5 14.4 12.0 14.1 30.7 0.433 41 400 60BNRXE 60 95 18 23 1.1 0.6 15 7.5 15.6 13.7 12.8 26.5 0.463 42 600 60BERXE 60 95 18 23 1.1 0.6 15 7.5 15.0 13.1 15.5 31.9 0.463 38 800 65BNRXE 65 0 18 23 1.1 0.6 15 7.5 16.2 14.8 13.9 27.3 0.493 40 000 65BERXE 65 0 18 23 1.1 0.6 15 7.5 15.5 14.2 16.8 33.0 0.493 36 400 70BNRXE 70 1 20 25 1.1 0.6 15 7.5 22.3 19.8 18.8 29.5 0.660 36 700 70BERXE 70 1 20 25 1.1 0.6 15 7.5 21.3 18.9 22.6 35.8 0.660 33 400 75BNRXE 75 115 22 27 1.1 0.6 15 7.5 22.6 20.7 19.7 30.3 0.697 34 800 75BERXE 75 115 22 27 1.1 0.6 15 7.5 21.6 19.8 23.7 36.9 0.697 31 600 80BNRXE 80 125 22 27 1.1 0.6 15 7.5 26.5 24.5 23.4 32.5 0.939 32 200 80BERXE 80 125 22 27 1.1 0.6 15 7.5 25.3 23.5 28.2 39.6 0.939 29 300 85BNRXE 85 130 22 27 1.1 0.6 15 7.5 26.8 25.7 24.5 33.4 0.988 30 700 85BERXE 85 130 22 27 1.1 0.6 15 7.5 25.6 24.6 29.5 41.1 0.988 28 000 90BNRXE 90 140 24 29 1.5 1.0 15 7.5 35.0 33.0 31.5 35.7 1.250 28 700 90BERXE 90 140 24 29 1.5 1.0 15 7.5 33.5 31.5 38.0 43.8 1.250 26 0 95BNRXE 95 145 24 29 1.5 1.0 15 7.5 35.5 34.5 32.5 36.3 1.300 27 500 95BERXE 95 145 24 29 1.5 1.0 15 7.5 34.0 33.0 39.5 44.7 1.300 25 000 0BNRXE 0 150 24 29 1.5 1.0 15 7.5 36.0 36.0 34.0 37.3 1.359 26 400 0BERXE 0 150 24 29 1.5 1.0 15 7.5 34.5 34.5 41.0 46.2 1.359 24 000 5BNRXE 5 160 26 31 2.0 1.0 15 7.5 41.0 41.0 39.0 39.5 1.707 25 000 5BERXE 5 160 26 31 2.0 1.0 15 7.5 39.0 39.5 47.5 48.9 1.707 22 700 1BNRXE 1 170 28 33 2.0 1.0 15 7.5 46.0 47.0 44.5 41.7 2.139 23 600 1BERXE 1 170 28 33 2.0 1.0 15 7.5 44.0 45.0 54.0 51.7 2.139 21 500 Page No. 139 Static equivalent load 146 Peload and igidity 152 Shoulde and fillet dimensions 186 ROBUST Angula Contact Ball Beaings 72 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing type BNR: nominal contact angle 18 Beaing type BER: nominal contact angle 25 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing type BNR: nominal contact angle 18 Beaing type BER: nominal contact angle 25 73

1. ANGULAR CONTACT BALL BEARINGS Ulta High-Speed Sealed Angula Contact Ball Beaings (Wide Seies) BNR29 Seies BER29 Seies Boe Diamete 30-80 mm Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (kg) (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) (mm) (appox) (min) (min) (Dynamic) (Static) (kn) a Gease 30BNR29SV1V 30 47 11 0.3 0.15 5.75 0.057 36 400 30BNR29HV1V 30 47 11 0.3 0.15 6.30 4.05 11.8 0.053 46 800 3.80 30BNR29XV1V 30 47 11 0.3 0.15 0.053 54 600 30BER29SV1V 30 47 11 0.3 0.15 6.80 0.057 31 200 30BER29HV1V 30 47 11 0.3 0.15 6.00 3.90 14.5 0.053 41 600 4.60 30BER29XV1V 30 47 11 0.3 0.15 0.053 49 400 35BNR29SV1V 35 55 13 0.6 0.3 8.55 0.091 31 200 35BNR29HV1V 35 55 13 0.6 0.3 9.20 6.00 13.8 0.081 40 000 5.60 35BNR29XV1V 35 55 13 0.6 0.3 0.081 46 700 35BER29SV1V 35 55 13 0.6 0.3.0 0.091 26 700 35BER29HV1V 35 55 13 0.6 0.3 8.80 5.75 17.0 0.081 35 600 6.80 35BER29XV1V 35 55 13 0.6 0.3 0.081 42 300 40BNR29SV1V 40 62 14 0.6 0.3.8 0.120 27 500 40BNR29HV1V 40 62 14 0.6 0.3 11.5 7.65 15.3 0.7 35 300 7. 40BNR29XV1V 40 62 14 0.6 0.3 0.7 41 200 40BER29SV1V 40 62 14 0.6 0.3 12.8 0.120 23 600 40BER29HV1V 40 62 14 0.6 0.3 11.0 7.35 18.9 0.7 31 400 8.65 40BER29XV1V 40 62 14 0.6 0.3 0.7 37 300 45BNR29SV1V 45 68 14 0.6 0.3 12.4 0.143 24 800 45BNR29HV1V 45 68 14 0.6 0.3 12.1 8.70 16.2 0.128 31 900 8. 45BNR29XV1V 45 68 14 0.6 0.3 0.128 37 200 45BER29SV1V 45 68 14 0.6 0.3 14.6 0.143 21 300 45BER29HV1V 45 68 14 0.6 0.3 11.6 8.35 20.2 0.128 28 400 9.85 45BER29XV1V 45 68 14 0.6 0.3 0.128 33 700 50BNR29SV1V 50 72 14 0.6 0.3 13.9 0.144 23 000 50BNR29HV1V 50 72 14 0.6 0.3 12.8 9.75 16.9 0.128 29 600 9. 50BNR29XV1V 50 72 14 0.6 0.3 0.128 34 500 50BER29SV1V 50 72 14 0.6 0.3 16.3 0.144 19 700 50BER29HV1V 50 72 14 0.6 0.3 12.3 9.35 21.2 0.128 26 300 11.0 50BER29XV1V 50 72 14 0.6 0.3 0.128 31 200 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing type BNR: nominal contact angle 18 Beaing type BER: nominal contact angle 25 D 1 B a d BNR29 Seies (continued) BER29 Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Fo additional infomation: Dynamic equivalent load Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (kg) (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) (mm) (appox) (min) (min) (Dynamic) (Static) (kn) a Gease 55BNR29SV1V 55 80 16 1.0 0.6 16.2 0.213 20 800 55BNR29HV1V 55 80 16 1.0 0.6 14.4 11.4 19.0 0.194 26 700.6 55BNR29XV1V 55 80 16 1.0 0.6 0.194 31 200 55BER29SV1V 55 80 16 1.0 0.6 16.1 0.213 17 800 55BER29HV1V 55 80 16 1.0 0.6 13.8.9 23.7 0.194 23 800 12.9 55BER29XV1V 55 80 16 1.0 0.6 0.194 28 200 60BNR29SV1V 60 85 16 1.0 0.6 17.1 0.228 19 400 60BNR29HV1V 60 85 16 1.0 0.6 14.6 12.0 19.8 0.208 24 900 11.2 60BNR29XV1V 60 85 16 1.0 0.6 0.208 29 000 60BER29SV1V 60 85 16 1.0 0.6 20.1 0.228 16 600 60BER29HV1V 60 85 16 1.0 0.6 14.0 11.5 24.9 0.208 22 0 13.6 60BER29XV1V 60 85 16 1.0 0.6 0.208 26 300 65BNR29SV1V 65 90 16 1.0 0.6 18.7 0.245 18 0 65BNR29HV1V 65 90 16 1.0 0.6 15.2 13.2 20.6 0.223 23 300 12.3 65BNR29XV1V 65 90 16 1.0 0.6 0.223 27 0 65BER29SV1V 65 90 16 1.0 0.6 22.1 0.245 15 500 65BER29HV1V 65 90 16 1.0 0.6 14.5 12.6 26.1 0.223 20 700 14.9 65BER29XV1V 65 90 16 1.0 0.6 0.223 24 600 70BNR29SV1V 70 0 19 1.0 0.6 26.1 0.381 16 500 70BNR29HV1V 70 0 19 1.0 0.6 21.3 18.1 23.3 0.344 21 200 17.1 70BNR29XV1V 70 0 19 1.0 0.6 0.344 24 800 70BER29SV1V 70 0 19 1.0 0.6 30.5 0.381 14 200 70BER29HV1V 70 0 19 1.0 0.6 20.4 17.3 29.3 0.344 18 900 20.7 70BER29XV1V 70 0 19 1.0 0.6 0.344 22 400 75BNR29SV1V 75 5 19 1.0 0.6 27.5 0.403 15 600 75BNR29HV1V 75 5 19 1.0 0.6 21.6 19.0 24.1 0.365 20 000 18.0 75BNR29XV1V 75 5 19 1.0 0.6 0.365 23 400 75BER29SV1V 75 5 19 1.0 0.6 32.5 0.403 13 400 75BER29HV1V 75 5 19 1.0 0.6 20.7 18.2 30.5 0.365 17 800 21.7 75BER29XV1V 75 5 19 1.0 0.6 0.365 21 200 80BNR29SV1V 80 1 19 1.0 0.6 28.9 0.425 14 800 80BNR29HV1V 80 1 19 1.0 0.6 22.0 19.9 24.9 0.385 19 000 18.9 80BNR29XV1V 80 1 19 1.0 0.6 0.385 22 200 80BER29SV1V 80 1 19 1.0 0.6 34.0 0.425 12 700 80BER29HV1V 80 1 19 1.0 0.6 21.0 19.1 31.6 0.385 16 900 22.8 80BER29XV1V 80 1 19 1.0 0.6 0.385 20 000 Page No. 139 Static equivalent load 146 Peload and igidity 152 Abutment and fillet dimensions 186 Nozzle position 192 Quantity of packed gease 175 ROBUST Angula Contact Ball Beaings 74 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing type BNR: nominal contact angle 18 Beaing type BER: nominal contact angle 25 75

1. ANGULAR CONTACT BALL BEARINGS Ulta High-Speed Sealed Angula Contact Ball Beaings (Wide Seies) BNR29 Seies BER29 Seies Boe Diamete 85-0 mm Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (kg) (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) (mm) (appox) (min) (min) (Dynamic) (Static) (kn) a Gease 85BNR29SV1V 85 120 22 1.1 0.6 38.0 0.617 13 700 85BNR29HV1V 85 120 22 1.1 0.6 29.4 26.3 27.7 0.554 17 600 24.8 85BNR29XV1V 85 120 22 1.1 0.6 0.554 20 500 85BER29SV1V 85 120 22 1.1 0.6 35.5 0.617 11 800 85BER29HV1V 85 120 22 1.1 0.6 28.1 25.2 34.9 0.554 15 700 30.0 85BER29XV1V 85 120 22 1.1 0.6 0.554 18 600 90BNR29SV1V 90 125 22 1.1 0.6 43.0 0.653 13 0 90BNR29HV1V 90 125 22 1.1 0.6 31.5 29.7 28.5 0.582 16 800 28.1 90BNR29XV1V 90 125 22 1.1 0.6 0.582 19 600 90BER29SV1V 90 125 22 1.1 0.6 50.5 0.653 11 200 90BER29HV1V 90 125 22 1.1 0.6 30.0 28.5 36.1 0.582 14 900 34.0 90BER29XV1V 90 125 22 1.1 0.6 0.582 17 700 95BNR29SV1V 95 130 22 1.1 0.6 50.0 0.758 12 500 95BNR29HV1V 95 130 22 1.1 0.6 32.0 31.0 29.3 0.684 16 000 32.5 95BNR29XV1V 95 130 22 1.1 0.6 0.684 18 700 95BER29SV1V 95 130 22 1.1 0.6 58.5 0.758 700 95BER29HV1V 95 130 22 1.1 0.6 30.5 29.7 37.2 0.684 14 300 39.5 95BER29XV1V 95 130 22 1.1 0.6 0.684 16 900 0BNR29SV1V 0 140 24 1.1 0.6 50.5 0.770 11 700 0BNR29HV1V 0 140 24 1.1 0.6 38.0 35.0 31.5 0.673 15 000 33.0 0BNR29XV1V 0 140 24 1.1 0.6 0.673 17 500 0BER29SV1V 0 140 24 1.1 0.6 59.5 0.902 000 0BER29HV1V 0 140 24 1.1 0.6 36.0 33.5 40.0 0.805 13 400 40.0 0BER29XV1V 0 140 24 1.1 0.6 0.805 15 900 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing type BNR: nominal contact angle 18 Beaing type BER: nominal contact angle 25 D 1 B a d Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Ulta High-Speed Sealed Angula Contact Ball Beaings (Wide Seies) BNR20 Seies BER20 Seies Boe Diamete 30-50 mm Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (kg) (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) (mm) (appox) (min) (min) (Dynamic) (Static) (kn) a Gease 30BNR20SV1V 30 55 16 1.0 0.6 8.20 0.150 33 000 30BNR20HV1V 30 55 16 1.0 0.6 8.65 5.75 14.9 0.142 42 400 5.35 30BNR20XV1V 30 55 16 1.0 0.6 0.142 49 500 30BER20SV1V 30 55 16 1.0 0.6 9.65 0.150 28 300 30BER20HV1V 30 55 16 1.0 0.6 8.30 5.50 17.9 0.142 37 700 6.50 30BER20XV1V 30 55 16 1.0 0.6 0.142 44 800 35BNR20SV1V 35 62 17 1.0 0.6.2 0.197 28 900 35BNR20HV1V 35 62 17 1.0 0.6.1 7. 16.4 0.187 37 200 6.70 35BNR20XV1V 35 62 17 1.0 0.6 0.187 43 300 35BER20SV1V 35 62 17 1.0 0.6 12.0 0.197 24 800 35BER20HV1V 35 62 17 1.0 0.6 9.70 6.85 19.8 0.187 33 000 8. 35BER20XV1V 35 62 17 1.0 0.6 0.187 39 200 40BNR20SV1V 40 68 18 1.0 0.6 11.5 0.242 26 000 40BNR20HV1V 40 68 18 1.0 0.6.6 7.95 17.8 0.231 33 400 7.50 40BNR20XV1V 40 68 18 1.0 0.6 0.231 38 900 40BER20SV1V 40 68 18 1.0 0.6 13.5 0.242 22 300 40BER20HV1V 40 68 18 1.0 0.6.1 7.65 21.6 0.231 29 700 9. 40BER20XV1V 40 68 18 1.0 0.6 0.231 35 200 45BNR20SV1V 45 75 19 1.0 0.6 12.7 0.305 23 400 45BNR20HV1V 45 75 19 1.0 0.6 11.7 9.00 19.2 0.291 30 000 8.35 45BNR20XV1V 45 75 19 1.0 0.6 0.291 35 000 45BER20SV1V 45 75 19 1.0 0.6 15.0 0.305 20 000 45BER20HV1V 45 75 19 1.0 0.6 11.2 8.60 23.5 0.291 26 700.1 45BER20XV1V 45 75 19 1.0 0.6 0.291 31 700 50BNR20SV1V 50 80 19 1.0 0.6 14.0 0.330 21 600 50BNR20HV1V 50 80 19 1.0 0.6 12.2 9.90 20.1 0.315 27 700 9.20 50BNR20XV1V 50 80 19 1.0 0.6 0.315 32 400 50BER20SV1V 50 80 19 1.0 0.6 16.5 0.330 18 500 50BER20HV1V 50 80 19 1.0 0.6 11.6 9.50 24.7 0.315 24 700 11.1 50BER20XV1V 50 80 19 1.0 0.6 0.315 29 300 D B a 1 d ROBUST Angula Contact Ball Beaings ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing type BNR: nominal contact angle 18 Beaing type BER: nominal contact angle 25 76 77

78 1. ANGULAR CONTACT BALL BEARINGS Ulta High-Speed Sealed Angula Contact Ball Beaings (Wide Seies) BNR20 Seies BER20 Seies Boe Diamete 55-0 mm Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (kg) (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) (mm) (appox) (min) (min) (Dynamic) (Static) (kn) a Gease 55BNR20SV1V 55 90 22 1.1 0.6 17.8 0.501 19 400 55BNR20HV1V 55 90 22 1.1 0.6 15.1 12.5 22.8 0.480 24 900 11.7 55BNR20XV1V 55 90 22 1.1 0.6 0.480 29 000 55BER20SV1V 55 90 22 1.1 0.6 21.0 0.501 16 600 55BER20HV1V 55 90 22 1.1 0.6 14.4 12.0 27.9 0.480 22 0 14.1 55BER20XV1V 55 90 22 1.1 0.6 0.480 26 300 60BNR20SV1V 60 95 22 1.1 0.6 19.5 0.535 18 0 60BNR20HV1V 60 95 22 1.1 0.6 15.6 13.7 23.6 0.512 23 300 12.8 60BNR20XV1V 60 95 22 1.1 0.6 0.512 27 0 60BER20SV1V 60 95 22 1.1 0.6 22.9 0.535 15 500 60BER20HV1V 60 95 22 1.1 0.6 15.0 13.1 29.1 0.512 20 700 15.5 60BER20XV1V 60 95 22 1.1 0.6 0.512 24 600 65BNR20SV1V 65 0 22 1.1 0.6 21.1 0.570 17 000 65BNR20HV1V 65 0 22 1.1 0.6 16.2 14.8 24.4 0.545 21 900 13.9 65BNR20XV1V 65 0 22 1.1 0.6 0.545 25 500 65BER20SV1V 65 0 22 1.1 0.6 24.9 0.570 14 600 65BER20HV1V 65 0 22 1.1 0.6 15.5 14.2 30.2 0.545 19 400 16.8 65BER20XV1V 65 0 22 1.1 0.6 0.545 23 0 70BNR20SV1V 70 1 24 1.1 0.6 28.6 0.764 15 600 70BNR20HV1V 70 1 24 1.1 0.6 22.3 19.8 26.6 0.724 20 000 18.8 70BNR20XV1V 70 1 24 1.1 0.6 0.724 23 400 70BER20SV1V 70 1 24 1.1 0.6 33.5 0.764 13 400 70BER20HV1V 70 1 24 1.1 0.6 21.3 18.9 33.0 0.724 17 800 22.6 70BER20XV1V 70 1 24 1.1 0.6 0.724 21 200 75BNR20SV1V 75 115 24 1.1 0.6 30.0 0.806 14 800 75BNR20HV1V 75 115 24 1.1 0.6 22.6 20.7 27.4 0.764 19 000 19.7 75BNR20XV1V 75 115 24 1.1 0.6 0.764 22 200 75BER20SV1V 75 115 24 1.1 0.6 35.0 0.806 12 700 75BER20HV1V 75 115 24 1.1 0.6 21.6 19.8 34.1 0.764 16 900 23.7 75BER20XV1V 75 115 24 1.1 0.6 0.764 20 000 80BNR20SV1V 80 125 27 1.1 0.6 35.5 1.115 13 700 80BNR20HV1V 80 125 27 1.1 0.6 26.5 24.5 30.2 1.061 17 600 23.4 80BNR20XV1V 80 125 27 1.1 0.6 1.061 20 500 80BER20SV1V 80 125 27 1.1 0.6 42.0 1.115 11 800 80BER20HV1V 80 125 27 1.1 0.6 25.3 23.5 37.4 1.061 15 700 28.2 80BER20XV1V 80 125 27 1.1 0.6 1.061 18 600 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing type BNR: nominal contact angle 18 Beaing type BER: nominal contact angle 25 D B a 1 d BNR20 Seies (continued) BER20 Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (kg) (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) (mm) (appox) (min) (min) (Dynamic) (Static) (kn) a Gease 85BNR20SV1V 85 130 27 1.1 0.6 37.5 1.163 13 0 85BNR20HV1V 85 130 27 1.1 0.6 26.8 25.7 31.0 1.7 16 800 24.5 85BNR20XV1V 85 130 27 1.1 0.6 1.7 19 600 85BER20SV1V 85 130 27 1.1 0.6 43.5 1.163 11 200 85BER20HV1V 85 130 27 1.1 0.6 25.6 24.6 38.6 1.7 14 900 29.5 85BER20XV1V 85 130 27 1.1 0.6 1.7 17 700 90BNR20SV1V 90 140 30 1.5 1.0 48.0 1.521 12 200 90BNR20HV1V 90 140 30 1.5 1.0 35.0 33.0 33.7 1.436 15 700 31.5 90BNR20XV1V 90 140 30 1.5 1.0 1.436 18 300 90BER20SV1V 90 140 30 1.5 1.0 56.0 1.521 500 90BER20HV1V 90 140 30 1.5 1.0 33.5 31.5 41.8 1.436 14 000 38.0 90BER20XV1V 90 140 30 1.5 1.0 1.436 16 600 95BNR20SV1V 95 145 30 1.5 1.0 50.0 1.595 11 700 95BNR20HV1V 95 145 30 1.5 1.0 35.5 34.5 34.5 1.506 15 000 32.5 95BNR20XV1V 95 145 30 1.5 1.0 1.506 17 500 95BER20SV1V 95 145 30 1.5 1.0 58.5 1.595 000 95BER20HV1V 95 145 30 1.5 1.0 34.0 33.0 43.0 1.506 13 400 39.5 95BER20XV1V 95 145 30 1.5 1.0 1.506 15 900 0BNR20SV1V 0 150 30 1.5 1.0 52.0 1.650 11 200 0BNR20HV1V 0 150 30 1.5 1.0 36.0 36.0 35.3 1.558 14 400 34.0 0BNR20XV1V 0 150 30 1.5 1.0 1.558 16 800 0BER20SV1V 0 150 30 1.5 1.0 61.0 1.650 9 600 0BER20HV1V 0 150 30 1.5 1.0 34.5 34.5 44.1 1.558 12 800 41.0 0BER20XV1V 0 150 30 1.5 1.0 1.558 15 200 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing type BNR: nominal contact angle 18 Beaing type BER: nominal contact angle 25 Fo additional infomation: Dynamic equivalent load Page No. 139 Static equivalent load 146 Peload and igidity 152 Abutment and fillet dimensions 186 Nozzle position 192 Quantity of packed gease 175 ROBUST Angula Contact Ball Beaings 79

1. ANGULAR CONTACT BALL BEARINGS Ulta High Pecision Angula Contact Ball Beaings (ROBUST Seies BGR) Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Featues Optimum Design Long Life An oute ing guided cage is used to impove lubication pefomance. The counte-boe inne ing impoves oil-mist flow to ensue a stable oil supply. Special heat esistant SHX steel and ceamic balls significantly impove sevice life (X-type beaings). Numbeing System of Ulta High Pecision Angula Contact Ball Beaings (ROBUST Seies BGR) (Beaing numbe example) Nominal beaing boe Beaing type symbol Dimension symbol Mateial symbol 8 BGR S T DU EL P2 Accuacy symbol Peload symbol Aangement symbol Cage symbol BGR Angula Contact Ball Beaings Easy Mounting Non-sepaable inne ing design geatly simplifies mounting and dismounting pocedues. Intechangeable assembly fo any desied aangement to meet custome needs. Refeence pages 8 Nominal beaing boe Boe diamete (mm) 82-84 High Accuacy BGR Seies ae standadized fo ISO Class 2 (ABMA ABEC 9). BGR Beaing type BGR: 15 contact angle 42-43, 48 Dimension : seies, 19: 19 seies, 02: 02 seies 42-43, 80 Dimension Seies S Mateial Mateial Type Rings Rolling elements S Beaing steel (SUJ2) Beaing steel (SUJ2) H Beaing steel (SUJ2) Ceamics (Si 3 N 4 ) 14-17 29 Fig. 1.5 X Heat esistant steel (SHX) Ceamics (Si 3 N 4 ) T Cage T: phenolic esin cage with oute ing guide; opeational tempeatue limit = 120 C 18-19 DU Aangement SU: univesal aangement (single ow) DU: univesal aangement (double ow) 42-43 148-151 EL Peload EL: exta light peload 42-43 152-155, 165 BGR02 BGR BGR19 P2 Accuacy P2: ISO Class 2, P4: ISO Class 4 P3: special class (dimensional accuacy: ISO Class 4; otating accuacy: ISO Class 2) 176-179 80 81

1. ANGULAR CONTACT BALL BEARINGS Ulta High Pecision Angula Contact Ball Beaings (ROBUST Seies BGR) BGR19 Seies Boe Diamete -25 mm Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (kg) (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) (mm) (min) (min) (Dynamic) (Static) (kn) a (appox) Gease Oil BGR19S 22 6 0.3 0.15 0.93 0.0 0 000 138 000 BGR19H 22 6 0.3 0.15 2.03 0.78 5.1 0.009 119 000 175 000 0.61 BGR19X 22 6 0.3 0.15 0.009 138 000 188 000 12BGR19S 12 24 6 0.3 0.15 1.14 0.011 88 900 123 000 12BGR19H 12 24 6 0.3 0.15 2.28 0.95 5.4 0.0 6 000 156 000 0.74 12BGR19X 12 24 6 0.3 0.15 0.0 123 000 167 000 15BGR19S 15 28 7 0.3 0.15 1.67 0.016 74 500 3 000 15BGR19H 15 28 7 0.3 0.15 3.25 1.35 6.4 0.014 88 400 131 000 1.09 15BGR19X 15 28 7 0.3 0.15 0.014 3 000 140 000 17BGR19S 17 30 7 0.3 0.15 1.86 0.017 68 0 93 700 17BGR19H 17 30 7 0.3 0.15 3.40 1.50 6.6 0.015 80 900 120 000 1.21 17BGR19X 17 30 7 0.3 0.15 0.015 93 700 128 000 20BGR19S 20 37 9 0.3 0.15 2.66 0.036 56 200 77 200 20BGR19H 20 37 9 0.3 0.15 4.75 2.16 8.3 0.033 66 700 98 300 1.73 20BGR19X 20 37 9 0.3 0.15 0.033 77 200 6 000 25BGR19S 25 42 9 0.3 0.15 3.40 0.043 47 800 65 700 25BGR19H 25 42 9 0.3 0.15 5.40 2.76 9.0 0.039 56 800 83 600 2.22 25BGR19X 25 42 9 0.3 0.15 0.039 65 700 89 600 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing type BGR: nominal contact angle 15 D 1 B a 1 d BGR Seies Boe Diamete 6-25 mm Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Fo additional infomation: Dynamic equivalent load Page No. 139 Static equivalent load 146 Peload and igidity 152 Abutment and fillet dimensions 186 Nozzle position 192 Quantity of packed gease 175 Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (kg) (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) (mm) (min) (min) (Dynamic) (Static) (kn) a (appox) Gease Oil 6BGRS 6 17 6 0.3 0.15 0.51 0.006 140 000 192 000 6BGRH 6 17 6 0.3 0.15 1.42 0.43 4.5 0.005 166 000 244 000 0.34 6BGRX 6 17 6 0.3 0.15 0.005 192 000 261 000 7BGRS 7 19 6 0.3 0.15 0.62 0.008 124 000 170 000 7BGRH 7 19 6 0.3 0.15 1.60 0.52 4.7 0.007 147 000 216 000 0.40 7BGRX 7 19 6 0.3 0.15 0.007 170 000 231 000 8BGRS 8 22 7 0.3 0.15 0.97 0.012 7 000 147 000 8BGRH 8 22 7 0.3 0.15 2.37 0.80 5.5 0.011 127 000 187 000 0.63 8BGRX 8 22 7 0.3 0.15 0.011 147 000 200 000 BGRS 26 8 0.3 0.15 1.55 0.019 88 900 123 000 BGRH 26 8 0.3 0.15 3.50 1.27 6.4 0.016 6 000 156 000 1.00 BGRX 26 8 0.3 0.15 0.016 123 000 167 000 12BGRS 12 28 8 0.3 0.15 1.80 0.021 80 000 1 000 12BGRH 12 28 8 0.3 0.15 3.85 1.48 6.7 0.018 95 000 140 000 1.17 12BGRX 12 28 8 0.3 0.15 0.018 1 000 150 000 15BGRS 15 32 9 0.3 0.15 2.12 0.029 68 0 93 700 15BGRH 15 32 9 0.3 0.15 4.20 1.72 7.6 0.026 80 900 120 000 1.37 15BGRX 15 32 9 0.3 0.15 0.026 93 700 128 000 17BGRS 17 35 0.3 0.15 2.39 0.038 61 600 84 700 17BGRH 17 35 0.3 0.15 4.45 1.93 8.5 0.035 73 0 8 000 1.55 17BGRX 17 35 0.3 0.15 0.035 84 700 116 000 20BGRS 20 42 12 0.6 0.3 4. 0.066 51 700 71 000 20BGRH 20 42 12 0.6 0.3 7.45 3.35.2 0.059 61 300 90 400 2.67 20BGRX 20 42 12 0.6 0.3 0.059 71 000 96 800 25BGRS 25 47 12 0.6 0.3 4.65 0.076 44 500 61 200 25BGRH 25 47 12 0.6 0.3 7.90 3.75.8 0.068 52 800 77 800 3.05 25BGRX 25 47 12 0.6 0.3 0.068 61 200 83 400 BGR Angula Contact Ball Beaings ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing type BGR: nominal contact angle 15 82 83

1. ANGULAR CONTACT BALL BEARINGS Ulta High Pecision Angula Contact Ball Beaings (ROBUST Seies BGR) B 1 Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 BGR02 Seies Boe Diamete -25 mm Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (kg) (min 1 ) Numbes d D B 1 C C 0 Load ( 1 ) (mm) (appox) (min) (min) (Dynamic) (Static) (kn) a Gease Oil BGR02S 30 9 0.6 0.3 1.62 0.032 80 000 1 000 BGR02H 30 9 0.6 0.3 3.60 1.33 7.2 0.029 95 000 140 000 1.06 BGR02X 30 9 0.6 0.3 0.029 1 000 150 000 12BGR02S 12 32 0.6 0.3 2.46 0.036 72 800 0 000 12BGR02H 12 32 0.6 0.3 5.30 1.99 7.9 0.032 86 400 128 000 1.60 12BGR02X 12 32 0.6 0.3 0.032 0 000 137 000 15BGR02S 15 35 11 0.6 0.3 2.90 0.045 64 000 88 000 15BGR02H 15 35 11 0.6 0.3 5.80 2.34 8.8 0.040 76 000 112 000 1.89 15BGR02X 15 35 11 0.6 0.3 0.040 88 000 120 000 17BGR02S 17 40 12 0.6 0.3 3.65 0.065 56 200 77 200 17BGR02H 17 40 12 0.6 0.3 7.25 2.98 9.8 0.057 66 700 98 300 2.39 17BGR02X 17 40 12 0.6 0.3 0.057 77 200 6 000 20BGR02S 20 47 14 1.0 0.6 5. 0.3 47 800 65 700 20BGR02H 20 47 14 1.0 0.6 9.70 4. 11.5 0.091 56 800 83 600 3.30 20BGR02X 20 47 14 1.0 0.6 0.091 65 700 89 600 25BGR02S 25 52 15 1.0 0.6 6.45 0.127 41 600 57 200 25BGR02H 25 52 15 1.0 0.6 11.1 5.20 12.7 0.112 49 400 72 800 4.20 25BGR02X 25 52 15 1.0 0.6 0.112 57 200 78 000 D 1 a d BGR Angula Contact Ball Beaings ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Note: Beaing type BGR: nominal contact angle 15 84 85

2. CYLINDRICAL ROLLER BEARINGS Pat4 Double-Row Cylindical Rolle Beaings High Rigidity Seies Single-Row Cylindical Rolle Beaings Standad Seies Ulta High-Speed Single-Row Cylindical Rolle Beaings ROBUST Seies Cylindical Rolle Beaings Cylindical Rolle Beaings P88-97 Featues Numbeing System Beaing Tables Double-Row Cylindical Rolle Beaings (High Rigidity Seies) 30 Seies 39 Seies 49 Seies Single-Row Cylindical Rolle Beaings (Standad Seies) Seies Ulta High-Speed Single-Row Cylindical Rolle Beaings (ROBUST Seies) Seies Double-Row Cylindical Rolle Beaings (Low Heat Geneation Seies) 30 Seies Ulta High-Speed Single-Row Cylindical Rolle Beaings (Low Heat Geneation Seies) Seies Cylindical Rolle Beaings Cylindical Ro lle Beaings 86 87

2. CYLINDRICAL ROLLER BEARINGS Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Featues The high igidity of NSK s double-ow cylindical olle beaings makes them a pefect match fo use in machine tool spindles. Typically, single-ow and double-ow cylindical olle beaings have eithe a cylindical boe o a tapeed boe. Double-ow cylindical olle beaings with a tapeed boe ae often mounted to the main shaft as a fixed-end beaing. Simplicity in design and the ability to adjust adial intenal cleaance afte mounting continue to make these beaings popula among machine tool uses. NSK offes seveal types of cylindical olle beaings. Uses can equest an E44 configuation, which includes both lubication holes and a machined lubication goove on the outside suface of the oute ing. Types of beaings include the NNU type, which featues double ibbed oute ings, and the NN type, which featues excellent gease dischage duing the initial unning-in peiod, and helps pomote steady oil flow thoughout the beaing. Fo thin section type beaings, the naowe NN39 seies is moe suitable than the wide NN49 seies due to less heat geneation and geate olle stability. Machined bass cages ae most common with cylindical olle beaings. NSK offes a olle guided PPS (polyphenylene sulfide) esin cage fo the NN30 seies, and a PEEK (polyethe ethe ketone) esin cage, which is guided by the oute ing, fo N seies of ulta high-speed single-ow cylindical olle beaings. Specification of Boe and Lubication Holes Fig. 2.1 Beaing type Cage symbol Specification Available size NN3005, NN3026-NN3040 NN MB Rolle guided machined bass cage NN3920-NN3956 NN4920-NN4940 TB Rolle guided PPS esin cage NN3006-NN3024 NNU MB Rolle guided machined bass cage NNU4920-NNU4940 N MR Rolle guided machined bass cage N06-N28 TP Oute ing guided PEEK esin cage N09-N17 Numbeing System of Double-Row Cylindical Rolle Beaings (High Rigidity Seies) (Beaing numbe example) Beaing type symbol Dimension symbol Boe numbe Intenal symbol Cage symbol NN 30 17 TB KR E44 CC0 P4 Accuacy symbol Radial cleaance symbol Lubication holes symbol Tapeed boe symbol NN Beaing type NN: double-ow cylindical olle beaing with tiple-ibbed inne ing, NNU: double-ow cylindical olle beaing with tiple-ibbed oute ing 44-45, 88 30 Dimension 30: 30 seies, 39: 39 seies, 49: 49 seies 44-45, 88 17 Boe numbe Beaing boe = boe numbe 5 (mm) 90-93 Z Intenal symbol No symbol: standad type Z: low heat geneation type 96 TB Cage TB: olle guided PPS esin cage; opeational tempeatue limit = 220 C 18-19 MB: olle guided machined bass cage; opeational tempeatue limit = 300 C 26-27 KR Tapeed boe KR: 1/12 tapeed boe (Leave this symbol blank fo cylindical boe) 180-181 E44 Lubication holes E44: oute ing with machined lubication goove and lubication holes (Leave this symbol blank fo no lubication holes) 90-93 CC0 P4 Radial cleaance Accuacy CC1: standad cleaance fo cylindical boe CC0: standad cleaance fo tapeed boe CCG: special adial cleaance P2: ISO Class 2, P4: ISO Class 4, P4Y: special class (Boe diamete and outside diamete ae exclusive to NSK. All othes ae ISO Class 4.) Refeence pages 44-45 169 151 176-181 Numbeing System of Single-Row Cylindical Rolle Beaings (Standad Seies and ROBUST Seies) Cylindical Rolle Beaings (Beaing numbe example) Beaing type symbol Dimension symbol Boe numbe Mateial symbol Intenal symbol N 12 RX TP KR CC0 P4 Accuacy symbol Radial cleaance symbol Tapeed boe symbol Cage symbol Cylindical boe type Tapeed boe type Machined lubication goove on outside suface and lubication holes on the oute ing (E44) Double-ow and single-ow beaings available with cylindical boe o tapeed boe. Double-ow cylindical olle beaings available with a machined lubication goove and lubication holes (the best solution fo oil lubication). Beaing Type and Dimension Seies Fig. 2.2 N Beaing type N: single-ow cylindical olle beaing with double-ibbed inne ing 44-45, 88 Dimension : seies 44-45, 88 12 Boe numbe Beaing boe = boe numbe 5 (mm) 94-95 RX Mateial No symbol indicates ou standad cylindical olle beaing mateial (ings and olling elements ae SUJ2 beaing steel). RS RX RXH: ulta high-speed single-ow cylindical olle beaing (ROBUST seies) Type Mateial Rings Rolling elements RS Beaing steel (SUJ2) Beaing steel (SUJ2) RX Heat esistant steel (SHX) Heat esistant steel (SHX) RXH Heat esistant steel (SHX) Ceamics (Si 3 N 4 ) Refeence pages 14-17 26-27 88 N NN30 NN39 NN49 NNU49 Z Intenal symbol No symbol: Standad type Z: Low heat geneation type 97 TP Cage TP: oute ing guided PEEK esin cage; opeational tempeatue limit = 240 C 18-19 MR: olle guided machined bass cage; opeational tempeatue limit = 300 C KR Tapeed boe KR: 1/12 tapeed boe (Leave this symbol blank fo cylindical boe) 180-181 CC1: standad cleaance fo cylindical boe Radial CC0: standad cleaance fo tapeed boe 44-45 cleaance CCG: special adial cleaance 169 CC0 P4 Accuacy P2: ISO Class 2, P4: ISO Class 4, P4Y: special class (Boe diamete and outside diamete ae exclusive to NSK. All othes ae ISO Class 4.) 151 176-181 89

2. CYLINDRICAL ROLLER BEARINGS Double-Row Cylindical Rolle Beaings (High Rigidity Seies) B Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 B 30 Seies Boe Diamete 25-200 mm D d D d Cylindical Boe 30 Seies (continued) Tapeed Boe Bounday Dimensions Basic Load Ratings Cicumscibed Mass Limiting Speeds ( 1 ) Beaing (mm) (kn) cicle diamete (kg) (min 1 ) Numbes C d D B C 0 of olle (Dynamic) (Static) (mm) (efeence) (appox) Gease Oil NN3005MBKR 25 47 16 0.6 25.8 30.0 41.3 0.127 20 900 25 000 NN3006MBKR 30 55 19 1.0 31.0 37.0 48.5 0.198 17 700 21 200 NN3006TBKR 30 55 19 1.0 31.0 37.0 48.5 0.172 20 000 23 600 NN3007MBKR 35 62 20 1.0 39.5 50.0 55 0.258 15 500 18 600 NN3007TBKR 35 62 20 1.0 39.5 50.0 55 0.224 17 600 20 700 NN3008MBKR 40 68 21 1.0 43.5 55.5 61 0.309 13 900 16 700 NN3008TBKR 40 68 21 1.0 43.5 55.5 61 0.283 15 800 18 600 NN3009MBKR 45 75 23 1.0 52.0 68.5 67.5 0.407 12 500 15 000 NN3009TBKR 45 75 23 1.0 50.0 65.5 67.5 0.373 14 200 16 700 NN30MBKR 50 80 23 1.0 53.0 72.5 72.5 0.436 11 600 13 900 NN30TBKR 50 80 23 1.0 53.0 72.5 72.5 0.402 13 0 15 400 NN3011MBKR 55 90 26 1.1 69.5 96.5 81 0.647 400 12 500 NN3011TBKR 55 90 26 1.1 69.5 96.5 81 0.592 11 800 13 800 NN3012MBKR 60 95 26 1.1 73.5 6 86.1 0.693 9 700 11 700 NN3012TBKR 60 95 26 1.1 73.5 6 86.1 0.635 11 000 13 000 NN3013MBKR 65 0 26 1.1 77.0 116 91 0.741 9 0 11 000 NN3013TBKR 65 0 26 1.1 77.0 116 91 0.681 400 12 200 NN3014MBKR 70 1 30 1.1 94.5 143 0 1.060 8 000 000 NN3014TBKR 70 1 30 1.1 94.5 143 0 0.988 9 500 11 200 NN3015MBKR 75 115 30 1.1 96.5 149 5 1.1 7 900 9 500 NN3015TBKR 75 115 30 1.1 96.5 149 5 1.030 9 000 600 NN3016MBKR 80 125 34 1.1 119 186 113 1.540 7 400 8 800 NN3016TBKR 80 125 34 1.1 119 186 113 1.440 8 300 9 800 NN3017MBKR 85 130 34 1.1 122 194 118 1.630 7 000 8 400 NN3017TBKR 85 130 34 1.1 122 194 118 1.520 8 000 9 400 ( 1 ) Fo application of limiting speeds, please efe to Page 170. Fo the cylindical boe type, eliminate the KR symbol and leave this symbol blank. Bounday Dimensions Basic Load Ratings Cicumscibed Mass Limiting Speeds ( 1 ) Beaing (mm) (kn) cicle diamete (kg) (min 1 ) Numbes C d D B C 0 of olle (Dynamic) (Static) (mm) (efeence) (appox) Gease Oil NN3018MBKR 90 140 37 1.5 143 228 127 2.090 6 600 7 900 NN3018TBKR 90 140 37 1.5 143 228 127 1.930 7 400 8 700 NN3019MBKR 95 145 37 1.5 146 238 132 2.190 6 300 7 500 NN3019TBKR 95 145 37 1.5 146 238 132 2.030 7 0 8 400 NN3020MBKR 0 150 37 1.5 149 247 137 2.280 6 000 7 200 NN3020TBKR 0 150 37 1.5 149 247 137 2.120 6 800 8 000 NN3021MBKR 5 160 41 2.0 192 3 146 2.880 5 700 6 800 NN3021TBKR 5 160 41 2.0 192 3 146 2.690 6 500 7 600 NN3022MBKR 1 170 45 2.0 222 360 155 3.7 5 400 6 500 NN3022TBKR 1 170 45 2.0 222 360 155 3.440 6 0 7 200 NN3024MBKR 120 180 46 2.0 233 390 165 4.040 5 000 6 000 NN3024TBKR 120 180 46 2.0 233 390 165 3.750 5 700 6 700 NN3026MBKR 130 200 52 2.0 284 475 182 5.880 4 600 5 500 NN3028MBKR 140 2 53 2.0 298 515 192 6.340 4 300 5 200 NN3030MBKR 150 225 56 2.1 335 585 206 7.760 4 000 4 800 NN3032MBKR 160 240 60 2.1 375 660 219 9.4 3 800 4 500 NN3034MBKR 170 260 67 2.1 450 805 236 12.80 3 500 4 200 NN3036MBKR 180 280 74 2.1 565 995 255 16.80 3 300 4 000 NN3038MBKR 190 290 75 2.1 595 1 080 265 17.80 3 200 3 800 NN3040MBKR 200 3 82 2.1 655 1 170 282 22.70 3 000 3 600 ( 1 ) Fo application of limiting speeds, please efe to Page 170. Lubication Holes Dimensions (E44 Specification) Oute Ring Width Lubication Hole Machined Numbe of Holes Lubication Goove Ove incl. dh W m 030 02.0 03.5 030 040 02.5 05.0 040 050 03.0 06.0 050 060 04.0 08.0 060 080 05.0 09.0 4 080 120 06.0 12.0 120 160 08.0 15.0 160 200.0 18.0 200 12.0 20.0 90 91 Unit: mm W m-dh Fo additional infomation: Page No. Dynamic equivalent load 139 Static equivalent load 146 Radial cleaance 169 Abutment and fillet dimensions 186 Nozzle position 192 Quantity of packed gease 175 Double Row Cylindical Rolle Beaings

2. CYLINDRICAL ROLLER BEARINGS Double-Row Cylindical Rolle Beaings (High Rigidity Seies) B B B Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 B B B 39 Seies Boe Diamete 0-280 mm 49 Seies Boe Diamete 0-200 mm D d D d D *NN39 Cylindical Boe NN39 Tapeed Boe NN49 Cylindical Boe NN49 Tapeed Boe *NNU49 Cylindical Boe d D d D d D NNU49 Tapeed Boe d Bounday Dimensions Basic Load Ratings Cicumscibed Mass Limiting Speeds ( 1 ) Beaing (mm) (kn) cicle diamete (kg) (min 1 ) Numbes C d D B C 0 of olle (Dynamic) (Static) (mm) (efeence) (appox) Gease Oil NN3920MBKR 0 140 30 1.1 6 0 182 130 01.32 6 300 7 500 NN3921MBKR 5 145 30 1.1 1 0 194 135 01.50 6 000 7 200 NN3922MBKR 1 150 30 1.1 114 0 207 140 01.41 5 800 7 000 NN3924MBKR 120 165 34 1.1 138 0 251 153.5 01.99 5 300 6 400 NN3926MBKR 130 180 37 1.5 173 0 325 167 02.64 4 900 5 900 NN3928MBKR 140 190 37 1.5 201 0 375 178 02.97 4 600 5 500 NN3930MBKR 150 2 45 2.0 262 0 490 195 04.47 4 200 5 000 NN3932MBKR 160 220 45 2.0 271 0 520 205 04.75 4 000 4 800 NN3934MBKR 170 230 45 2.0 280 0 550 215 05.01 3 800 4 500 NN3936MBKR 180 250 52 2.0 340 0 655 232 07.76 3 500 4 200 NN3938MBKR 190 260 52 2.0 345 0 680 243.5 07.46 3 400 4 000 NN3940MBKR 200 280 60 2.1 420 0 815 259.60 3 200 3 800 NN3944MBKR 220 300 60 2.1 440 0 895 279 11.40 2 900 3 500 NN3948MBKR 240 320 60 2.1 460 0 975 300 12. 2 700 3 300 NN3952MBKR 260 360 75 2.1 670 1 380 335 21.40 2 500 3 000 NN3956MBKR 280 380 75 2.1 695 1 460 355 22.70 2 300 2 800 ( 1 ) Fo application of limiting speeds, please efe to Page 170. *Fo the cylindical boe type, eliminate the KR symbol and leave this symbol blank. Bounday Dimensions Basic Load Ratings Cicumscibed cicle Mass Limiting Speed ( 1 ) diamete of olle Beaing (mm) (kn) (mm) (efeence) (kg) (min 1 ) Numbes C d D B C (inscibed cicle 0 diamete in the case (Dynamic) (Static) (appox) Gease Oil of NNU type) NN4920MBKR 0 140 40 1.1 155 0 295 130 01.76 6 300 7 500 NNU4920MBKR 0 140 40 1.1 155 0 295 112 01.90 6 300 7 500 NN4921MBKR 5 145 40 1.1 161 0 315 135 02.00 6 000 7 200 NNU4921MBKR 5 145 40 1.1 161 0 315 117 01.99 6 000 7 200 NN4922MBKR 1 150 40 1.1 167 0 335 140 02. 5 800 7 000 NNU4922MBKR 1 150 40 1.1 167 0 335 122 02.07 5 800 7 000 NN4924MBKR 120 165 45 1.1 183 0 360 153.5 02.87 5 300 6 400 NNU4924MBKR 120 165 45 1.1 183 0 360 133.5 02.85 5 300 6 400 NN4926MBKR 130 180 50 1.5 274 0 545 168 03.84 4 900 5 900 NNU4926MBKR 130 180 50 1.5 274 0 545 144 03.85 4 900 5 900 NN4928MBKR 140 190 50 1.5 283 0 585 178 04.07 4 600 5 500 NNU4928MBKR 140 190 50 1.5 283 0 585 154 04.08 4 600 5 500 NN4930MBKR 150 2 60 2.0 350 0 715 195 06.36 4 200 5 000 NNU4930MBKR 150 2 60 2.0 350 0 715 167 06.39 4 200 5 000 NN4932MBKR 160 220 60 2.0 365 0 760 205 06.77 4 000 4 800 NNU4932MBKR 160 220 60 2.0 365 0 760 177 06.76 4 000 4 800 NN4934MBKR 170 230 60 2.0 375 0 805 215 07.13 3 800 4 500 NNU4934MBKR 170 230 60 2.0 375 0 805 187 07.12 3 800 4 500 NN4936MBKR 180 250 69 2.0 480 1 020 232.40 3 500 4 200 NNU4936MBKR 180 250 69 2.0 480 1 020 200.40 3 500 4 200 NN4938MBKR 190 260 69 2.0 485 1 060 243.5.90 3 400 4 000 NNU4938MBKR 190 260 69 2.0 485 1 060 211.5.90 3 400 4 000 NN4940MBKR 200 280 80 2.1 570 1 220 259 15.30 3 200 3 800 NNU4940MBKR 200 280 80 2.1 570 1 220 223 15.30 3 200 3 800 Double Row Cylindical Rolle Beaings Lubication Holes Dimensions (E44 Specification) Oute Ring Width Lubication Hole Machined Numbe of Holes Lubication Goove Ove incl. dh W m 030 02.0 03.5 030 040 02.5 05.0 040 050 03.0 06.0 050 060 04.0 08.0 060 080 05.0 09.0 4 080 120 06.0 12.0 120 160 08.0 15.0 160 200.0 18.0 200 12.0 20.0 92 93 Unit: mm W m-dh Fo additional infomation: Page No. Dynamic equivalent load 139 Static equivalent load 146 Radial cleaance 169 Abutment and fillet dimensions 186 Nozzle position 192 Quantity of packed gease 175

2. CYLINDRICAL ROLLER BEARINGS Single-Row Cylindical Rolle Beaings (Standad Seies) Seies Boe Diamete 30-140 mm D B 1 Cylindical Boe d D B 1 Tapeed Boe d Ulta High-Speed Single-Row Cylindical Rolle Beaings (ROBUST Seies) B B Seies Boe Diamete 45-85 mm Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 D 1 Cylindical Boe d D Tapeed Boe 1 d Fo additional infomation: Page No. Dynamic equivalent load 139 Static equivalent load 146 Radial cleaance 169 Abutment and fillet dimensions 186 Nozzle position 192 Quantity of packed gease 175 Bounday Dimensions Basic Load Ratings Cicumscibed Mass Limiting Speeds ( 1 ) Beaing (mm) (kn) cicle diamete (kg) (min 1 ) Numbes C d D B C 0 of olle 1 (Dynamic) (Static) (mm) (efeence) (appox) Gease Oil N06MR1KR 030 055 13 1.0 0.6.0019.7.0019.6 48.5 0.133 19 000 31 000 N07MRKR 035 062 14 1.0 0.6.0022.6.0023.2 55 0.153 17 000 27 000 N08MRKR 040 068 15 1.0 0.6.0027.3.0029.0 61 0.192 15 000 25 000 N09MRKR 045 075 16 1.0 0.6.0032.5.0035.5 67.5 0.318 14 000 22 000 NMRKR 050 080 16 1.0 0.6.0032.0.0036.0 72.5 0.339 13 000 20 000 N11BMR1KR 055 090 18 1.1 1.0.0037.5.0044.0 81 0.487 12 000 18 000 N12BMR1KR 060 095 18 1.1 1.0.0040.0.0048.5 86.1 0.519 11 000 17 000 N13BMR1KR 065 0 18 1.1 1.0.0041.0.0051.0 91 0.541 000 16 000 N14BMR1KR 070 1 20 1.1 1.0.0050.0.0063.0 0 0.752 09 000 15 000 N15MRKR 075 115 20 1.1 1.0.0060.0.0074.5 5 0.935 08 500 13 700 N16BMR1KR 080 125 22 1.1 1.0.0063.5.0082.0 113 1.038 07 900 12 700 N17BMR1KR 085 130 22 1.1 1.0.0065.0.0086.0 118 1.067 07 500 12 0 N18MRKR 090 140 24 1.5 1.1.0088.0 114 127 1.200 07 000 11 400 N19BMR1KR 095 145 24 1.5 1.1.0083.0 114 132 1.260 06 700 900 N20MRKR 0 150 24 1.5 1.1.0093.0 126 137 1.320 06 400 400 N21MRKR 5 160 26 2.0 1.1 9 149 146 1.670 06 0 09 900 N22BMR1KR 1 170 28 2.0 1.1 126 173 155 2.070 05 800 09 300 N24MRKR 120 180 28 2.0 1.1 139 191 165 2.190 05 400 08 700 N26MRKR 130 200 33 2.0 1.1 172 238 182 3.320 04 900 07 900 N28BMR1KR 140 2 33 2.0 1.1 164 240 192 3.8 04 600 07 500 ( 1 ) Fo application of limiting speeds, please efe to Page 170. Fo the cylindical boe type, eliminate the KR symbol and leave this symbol blank. Bounday Dimensions Basic Load Ratings Cicumscibed Mass Limiting Speeds ( 1 ) Beaing (mm) (kn) cicle diamete (kg) (min 1 ) Numbes C d D B C 0 of olle 1 (Dynamic) (Static) (mm) (efeence) (appox) Gease Oil N09RSTPKR 45 075 16 1.0 0.6 24.6 26.1 67.5 0.262 16 000 23 000 N09RXTPKR 45 075 16 1.0 0.6 24.6 26.1 67.5 0.262 21 000 30 000 N09RXHTPKR 45 075 16 1.0 0.6 24.6 26.1 67.5 0.228 23 000 36 000 NRSTPKR 50 080 16 1.0 0.6 26.6 29.7 72.5 0.283 15 000 21 000 NRXTPKR 50 080 16 1.0 0.6 26.6 29.7 72.5 0.283 20 000 27 000 NRXHTPKR 50 080 16 1.0 0.6 26.6 29.7 72.5 0.246 21 000 34 000 N11RSTPKR 55 090 18 1.1 1.0 35.0 39.5 81 0.372 13 000 19 000 N11RXTPKR 55 090 18 1.1 1.0 35.0 39.5 81 0.372 18 000 25 000 N11RXHTPKR 55 090 18 1.1 1.0 35.0 39.5 81 0.324 19 000 30 000 N12RSTPKR 60 095 18 1.1 1.0 37.5 44.0 86.1 0.442 12 000 18 000 N12RXTPKR 60 095 18 1.1 1.0 37.5 44.0 86.1 0.442 17 000 23 000 N12RXHTPKR 60 095 18 1.1 1.0 37.5 44.0 86.1 0.385 18 000 28 000 N13RSTPKR 65 0 18 1.1 1.0 39.5 49.0 91 0.518 11 000 17 000 N13RXTPKR 65 0 18 1.1 1.0 39.5 49.0 91 0.518 16 000 22 000 N13RXHTPKR 65 0 18 1.1 1.0 39.5 49.0 91 0.451 17 000 27 000 N14RSTPKR 70 1 20 1.1 1.0 46.5 57.0 0 0.648 000 16 000 N14RXTPKR 70 1 20 1.1 1.0 46.5 57.0 0 0.648 15 000 20 000 N14RXHTPKR 70 1 20 1.1 1.0 46.5 57.0 0 0.564 16 000 24 000 N15RSTPKR 75 115 20 1.1 1.0 49.5 63.0 5 0.672 9 900 15 000 N15RXTPKR 75 115 20 1.1 1.0 49.5 63.0 5 0.672 14 000 19 000 N15RXHTPKR 75 115 20 1.1 1.0 49.5 63.0 5 0.585 15 000 23 000 N16RSTPKR 80 125 22 1.1 1.0 61.5 81.5 113 0.926 9 200 14 000 N16RXTPKR 80 125 22 1.1 1.0 61.5 81.5 113 0.926 13 000 17 000 N16RXHTPKR 80 125 22 1.1 1.0 61.5 81.5 113 0.812 14 000 21 000 N17RSTPKR 85 130 22 1.1 1.0 65.0 86.0 118 0.943 8 800 13 000 N17RXTPKR 85 130 22 1.1 1.0 65.0 86.0 118 0.943 12 000 17 000 N17RXHTPKR 85 130 22 1.1 1.0 65.0 86.0 118 0.826 13 000 20 000 Single Row Cylindical Rolle Beaings ( 1 ) Fo application of limiting speeds, please efe to Page 170. Fo the cylindical boe type, eliminate the KR symbol and leave this symbol blank. 94 95

2. CYLINDRICAL ROLLER BEARINGS Double-Row Cylindical Rolle Beaings (Low Heat Geneation Seies) 30 Seies Boe Diamete 30-120 mm D B d D B d Fo additional infomation: Page No. Dynamic equivalent load 139 Static equivalent load 146 Radial cleaance 169 Abutment and fillet dimensions 186 Nozzle position 192 Quantity of packed gease 175 Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Ulta High-Speed Single-Row Cylindical Rolle Beaings (Low Heat Geneation Seies) Seies Boe Diamete 45-85 mm D B 1 d D B 1 d Fo additional infomation: Page No. Dynamic equivalent load 139 Static equivalent load 146 Radial cleaance 169 Abutment and fillet dimensions 186 Nozzle position 192 Quantity of packed gease 175 Cylindical Boe Tapeed Boe Cylindical Boe Tapeed Boe Bounday Dimensions Basic Load Ratings Cicumscibed Mass Limiting Speeds ( 1 ) Beaing (mm) (kn) cicle diamete (kg) (min 1 ) Numbes C d D B C 0 of olle (Dynamic) (Static) (mm) (efeence) (appox) Gease Oil NN3006ZTBKR 30 55 19 1.0 18.3 18.6 48.5 0.154 23 300 27 900 NN3007ZTBKR 35 62 20 1.0 23.3 25.0 55.0 0.198 20 400 24 500 NN3008ZTBKR 40 68 21 1.0 25.7 27.7 61.0 0.250 18 300 22 000 NN3009ZTBKR 45 75 23 1.0 29.7 32.5 67.5 0.331 16 500 19 800 NN30ZTBKR 50 80 23 1.0 31.5 36.5 72.5 0.356 15 300 18 300 NN3011ZTBKR 55 60 26 1.1 41.0 48.5 81.0 0.523 13 700 16 400 NN3012ZTBKR 60 95 26 1.1 43.5 53.0 86.1 0.560 12 800 15 400 NN3013ZTBKR 65 0 26 1.1 46.0 58.0 91.0 0.600 12 000 14 500 NN3014ZTBKR 70 1 30 1.1 58.0 74.0 0.0 0.873 11 000 13 200 NN3015ZTBKR 75 115 30 1.1 57.5 74.5 5.0 0.915 400 12 500 NN3016ZTBKR 80 125 34 1.1 71.0 93.0 113.0 1.282 9 700 11 700 NN3017ZTBKR 85 130 34 1.1 74.5 1 118.0 1.350 9 300 11 0 NN3018ZTBKR 90 140 37 1.5 85.0 114 127.0 1.719 8 600 300 NN3019ZTBKR 95 145 37 1.5 89.0 123 132.0 1.803 8 300 9 900 NN3020ZTBKR 0 150 37 1.5 93.5 133 137.0 1.877 7 900 9 500 NN3021ZTBKR 5 160 41 2.0 118 161 146.0 2.342 7 500 9 000 NN3022ZTBKR 1 170 45 2.0 136 188 155.0 3.006 7 0 8 500 NN3024ZTBKR 120 180 46 2.0 142 203 165.0 3.282 6 600 7 900 ( 1 ) Fo application of limiting speeds, please efe to Page 170. Fo the cylindical boe type, eliminate the KR symbol and leave this symbol blank. Bounday Dimensions Basic Load Ratings Cicumscibed Mass Limiting Speeds ( 1 ) Beaing (mm) (kn) cicle diamete (kg) (min 1 ) Numbes C d D B C 0 of olle (Dynamic) (Static) (mm) (efeence) (appox) Gease Oil N09RSZTPKR 45 75 16 1.0 16.0 14.7 67.5 0.243 16 000 23 000 N09RXZTPKR 45 75 16 1.0 16.0 14.7 67.5 0.243 21 000 30 000 N09RXHZTPKR 45 75 16 1.0 16.0 14.7 67.5 0.220 23 000 36 000 NRSZTPKR 50 80 16 1.0 17.1 16.5 72.5 0.262 15 000 21 000 NRXZTPKR 50 80 16 1.0 17.1 16.5 72.5 0.262 20 000 27 000 NRXHZTPKR 50 80 16 1.0 17.1 16.5 72.5 0.237 21 000 34 000 N11RSZTPKR 55 90 18 1.1 20.7 19.7 81.0 0.344 13 000 19 000 N11RXZTPKR 55 90 18 1.1 20.7 19.7 81.0 0.344 18 000 25 000 N11RXHZTPKR 55 90 18 1.1 20.7 19.7 81.0 0.313 19 000 30 000 N12RSZTPKR 60 95 18 1.1 22.2 22.1 86.1 0.411 12 000 18 000 N12RXZTPKR 60 95 18 1.1 22.2 22.1 86.1 0.411 17 000 23 000 N12RXHZTPKR 60 95 18 1.1 22.2 22.1 86.1 0.372 18 000 28 000 N13RSZTPKR 65 0 18 1.1 23.6 24.5 91.0 0.484 11 000 17 000 N13RXZTPKR 65 0 18 1.1 23.6 24.5 91.0 0.484 16 000 22 000 N13RXHZTPKR 65 0 18 1.1 23.6 24.5 91.0 0.437 17 000 27 000 N14RSZTPKR 70 1 20 1.1 27.8 28.5 0.0 0.604 000 16 000 N14RXZTPKR 70 1 20 1.1 27.8 28.5 0.0 0.604 15 000 20 000 N14RXHZTPKR 70 1 20 1.1 27.8 28.5 0.0 0.546 16 000 24 000 N15RSZTPKR 75 115 20 1.1 29.6 31.5 5.0 0.623 9 900 15 000 N15RXZTPKR 75 115 20 1.1 29.6 31.5 5.0 0.536 14 000 19 000 N15RXHZTPKR 75 115 20 1.1 29.6 31.5 5.0 0.565 15 000 23 000 N16RSZTPKR 80 125 22 1.1 36.5 39.5 113.0 0.859 9 200 14 000 N16RXZTPKR 80 125 22 1.1 36.5 39.5 113.0 0.859 13 000 17 000 N16RXHZTPKR 80 125 22 1.1 36.5 39.5 113.0 0.785 14 000 21 000 N17RSZTPKR 85 130 22 1.1 38.5 43.0 118.0 0.870 8 800 13 000 N17RXZTPKR 85 130 22 1.1 38.5 43.0 118.0 0.870 12 000 17 000 N17RXHZTPKR 85 130 22 1.1 38.5 43.0 118.0 0.796 13 000 20 000 Low Heat Geneation Cylindical Rolle Beaings ( 1 ) Fo application of limiting speeds, please efe to Page 170. Fo the cylindical boe type, eliminate the KR symbol and leave this symbol blank. 96 97

3. ANGULAR CONTACT THRUST BALL BEARINGS Pat4 High-Speed Angula Contact Thust Ball Beaings ROBUST Seies Double-Diection Angula Contact Thust Ball Beaings TAC Seies Angula Contact Thust Ball Beaings Angula Contact Thust Ball Beaings 0-5 Featues Numbeing System Beaing Tables High-Speed Angula Contact Thust Ball Beaings (ROBUST Seies) BAR Seies BTR Seies Double-Diection Angula Contact Thust Ball Beaings (TAC Seies) TAC29D Seies TAC20D Seies Angula Contact Thust Ball Beaings Angula Contact Th ust Ball Beaings 98 99

3. ANGULAR CONTACT THRUST BALL BEARINGS Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Featues Fo the main spindles of machine tools, good high-speed pefomance and high igidity ae equied fo the ball beaings used in combination with double-ow cylindical olle beaings. Fo these applications, to allow selection appopiate fo the chaacteistics of the machine, NSK povides thee types of beaings. All these beaings have special oute ing outside diamete toleances (P4A Class and P2A Class) to povide cleaance between the oute ing peiphey and housing boe in ode to avoid any load. NSK s ROBUST seies high-speed angula contact thust ball beaings ae capable of high-speed opeations while maintaining high igidity. Ball diamete and numbe of balls ae the same as TAC type beaings. BTR type beaings have a 40 contact angle, and BAR type beaings have a 30 contact angle. The esult is supeio high-speed pefomance that minimizes heat geneation. Intechangeability Customes can easily eplace thei TAC20D seies beaings with NSK s BAR type o BTR type beaings without having to change the shaft o housing of the machine tool spindle. Both types of beaings have unique width dimensions that accommodate a new space D, which eplaces the olde one C (see Fig. 3.1). Fig. 3.1 A C A = 2B D Numbeing System of High-Speed Angula Contact Thust Ball Beaings (ROBUST Seies) Refeence pages 0 Nominal boe diamete Boe diamete (mm) 2-4 BAR BAR: 30 contact angle Beaing type BTR: 40 contact angle 28, 42-43, 0 Dimension : seies (boe, oute diamete, and NSK-specific dimensions ae available) 42-43, 0 Mateial Type Rings Rolling elements S Mateial 14-17, 28 S Beaing steel (SUJ2) Beaing steel (SUJ2) H Beaing steel (SUJ2) Ceamics (Si 3 N 4 ) TYN: ball guided polyamide esin cage; limiting speed d m n = 1 400 000; opeational tempeatue limit = 120 C TYN (Beaing numbe example) Nominal boe diamete Beaing type symbol Dimension symbol Mateial symbol 0 BAR S TYN DB L P4A Accuacy symbol Peload symbol Aangement symbol Cage symbol Cage Beaing with TYN cage ( seies with a maximum boe diamete of 150 mm) 18-19 (Leave this symbol blank fo machined bass cages) DB Aangement DB: Back-to-back aangement 42-43, 148-151 Angula Contact Thust Ball Beaings L Peload EL: exta light peload, L: light peload CP: special peload, CA: special axial cleaance 42-43, 152-155, 166 Contact Angle Fo the diffeing contact angles, TAC type beaings ank highest in levels of igidity, closely followed by BTR type beaings, with BAR type beaings coming in last. Fo tempeatue ise of the oute ing, howeve, this anking is evesed with BAR type beaings having the highest toleance, followed by BTR type beaings, and finally TAC type beaings with the least toleance. Be sue to select the poduct that will best meet the needs of you specific opeating conditions. Fig. 3.2 Fig. 3.3 Axial Load and Axial Displacement P4A Accuacy P2A: ISO Class 2 except oute diamete P4A: ISO Class 4 except oute diamete Numbeing System of Double-Diection Angula Contact Thust Ball Beaings (TAC Seies) (Beaing numbe example) Nominal boe diamete Beaing type symbol 150 TAC 20D PN7 +L C6 Peload symbol Space symbol Accuacy symbol Dimension symbol 182 30 BAR 40 BTR 60 TAC Axial displacement, µ m 25 20 15 5 0BARS TYN DB (α = 30 ) 0BTRS TYN DB (α = 40 ) 0TAC20X (α = 60 ) 0 0 2 000 4 000 6 000 8 000 000 Axial load, N 0 Nominal boe diamete Boe diamete (mm) 5 TAC Beaing type Angula contact thust ball beaing; 60 contact angle 28, 42-43, 0 PN7 Accuacy PN7: special pecision accuacy 182 +L Space Inne ing space 0 1 20D C6 Dimension Peload 20D: combined with NN30 seies 29D: combined with NN39 and NN49 seies C6: standad peload fo gease lubication C7: standad peload fo oil lubication Refeence pages 42-43, 0 42-43 152-155 167

3. ANGULAR CONTACT THRUST BALL BEARINGS High-Speed Angula Contact Thust Ball Beaings (ROBUST Seies) BAR Seies BTR Seies Boe Diamete 50-5 mm D 1 2B a 1 d BAR Seies (continued) BTR Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Fo additional infomation: Page No. Dynamic equivalent load 139 Static equivalent load 146 Peload and igidity 152 Abutment and fillet dimensions 186 Nozzle position 192 Quantity of packed gease 175 Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (kg) (min 1 ) Numbes d D 2B 1 C C 0 Load ( 1 ) (mm) (min) (min) (Dynamic) (Static) (kn) a (appox) Gease Oil 50BARS 50 80 28.5 1.0 0.6 18.4 0.272 11 600 14 700 50BARH 50 80 28.5 1.0 0.6 14.7 27.7 12.6 25.7 0.257 13 0 16 200 50BTRS 50 80 28.5 1.0 0.6 21.5 0.272 000 13 0 50BTRH 50 80 28.5 1.0 0.6 17.4 31.5 15.5 34.1 0.257 11 600 14 700 55BARS 55 90 33.0 1.1 0.6 23.4 0.412 400 13 200 55BARH 55 90 33.0 1.1 0.6 18.2 35.0 16.0 28.9 0.391 11 800 14 500 55BTRS 55 90 33.0 1.1 0.6 26.4 0.412 9 000 11 800 55BTRH 55 90 33.0 1.1 0.6 21.6 40.0 19.7 38.3 0.391 400 13 200 60BARS 60 95 33.0 1.1 0.6 25.5 0.420 9 700 12 300 60BARH 60 95 33.0 1.1 0.6 18.9 38.0 17.5 30.4 0.397 11 000 13 600 60BTRS 60 95 33.0 1.1 0.6 25.8 0.420 8 400 11 000 60BTRH 60 95 33.0 1.1 0.6 22.4 43.5 21.5 40.4 0.397 9 700 12 300 65BARS 65 0 33.0 1.1 0.6 27.7 0.447 9 0 11 600 65BARH 65 0 33.0 1.1 0.6 19.5 41.5 19.0 31.8 0.406 400 12 800 65BTRS 65 0 33.0 1.1 0.6 27.3 0.447 7 900 400 65BTRH 65 0 33.0 1.1 0.6 23.1 47.0 23.3 42.5 0.406 9 0 11 600 70BARS 70 1 36.0 1.1 0.6 37.5 0.601 8 400 600 70BARH 70 1 36.0 1.1 0.6 26.9 55.0 25.5 34.7 0.561 9 500 11 700 70BTRS 70 1 36.0 1.1 0.6 35.0 0.601 7 300 9 500 70BTRH 70 1 36.0 1.1 0.6 32.0 63.0 31.5 46.3 0.561 8 400 600 75BARS 75 115 36.0 1.1 0.6 39.0 0.634 7 900 000 75BARH 75 115 36.0 1.1 0.6 27.3 58.0 26.7 36.1 0.592 9 000 11 0 75BTRS 75 115 36.0 1.1 0.6 36.5 0.634 6 900 9 000 75BTRH 75 115 36.0 1.1 0.6 32.5 65.5 33.0 48.4 0.592 7 900 000 Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (kg) (min 1 ) Numbes d D 2B 1 C C 0 Load ( 1 ) (mm) (min) (min) (Dynamic) (Static) (kn) a (appox) Gease Oil 80BARS 80 125 40.5 1.1 0.6 46.5 0.875 7 400 9 300 80BARH 80 125 40.5 1.1 0.6 32.0 68.5 32.0 39.4 0.821 8 300 300 80BTRS 80 125 40.5 1.1 0.6 43.0 0.875 6 400 8 300 80BTRH 80 125 40.5 1.1 0.6 38.0 78.0 39.0 52.7 0.821 7 400 9 300 85BARS 85 130 40.5 1.1 0.6 48.5 0.971 7 000 8 900 85BARH 85 130 40.5 1.1 0.6 32.5 71.5 33.0 41.1 0.915 8 000 9 800 85BTRS 85 130 40.5 1.1 0.6 50.5 0.971 6 0 8 000 85BTRH 85 130 40.5 1.1 0.6 38.5 81.5 41.0 55.2 0.915 7 000 8 900 90BARS 90 140 45 1.5 1.0 62.5 1.198 6 600 8 300 90BARH 90 140 45 1.5 1.0 42.5 92.5 43.0 44.4 1.124 7 400 9 200 90BTRS 90 140 45 1.5 1.0 58.0 1.198 5 700 7 400 90BTRH 90 140 45 1.5 1.0 50.0 5 52.5 59.5 1.124 6 600 8 300 95BARS 95 145 45 1.5 1.0 65.0 1.320 6 300 8 000 95BARH 95 145 45 1.5 1.0 43.0 96.5 44.5 45.5 1.231 7 0 8 800 95BTRS 95 145 45 1.5 1.0 69.0 1.320 5 500 7 0 95BTRH 95 145 45 1.5 1.0 51.0 1 55.0 61.0 1.231 6 300 8 000 0BARS 0 150 45 1.5 1.0 68.0 1.399 6 000 7 600 0BARH 0 150 45 1.5 1.0 43.5 0 46.5 47.3 1.307 6 800 8 400 0BTRS 0 150 45 1.5 1.0 66.5 1.399 5 200 6 800 0BTRH 0 150 45 1.5 1.0 51.5 114 57.0 63.7 1.307 6 000 7 600 5BARS 5 160 49.5 2.0 1.0 78.0 1.740 5 700 7 200 5BARH 5 160 49.5 2.0 1.0 49.5 115 53.5 50.6 1.624 6 500 8 000 5BTRS 5 160 49.5 2.0 1.0 84.0 1.740 5 000 6 500 5BTRH 5 160 49.5 2.0 1.0 58.5 131 65.5 68.0 1.624 5 700 7 200 ROBUST Angula Contact Thust Ball Beaings ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Limiting speeds listed on this page ae based on a back-to-back aangement (DB) with exta light peload (EL). Adjust the limiting speed to 85% of the figue shown when a light peload (L) has been selected. Note: Beaing type BAR: nominal contact angle 30 Beaing type BTR: nominal contact angle 40 ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Limiting speeds listed on this page ae based on a back-to-back aangement (DB) with exta light peload (EL). Adjust the limiting speed to 85% of the figue shown when a light peload (L) has been selected. Note: Beaing type BAR: nominal contact angle 30 Beaing type BTR: nominal contact angle 40 2 3

3. ANGULAR CONTACT THRUST BALL BEARINGS High-Speed Angula Contact Thust Ball Beaings (ROBUST Seies) BAR Seies BTR Seies Boe Diamete 1-200 mm D 1 2B 1 d TAC29D Seies TAC20D Seies Boe Diamete 140-280 mm Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Double-Diection Angula Contact Thust Ball Beaings (TAC Seies) D T C 1 d a Bounday Dimensions Basic Load Ratings Pemissible Effective Load Mass Limiting Speeds ( 2 ) Beaing (mm) (kn) Axial Cente (kg) (min 1 ) Numbes d D 2B 1 C C 0 Load ( 1 ) (mm) (min) (min) (Dynamic) (Static) (kn) a (appox) Gease Oil 1BARS 1 170 54.0 2.0 1.0 89.0 2.11 5 400 6 800 55.5 131 53.9 1BARH 1 170 54.0 2.0 1.0 60.5 1.972 6 0 7 500 1BTRS 1 170 54.0 2.0 1.0 82.5 2.11 4 700 6 0 66.0 148 72.2 1BTRH 1 170 54.0 2.0 1.0 74.5 1.972 5 400 6 800 120BARS 120 180 54.0 2.0 1.0 96.0 2.262 5 000 6 400 57.0 141 56.8 120BARH 120 180 54.0 2.0 1.0 65.5 2.114 5 700 7 000 120BTRS 120 180 54.0 2.0 1.0 88.5 2.262 4 400 5 700 68.0 160 76.4 120BTRH 120 180 54.0 2.0 1.0 80.5 2.114 5 000 6 400 130BARS 130 200 63.0 2.0 1.0 117 3.362 4 600 5 800 72.5 172 63.4 130BARH 130 200 63.0 2.0 1.0 79.5 3.148 5 200 6 400 130BTRS 130 200 63.0 2.0 1.0 6 3.362 4 000 5 200 86.0 195 85.0 130BTRH 130 200 63.0 2.0 1.0 98.0 3.148 4 600 5 800 140BARS 140 2 63.0 2.0 1.0 78.5 200 135 66.2 3.558 4 300 5 500 140BTRS 140 2 63.0 2.0 1.0 93.0 227 84.0 89.1 3.558 3 800 4 900 150BARS 150 225 67.5 2.1 1.1 92.5 234 160 71 4.354 4 000 5 0 150BTRS 150 225 67.5 2.1 1.1 1 267 4 95.5 4.354 3 500 4 600 160BARS 160 240 72.0 2.1 1.1 98.5 250 175 75.7 5.64 3 800 4 800 160BTRS 160 240 72.0 2.1 1.1 117 284 184 1.9 5.64 3 300 4 300 170BARS 170 260 81.0 2.1 1.1 115 295 207 82.3 7.90 3 500 4 500 170BTRS 170 260 81.0 2.1 1.1 136 335 220 1.5 7.90 3 0 4 000 180BARS 180 280 90.0 2.1 1.1 151 385 262 88.8.2 3 300 4 200 180BTRS 180 280 90.0 2.1 1.1 179 440 255 118.9.2 2 900 3 700 190BARS 190 290 90.0 2.1 1.1 151 390 273 91.8.7 3 200 4 000 190BTRS 190 290 90.0 2.1 1.1 179 445 281 123.2.7 2 800 3 600 200BARS 200 3 99.0 2.1 1.1 169 444 300 98.3 13.8 3 000 3 800 200BTRS 200 3 99.0 2.1 1.1 201 505 3 131.7 13.8 2 600 3 400 Bounday Dimensions Basic Load Ratings Mass Limiting Speeds ( 1 ) Beaing (mm) (kn) (kg) (min 1 ) Numbes d D T C 1 C a C 0a (min) (min) (Dynamic) (Static) (appox) Gease Oil 140TAC20D+L 140 2 84 42 2.0 1.0 145.00 0 525 08.750 2 600 2 900 150TAC29D+L 150 2 72 36 2.0 1.0 116.00 0 465 06.600 2 500 2 800 150TAC20D+L 150 225 90 45 2.1 1.1 172.00 0 620.700 2 400 2 700 160TAC29D+L 160 220 72 36 2.0 1.0 118.00 0 490 07.000 2 400 2 700 160TAC20D+L 160 240 96 48 2.1 1.1 185.00 0 680 13.000 2 300 2 500 170TAC29D+L 170 230 72 36 2.0 1.0 120.00 0 520 07.350 2 300 2 500 170TAC20D+L 170 260 8 54 2.1 1.1 218.00 0 8 17.700 2 0 2 400 180TAC29D+L 180 250 84 42 2.0 1.0 158.00 0 655.700 2 0 2 400 180TAC20D+L 180 280 120 60 2.1 1.1 281.00 1 020 23.400 2 000 2 200 190TAC29D+L 190 260 84 42 2.0 1.0 161.00 0 695 11.200 2 000 2 300 190TAC20D+L 190 290 120 60 2.1 1.1 285.00 1 060 24.400 1 900 2 0 200TAC29D+L 200 280 96 48 2.1 1.1 204.00 0 855 15.700 1 900 2 0 200TAC20D+L 200 3 132 66 2.1 1.1 315.00 1 180 31.500 1 800 2 000 220TAC29D+L 220 300 96 48 2.1 1.1 2.00 0 930 17.000 1 800 2 000 240TAC29D+L 240 320 96 48 2.1 1.1 213.00 0 980 18.300 1 700 1 800 260TAC29D+L 260 360 120 60 2.1 1.1 315.00 1 390 31.500 1 500 1 700 280TAC29D+L 280 380 120 60 2.1 1.1 320.00 1 470 33.500 1 400 1 600 ( 1 ) Limiting speeds listed on this page ae based on ecommended standad peload (C6 & C7) Note: Beaing type TAC29D: nominal contact angle 60 Beaing type TAC20D: nominal contact angle 60 Angula Contact Thust Ball Beaings ROBUST/Double-Diection ( 1 ) Fo pemissible axial load, please efe to Page 147. ( 2 ) Fo application of limiting speeds, please efe to Page 170. Limiting speeds listed on this page ae based on a back-to-back aangement (DB) with exta light peload (EL). Adjust the limiting speed to 85% of the figue shown when a light peload (L) has been selected. Note: Beaing type BAR: nominal contact angle 30 Beaing type BTR: nominal contact angle 40 4 5

4. BALL SCREW SUPPORT BEARINGS Pat4 Machine Tool Applications TAC B Seies Electic Injection Molding Machines Applications TAC02 and 03 Seies Machine Tool Applications Ball Scew Suppot Units Ball Scew Suppot Beaings Angula Contact Thust Ball Beaings fo Ball Scew Suppot P8-113 Featues Numbeing System Beaing Tables Machine Tool Applications TAC B Seies Electic Injection Molding Machine Applications TAC02 and 03 Seies Units fo Ball Scew Suppot P114-115 Featues Numbeing System Suppot Units Tables B/S Suppot Ball Scew Sup pot Beaings 6 7

4. BALL SCREW SUPPORT BEARINGS Angula Contact Thust Ball Beaings fo Ball Scew Suppot Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Featues Numbeing System of Angula Contact Thust Ball Beaings fo Ball Scew Suppot (Machine Tool Applications) High pecision angula contact thust ball beaings to suppot pecision ball scews, have bette pefomance than ealie combinations of angula contact ball beaings o combinations using thust beaings. They ae especially suitable fo high pecision machine-tool feeding mechanisms and simila applications. TAC B Seies (Machine Tool Applications) The axial igidity is high because of a lage numbe of balls and a contact angle of 60. Compaed with tapeed olle beaings of cylindical olle beaings, this type has lowe stating toque; so smoothe otation is possible with less diving foce. (Beaing numbe example) Nominal boe diamete Beaing type symbol Nominal oute diamete Intenal design symbol 30 TAC C 62 B DF C PN7A Accuacy symbol Peload symbol Aangement symbol Seal symbol Refeence pages TAC B seies beaings incopoate NSK s ecently developed molded polyamide esin cage. In addition, using exta-pue (EP) steel fo the inne and oute ings has futhe enhanced sevice life. Ou EP steel is manufactued by contolling the amount of hamful oxide inclusions, which eliminates lage size inclusions and enjoys highe puity than vacuum ac emelted (VAR) steel. This seies with DG seal, low toque contact seal, with WPH gease, an watepoof gease, incease the eliability and povide fo easy handling. TAC02 and 03 Seies (Electic Injection Molding Machines) TAC02 and 03 seies ae angula contact ball beaings that povide suppot fo lage size ball scews opeating unde a heavy load fom the diving mechanism of electic injection molding machines. Low toque is achieved by optimum design of the ball beaings. Uses can significantly educe beaing toque by eplacing thei olle beaings with these seies. TAC B and TAC02, 03 Diffeences Electic injection molding machines poduce a heavie load on ball scew suppot beaings than that of machine tools. TAC02 and 03 beaings ae designed to opeate unde such heavy load conditions. Convesely, TAC B beaings ae designed fo inceased pemissible load by inceasing the numbe of balls and beaing width. 30 Nominal boe diamete Boe diamete (mm) 1-111 TAC Beaing type Angula contact thust ball beaing; 60 contact angle 30, 8 62 Nominal oute diamete Oute diamete (mm) 1-111 B Intenal design Seal No symbol: open type DDG: contact ubbe seal ( 1 ) 30 DF C Peload C: standad peload C9: light peload (low toque specification) 152-155, 168 PN7A SU: univesal aangement (single ow) DU: univesal aangement (double ow) DB: Back-to-back aangement DF: Face-to-face aangement Aangement DT: tandem aangement DBD, DFD, DTD: tiplex set aangement DBB, DFF, DBT, DFT, DTT: quaduplex set aangement 148-151 PN7A: standad accuacy (Equivalent to ISO Class 4) Accuacy PN7B: special accuacy (Boe diamete and outside diamete ae exclusive to NSK. Equivalent to ISO Class 4. Fo SU aangement only.) 183 ( 1 ) Sealed angula contact ball beaings fo ball scew suppot ae standadized fo SU aangement and PN7B accuacy. Numbeing System of Angula Contact Thust Ball Beaings fo Ball Scew Suppot (Electic Injection Molding Machines) B/S Suppot Fig. 4.1 (Beaing numbe example) Nominal boe diamete Beaing type symbol Dimension seies symbol Intenal design symbol 30 TAC 02 A T85 SU M PN5D Accuacy symbol Peload symbol Aangement symbol Cage symbol Refeence pages 30 Nominal boe diamete Boe diamete (mm) 112-113 TAC Beaing type Angula contact thust ball beaing; 60 contact angle 31, 8 02 Dimension seies 02: 02 seies, 03: 03 seies 8 A Intenal design T85 Cage T85: polyamide esin cage M: machined bass cage 18-19 SU Aangement SU: univesal aangement (single ow) 148-151 M Peload M: standad peload 152-155, 168 55TAC0B (TAC B seies) 55TAC120B (TAC B seies) 55TAC03A (TAC02, 03 seies) PN5D Accuacy PN5D: standad accuacy (Equivalent to ISO Class 5) 183 8 9

4. BALL SCREW SUPPORT BEARINGS Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Fo Machine Tool Applications B 1 B 1 TAC B Seies Boe Diamete 15-60 mm D D 1 d1 d d2 D 2 D D1 d1 1 1 d D2 d2 (Open type) Bounday Dimensions Refeence Dimensions Recommended Limiting Speeds ( 1 ) Beaing (mm) (mm) Gease (min 1 ) Numbes d D B 1 Quantities (min) (min) d 1 d 2 D 1 D 2 (cc) Gease Oil 15 TAC 47B 15 47 15 1.0 0.6 27.2 34 34 39.6 2.2 6 000 8 000 17 TAC 47B 17 47 15 1.0 0.6 27.2 34 34 39.6 2.2 6 000 8 000 20 TAC 47B 20 47 15 1.0 0.6 27.2 34 34 39.6 2.2 6 000 8 000 25 TAC 62B 25 62 15 1.0 0.6 37 45 45 50.7 3.0 4 500 6 000 30 TAC 62B 30 62 15 1.0 0.6 39.5 47 47 53.2 3.2 4 300 5 600 35 TAC 72B 35 72 15 1.0 0.6 47 55 55 60.7 3.8 3 600 5 000 40 TAC 72B 40 72 15 1.0 0.6 49 57 57 62.7 3.9 3 600 4 800 40 TAC 90B 40 90 20 1.0 0.6 57 68 68 77.2 8.8 3 000 4 000 45 TAC 75B 45 75 15 1.0 0.6 54 62 62 67.7 4.2 3 200 4 300 45 TAC 0B 45 0 20 1.0 0.6 64 75 75 84.2 9.7 2 600 3 600 50 TAC 0B 50 0 20 1.0 0.6 67.5 79 79 87.7.2 2 600 3 400 55 TAC 0B 55 0 20 1.0 0.6 67.5 79 79 87.7.2 2 600 3 400 55 TAC 120B 55 120 20 1.0 0.6 82 93 93 2.2 12 2 200 3 000 60 TAC 120B 60 120 20 1.0 0.6 82 93 93 2.2 12 2 200 3 000 (Sealed type) Open type Sealed type DDG Bounday Dimensions Refeence Dimensions Limiting Speeds ( 1 ) Beaing (mm) (mm) (min 1 ) Numbes d D B 1 (min) (min) d 1 d 2 D 1 D 2 Gease 15 TAC 47B DDG 15 47 15 1.0 0.6 25.1 30.8 36 41.8 6 000 17 TAC 47B DDG 17 47 15 1.0 0.6 25.1 30.8 36 41.8 6 000 20 TAC 47B DDG 20 47 15 1.0 0.6 25.1 30.8 36 41.8 6 000 25 TAC 62B DDG 25 62 15 1.0 0.6 34.3 40.5 46.5 52.9 4 500 30 TAC 62B DDG 30 62 15 1.0 0.6 36.8 43 49 55.4 4 300 35 TAC 72B DDG 35 72 15 1.0 0.6 44.3 50.5 56.5 62.9 3 600 40 TAC 72B DDG 40 72 15 1.0 0.6 46.3 52.5 58.5 64.9 3 600 40 TAC 90B DDG 40 90 20 1.0 0.6 54 64 70 79.4 3 000 45 TAC 0B DDG 45 0 20 1.0 0.6 61 71 77 86.4 2 600 Single Row Load DF, DB (kn) Basic Dynamic Load Rating Ca Limiting Axial Load ( 2 ) Double Row Load DT, DFD, DBD, DFF, DBB (kn) 21.9 35.5 47.5 26.6 53.0 79.5 0.144 21.9 35.5 47.5 26.6 53.0 79.5 0.144 21.9 35.5 47.5 26.6 53.0 79.5 0.135 28.5 46.5 61.5 40.5 81.5 122 0.252 29.2 47.5 63.0 43.0 86.0 129 0.224 31.0 50.5 67.0 50.0 0 150 0.3 31.5 51.5 68.5 52.0 4 157 0.275 59.0 95.5 127 89.5 179 269 0.674 33.0 53.5 71.0 57.0 114 170 0.270 61.5 0 133 99.0 198 298 0.842 63.0 2 136 4 208 3 0.778 63.0 2 136 4 208 3 0.714 67.5 9 145 123 246 370 1.230 67.5 9 145 123 246 370 1.160 Single Row Load DF, DB (kn) Tiple Row Load DTD, DFT, DBT (kn) Single Row Load DF, DB (kn) Double Row Load DT, DFD, DBD, DFF, DBB (kn) Basic Dynamic Load Rating Ca Limiting Axial Load ( 2 ) Double Row Load DT, DFD, DBD, DFF, DBB (kn) Tiple Row Load DTD, DFT, DBT (kn) Single Row Load DF, DB (kn) Double Row Load DT, DFD, DBD, DFF, DBB (kn) Tiple Row Load DTD, DFT, DBT (kn) Tiple Row Load DTD, DFT, DBT (kn) 21.9 35.5 47.5 26.6 53.0 79.5 0.144 21.9 35.5 47.5 26.6 53.0 79.5 0.144 21.9 35.5 47.5 26.6 53.0 79.5 0.135 28.5 46.5 61.5 40.5 81.5 122 0.252 29.2 47.5 63.0 43.0 86.0 129 0.224 31.0 50.5 67.0 50.0 0 150 0.3 31.5 51.5 68.5 52.0 4 157 0.275 59.0 95.5 127 89.5 179 269 0.674 61.5 0 133 99.0 198 298 0.842 Mass (kg) (appox) Mass (kg) (appox) B/S Suppot Fo Machine Tool Applications ( 1 ) Limiting speeds ae based on C peload. In case of C9 peload, the figues become 1.3 times of the figues listed above. Also, the figues ae fee of the influence aangement type. Note: Beaing type TAC B: nominal contact angle 60 ( 2 ) Pemissible axial load equals 0.7 times of limiting axial load. 1 111

4. BALL SCREW SUPPORT BEARINGS Fo Electic Injection Molding Machines TAC02 and 03 Seies Boe Diamete 15-120 mm D 1 D 1 d 1 B 1 d d2 D 2 Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Bounday Dimensions Refeence Dimensions Recommended Contact Limiting Speeds ( 1 ) Beaing (mm) (mm) Gease (min 1 ) angle Numbes d D B 1 Quantities d 1 d 2 D 1 D 2 (Degee) (min) (min) (cc) Gease Oil 15TAC02AT85 015 035 11 0.6 0.3 19.5 23.5 26.5 31.9 0.98 50 8 000 000 25TAC02AT85 025 052 15 1.0 0.6 30.5 36.6 40.4 47.4 3 50 5 0 7 000 TAC35-2T85 035 090 23 1.5 1.0 49.7 61.4 68.6 81.9 15 50 3 000 4 0 40TAC03AT85 040 090 23 1.5 1.0 49.7 61.4 68.6 81.9 15 50 3 000 4 0 45TAC03AT85 045 0 25 1.5 1.0 55.8 68.6 76.4 91.0 19 50 2 700 3 700 TAC45-2T85 045 1 27 2.0 1.0 60.3 75.6 84.5 0.9 27 50 2 500 3 300 50TAC03AT85 050 1 27 2.0 1.0 60.3 75.6 84.5 0.9 27 50 2 500 3 300 55TAC03AT85 055 120 29 2.0 1.0 67.1 82.7 92.3 1.1 32 50 2 200 3 000 60TAC03AT85 060 130 31 2.1 1.1 72.1 89.8 0.2 119.4 54 50 2 0 2 800 80TAC03AM 080 170 39 2.1 1.1 94.0 118.5 131.5 152.5 82 50 1 500 2 0 0TAC03CMC 0 215 47 3.0 1.1 122.5 156.9 158.1 188.1 120 55 1 200 1 600 120TAC03CMC 120 260 55 3.0 1.1 153.0 189.3 190.7 223.5 170 55 1 000 1 300 Single Row Load DF, DB (kn) Dynamic Axial Load Rating Ca Limiting Axial Load ( 2 ) Double Row Load DT, DFD, DBD, DFF, DBB (kn) Tiple Row Load DTD, DFT, DBT (kn) Single Row Load DF, DB (kn) Double Row Load DT, DFD, DBD, DFF, DBB (kn) Tiple Row Load DTD, DFT, DBT (kn) 18.8 30.5 40.5 11.5 22.9 34.5 33.5 54.5 72.0 22.7 45.5 68.0 2 166 220 75.5 151 226 2 166 220 75.5 151 226 120 195 259 91.5 183 274 150 243 325 116 232 350 150 243 325 116 232 350 171 278 370 133 266 400 196 320 425 152 305 455 274 445 590 238 475 715 365 595 795 231 460 690 430 700 930 295 590 885 B/S Suppot ( 1 ) Limiting speeds listed on this page ae based on a standad peload (M). Also, the figues ae fee of the influence aangement type. ( 2 ) Pemissible axial load equals 0.7 times of limiting axial load. Fo Electic Injection Molding Machines 112 113

4. BALL SCREW SUPPORT BEARINGS Units fo Ball Scew Suppot Numbeing system of suppot units Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 The suppot unit fo heavy-load machine tools employs a high pecision, high igidity Angula contact thust ball beaing fo Ball Scew Suppot (TAC Seies), which is stuctued to function optimally as a suppot beaing fo a ball scew. Thee types of aangements ae available, as descibed in the figue below: Featues The dust-esistant design allows a use to easily design suppot side of ball scew. Since a peload-contolled beaing is incopoated into the suppot unit, the pocess of mounting a beaing can be omitted. Suppot unit numbe example: Suppot unit symbol Nominal beaing boe B 1 A 3 7 WBK C 30 2 6 4 5 8 Pat No. ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ DFD - 31 Name of Pat Seial numbes Beaing aangement symbol DF: Double ow aangement DFD: Tiple ow aangement DFF: Quaduple ow aangement Components of suppot unit Housing Retaining cove Angula contact thust ball beaings fo Ball Scew Suppot Dust seal Colla Peload secuing bolt Shim Locknut Quantities 1 1 1 set 2 2 6 o 8 1 set 1 1. Use datum faces A and B to mount the suppot unit to a machine base. 2. Do not ty to disassemble the NSK Suppot Unit because its peload is adjusted with high pecision and the components of numbes ➀, ➁, ➂, ➃, ➅ and ➆ ae integated into a single piece. 3. Gease is packed in the beaing. 4. Locknut ➇ is designed specifically fo ball scews with its pependiculaities contolled against the tiangula thead of the scew. To pevent loosening, tighten the locknut using tunpeventive small scews. The locknut is also available sepaately. Fo Angula contact thust ball beaings fo Ball Scew Suppot, please efe to Page 1. L L3 45 45 30 15 15 30 4-P Tap depth Q (both sides) 4-P Tap depth Q (both sides) Dg6 d1 H8 d d1 H8 D2 D1 D3 M d M V W V W DF aangement WBK DF-31 DFD aangement WBK DFD-31 DFF aangement WBK DFF-31 l L1 L L2 l L3 Locknut L4 L5 Dimensions of unit mounting face 6- X Dill thu Y C'boe, Z deep A 8- X Dill thu Y C'boe, Z deep Intenal boe d 30 Intenal boe d 35 A B/S Suppot Remaks: Suppot Unit Numbes WBK17DF-31 WBK20DF-31 WBK25DF-31 WBK25DFD-31 WBK30DF-31 WBK30DFD-31 WBK35DF-31 WBK35DFD-31 WBK35DFF-31 WBK40DF-31 WBK40DFD-31 WBK40DFF-31 d D D 1 D 2 L L 1 L 2 A W X Y Z D 1 * l * V * P * Q * 17 20 25 30 35 40 70 70 85 85 95 95 6 6 130 130 142 142 72 72 90 90 2 2 60 60 66 81 66 81 66 81 96 66 81 96 32 32 33 48 33 48 33 48 48 33 48 48 1. Rigidity: Rigidity values in the table show theoetical values calculated fom elastic displacement between gooves and steel balls. 2. Stating toque: Stating toque in the table shows stating toque necessay fo a peloaded beaing, not including seal toque. 3. Toleance of Shaft Oute Diamete at the beaing seat fo unit: h5 Class is ecommended fo the Shaft Oute Diamete at the beaing seat fo unit. 15 15 18 18 18 18 Suppot Unit Pats 80 80 0 0 6 6 88 88 1 1 121 121 9 9 11 11 11 11 14 14 17.5 17.5 17.5 17.5 8.5 8.5 11 11 11 11 45 45 57 57 69 69 3 3 4 4 4 4 58 58 70 70 80 80 M5 M5 M6 M6 M6 M6 12 12 12 12 Basic dynamic load ating C a (N) 21 900 21 900 28 500 46 500 29 200 47 500 31 000 50 500 50 500 31 500 51 500 51 500 Limiting Axial Load (N) 26 600 26 600 40 500 81 500 43 000 86 000 50 000 0 000 0 000 52 000 4 000 4 000 Peload (N) 2 150 2 150 3 150 4 300 3 350 4 500 3 800 5 200 7 650 3 900 5 300 7 800 Axial Rigidity (N/µm) 750 750 1 000 1 470 1 030 1 520 1 180 1 7 2 350 1 230 1 8 2 400 Stating toque Remaks: 4. Dimensions maked with * The spigot and scew pats maked with * ae used fo mounting a seal unit fo the NSK standad hollow ball scew shaft as well as fo mounting a dust cove and dampe. 5. Because gease is packed in the beaing, it can be used immediately as is. (N cm) 14.0 14.0 23.0 31.0 24.0 33.0 28.0 37.0 55.0 28.0 38.0 57.0 M17 1 M20 1 M25 1.5 M30 1.5 M35 1.5 M40 1.5 Locknut 37 40 45 50 55 60 18 18 20 20 22 22 Beaing seat fo unit 17 20 25 30 35 40 81 81 89 4 89 4 92 7 122 92 7 122 Unit: mm M D 3 L 3 d L 4 L 5 23 23 26 26 30 30 Units fo Ball Scew Suppot 114 115

5. PRECISION DEEP GROOVE BALL BEARINGS Pat4 Pecision Deep Goove Ball Beaings Polyamide Resin Cage Pecision Deep Goove Ball Beaings Pecision Deep Goove Ball Beaings P118-120 Featues Numbeing System Beaing Tables T1X Type (Polyamide esin cage) 60, 62 and 63 Seies Pecision Deep Goove Ball Beaings Pecision Deep Go ove Ball Beaings 116 117

5. PRECISION DEEP GROOVE BALL BEARINGS Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Featues Capable of beaing not only adial loads but also axial loads in both diections. Fictional toque is small, thus suitable fo opeations equiing high speed, low noise, and low vibations. Thee types ae available: open type; shielded type (steel shield); and sealed type (ubbe seal). Dimension seies Numbeing System of Pecision Deep Goove Ball Beaings (Beaing numbe example) Beaing type symbol Dimension symbol Boe numbe Mateial symbol 6 2 T1X ZZ C3 P4 Accuacy symbol Radial cleaance symbol Seal and shield symbol Cage symbol Refeence pages 6 Beaing type 6: single-ow deep goove ball beaing 118 2 Dimension 0: seies, 2:02 seies, 3: 03 seies 118 Boe numbe Less than 03 beaing boe 00: mm, 01: 12 mm, 02: 15 mm, 03: 17 mm Moe than 04 beaing boe: Boe numbe x 5 (mm) 120 Mateial No symbol: beaing steel (SUJ2) SN24: ceamic ball (Si 3 N 4 ) 14-17 63 62 60 T1X Cage T1X: ball guided polyamide esin cage TYA: high speed, ball guided polyamide esin cage 118 Stuctue ZZ Seal and shield No symbol: open type ZZ: steel shield VV: non-contact ubbe seal 118 Open type Shielded type (ZZ) Non-contact ubbe seal type (VV) C3 Radial No symbol: nomal cleaance C3: lage than nomal cleaance CM: special cleaance fo electic moto cleaance CG: special adial cleaance P4 Accuacy P2: ISO Class 2 P4: ISO Class 4 P5: ISO Class 5 176-179 Pecision Deep Goove Ball Beaings Cages T1X Ball guided polyamide esin cage: povides supeio wea esistance fo geneal pupose motos. TYA Ball guided polyamide esin cage: incopoates the same design concepts of angula contact ball beaings fo high-speed motos. T Inne ing guided phenolic esin cage: well balanced symmety, offeing supeio heat esistance fo high speed opeations of woodwoking machiney spindles. 118 119

5. PRECISION DEEP GROOVE BALL BEARINGS T1X Type (Polyamide Resin Cage) 60, 62 and 63 Seies Boe Diamete -50 mm Open type Shield type Seal type 6000 ZZ VV d B D Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Bounday Dimensions Basic Load Ratings Beaing( 1 ) (mm) (kn) Limiting Speeds ( 2 ) Numbes Shield type Seal type C d D B C 0 (min 1 ) (Dynamic) (Static) 6000T1X ZZ VV 26 8 0.3 4.55 1.87 38 900 6200T1X ZZ VV 30 9 0.6 5. 2.39 35 000 6001T1X ZZ VV 12 28 8 0.3 5. 2.37 35 000 6201T1X ZZ VV 12 32 0.6 6.80 3.05 31 900 6301T1X ZZ VV 12 37 12 1.0 9.70 4.20 28 600 6002T1X ZZ VV 15 32 9 0.3 5.60 2.83 29 800 6202T1X ZZ VV 15 35 11 0.6 7.65 3.75 28 000 6302T1X ZZ VV 15 42 13 1.0 11.4 5.45 24 600 6003T1X ZZ VV 17 35 0.3 6.00 3.25 27 000 6203T1X ZZ VV 17 40 12 0.6 9.55 4.80 24 600 6303T1X ZZ VV 17 47 14 1.0 13.6 6.65 21 900 6004T1X ZZ VV 20 42 12 0.6 9.40 5.00 22 600 6204T1X ZZ VV 20 47 14 1.0 12.8 6.60 20 900 6005T1X ZZ VV 25 47 12 0.6.1 5.85 19 500 6205T1X ZZ VV 25 52 15 1.0 14.0 7.85 18 200 6305T1X ZZ VV 25 62 17 1.5 20.6 11.2 16 0 6006T1X ZZ VV 30 55 13 1.0 13.2 8.30 16 500 6206T1X ZZ VV 30 62 16 1.0 19.5 11.3 15 300 6306T1X ZZ VV 30 72 19 2.0 26.7 14.1 13 800 6007T1X ZZ VV 35 62 14 1.0 16.0.3 14 500 6207T1X ZZ VV 35 72 17 1.0 25.7 15.3 13 0 6307T1X ZZ VV 35 80 21 2.5 33.5 18.0 12 200 6008T1X ZZ VV 40 68 15 1.0 16.8 11.5 13 000 6208T1X ZZ VV 40 80 18 1.0 29.1 17.9 11 700 6308T1X ZZ VV 40 90 23 2.5 40.5 22.6 800 6009T1X ZZ VV 45 75 16 1.0 20.9 15.2 11 700 6209T1X ZZ VV 45 85 19 1.0 31.5 20.4 800 60T1X ZZ VV 50 80 16 1.0 21.8 16.6 800 Pecision Deep Goove Ball Beaings ( 1 ) TYA cage available fo high-speed moto application. Contact NSK fo details. ( 2 ) Limiting speed figues ae based on T1X. Adjust the limiting speeds by 115% fo TYA cages. 120 121

6. PERIPHERAL EQUIPMENT Pat4 Peipheal Equipment Gauges P124-127 GR Gauges Featues Numbeing System GTR Gauges Featues Numbeing System GN Gauges Featues Numbeing System Beaing Monito P128 Beaing Heate P129 Gease Replenishing System P130-131 Oil-Ai Lubicato P132-133 Sealed Pecision Spaces fo Machine Tool Spindles P134-135 Peipheal Equipment Peipheal Equ ipment 122 123

6. PERIPHERAL EQUIPMENT Ring Gauges GR Seies Housing boe diamete pecision measuing gauges d B To obtain satisfactoy pefomance of pecision olling beaings fo machine tool spindles, it is impotant to have an accuate fitting with the shaft and housing. To achieve an accuate fitting, it is necessay to measue the shaft outside diamete and housing boe exactly. NSK Ring Gauges GR seies ae maste gauges fo measuing the boe diametes of housings within an accuacy of 0.001 mm. Featues Ring design enables eliable cylinde gauge settings. Ring thickness eliminates any defomation caused by measuing pessue. Heat teatment duing manufactuing of the ing negates any effects of aging on ing dimensions. Exact gauging is possible due to pecisely measued dimensions that ae maked on the gauges in 0.001 mm units in both the X and Y diections. Tape Gauges GTR30 Seies Shaft tape measuing gauges Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 NN30XXKR ae tapeed boe, double ow cylindical olle beaings that have high igidity and ae suitable fo high speeds, so they ae often used in machine tool spindles. To use these beaings, it is impotant to exactly match the tape of the beaing boe with that of the spindle. The beaing tape (tape 1:12) is pecisely contolled and manufactued fo a specific accuacy. A Tapeed Gauge GTR30 is one whose boe is pecision finished with a tape identical with that of a beaing. By machining the tape of a spindle to match this tape gauge, its exact contact with the beaing is assued. Featues Ring thickness eliminates any defomation caused by measuing pessue. Heat teatment duing manufactuing of the ing negates any effects of aging on ing dimensions. 124 D Applicable Beaings Bounday Dimensions (mm) 79 70 Mass 69 BNR19 60 BNR 72 Gauge (kg) NN39 BER19 N BER 62 Numbes d D B NN49 NN30 N2 (appox) 00 GR 26 26 75 20 0.6 02 01 GR 28 28 75 20 0.6 03 00 GR 30 30 80 20 0.7 02 01 GR 32 32 80 20 0.7 03 02 GR 35 35 85 20 0.7 04 GR 37 37 85 20 0.7 03 GR 40 40 90 20 0.8 05 04 GR 42 42 95 20 0.9 06 05 04 GR 47 47 95 20 0.8 07 05 GR 52 52 0 20 0.9 06 30 GR 55 55 0 20 0.9 08 07 35 06 GR 62 62 0 20 0.8 09 08 40 GR 68 68 1 20 0.9 50 07 GR 72 72 115 20 1.0 09 45 GR 75 75 115 20 0.9 11 55 50 08 GR 80 80 120 25 1.2 12 60 09 GR 85 85 130 25 1.5 13 65 11 55 GR 90 90 135 25 1.5 12 60 GR 95 95 140 25 1.6 14 70 13 65 11 GR 0 0 145 25 1.7 15 75 GR 5 5 150 25 1.8 16 80 14 70 12 GR 1 1 160 25 2.1 15 75 GR 115 115 165 25 2.1 17 85 13 GR 120 120 170 25 2.2 18 90 16 80 14 GR 125 125 175 25 2.3 19 95 17 85 15 GR 130 130 180 25 2.4 20 0 18 90 16 GR 140 140 190 25 2.5 21 5 19 95 GR 145 145 200 30 3.5 22 1 20 0 17 GR 150 150 205 30 3.6 21 5 18 GR 160 160 215 30 3.8 24 120 GR 165 165 220 30 3.9 22 1 19 GR 170 170 225 30 4.0 26 130 24 120 20 GR 180 180 230 30 3.8 28 140 21 GR 190 190 240 30 4.0 26 130 22 GR 200 200 250 30 4.1 Type I Tape 1:12 D d1 d2 B 2-g Type II Tape 1:12 Bounday dimensions Mass Applicable Gauge (mm) (kg) Types Beaings Numbes d 1 d 2 D B L g (appox) NN3006KR GTR3006 1 30 31.583 70 19 M3 0.5 0.5 NN3007KR GTR3007 1 35 36.667 75 20 M3 0.5 0.5 NN3008KR GTR3008 1 40 41.750 80 21 M3 0.5 0.6 NN3009KR GTR3009 1 45 46.917 85 23 M5 0.8 0.7 NN30KR GTR30 1 50 51.917 90 23 M5 0.8 0.8 NN3011KR GTR3011 1 55 57.167 95 26 M5 0.8 0.9 NN3012KR GTR3012 1 60 62.167 0 26 M5 0.8 1.0 NN3013KR GTR3013 1 65 67.167 5 26 M5 0.8 1.0 NN3014KR GTR3014 1 70 72.500 1 30 M5 0.8 1.3 NN3015KR GTR3015 1 75 77.500 115 30 M5 0.8 1.3 NN3016KR GTR3016 1 80 82.833 125 34 M5 0.8 1.8 NN3017KR GTR3017 1 85 87.833 130 34 M5 0.8 1.9 NN3018KR GTR3018 2 90 93.083 140 37 358 2.5 NN3019KR GTR3019 2 95 98.083 145 37 363 2.6 NN3020KR GTR3020 2 0 3.083 150 37 368 2.7 NN3021KR GTR3021 2 5 8.417 160 41 376 3.5 NN3022KR GTR3022 2 1 113.750 165 45 381 4.0 NN3024KR GTR3024 2 120 123.833 170 46 386 3.9 NN3026KR GTR3026 2 130 134.333 180 52 396 4.6 NN3028KR GTR3028 2 140 144.417 190 53 406 5.0 NN3030KR GTR3030 2 150 154.667 2 56 426 7.0 NN3032KR GTR3032 2 160 165.000 220 60 436 7.8 d d1 d2 L B Peipheal Equipment 125

6. PERIPHERAL EQUIPMENT GN gauges GN30 Seies Pecision measuing gauges fo esidual adial cleaance of double-ow cylindical olle beaings (NN30XX) Type I Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Type II D D L L B B When mounting a double-ow cylindical olle beaing with a tapeed boe onto a shaft, it is impotant to accuately match the spindle tape with that of the beaing, and to ensue that the desied adial intenal cleaance is attained afte mounting. If thee is excessive esidual adial intenal cleaance, the main shaft will have some play and machining accuacy will be advesely affected. If cleaance is too small, despite little o no change in igidity, heat geneation will become excessive and olling fatigue life will be extemely shotened (See page 155). With the ecent tends towad highe speed and highe pecision, it is necessay to contol esidual adial intenal cleaance moe caefully. In the past, adial cleaance measuing methods wee vey difficult and equied much skill. GN gauges developed by NSK fo esidual adial intenal cleaance measuements of double-ow cylindical olle beaing simplify beaing mounting and impove mounting accuacy. (Use of GN gauges also equie a boe measuing cylinde gauge.) Featues Simple, eliable, and accuate measuements can be made. No moe complicated calculations fo coections based on intefeence of an oute ing with housing. Both positive and negative cleaance (peload) can be measued. Accuate measuements ae obtained since all GN gauges ae calibated fo measuing pessue. Bounday dimensions Mass Applicable Gauge (mm) (kg) Beaings Numbes Types D B L (appox) NN3007 GN3007 1 2 23 292 1.3 NN3008 GN3008 1 8 23 297 1.4 NN3009 GN3009 1 115 23 305 1.5 NN30 GN30 1 120 23 3 1.6 NN3011 GN3011 1 131 26 324 2.1 NN3012 GN3012 1 138 26 329 2.2 NN3013 GN3013 1 145 26 335 2.4 NN3014 GN3014 1 156 30 347 3.0 NN3015 GN3015 1 162 30 353 3.1 NN3016 GN3016 1 175 33 374 4.2 NN3017 GN3017 1 185 33 381 4.3 NN3018 GN3018 1 195 35 393 5.2 NN3019 GN3019 1 204 35 399 5.6 NN3020 GN3020 1 2 35 411 6.1 NN3021 GN3021 1 224 39 419 7.1 NN3022 GN3022 1 233 44 433 8.5 NN3024 GN3024 2 254 44 470 7.5 NN3026 GN3026 2 280 50 492 9.5 NN3028 GN3028 2 289 50 500 9.5 NN3030 GN3030 2 314 54 520 12 NN3032 GN3032 2 329 54 540 13 Peipheal Equipment 126 127

6. PERIPHERAL EQUIPMENT Beaing Monito NB-4 Beaing Heate Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Waning light LED flashes if isolated beaing flaws exist. Function Switch To select displacement, velocity, o acceleation. Mode Switch To select ms o peak eadings and output signals. Sensitivity Switch To select high o low sensitivity o tun powe off. NB-4 Main Body Helical Cable A tangle-fee, extendable cable may be used to connect the vibation pick-up, o it can be connected diectly to the main body. Optional fixed pick-up Held by magnet o scew (watepoof) Micoelectonics allow the NB-4 Beaing Monito (a vibation monito) to be a conveniently potable size. With high sensitivity and a vaiety of functions built in, it can quickly and eliably detect unusual vibations in beaings o machines, and wan of possible touble. Featues Vibations can be measued and ecoded and then displayed as a wavefom (ecoded by a pesonal compute o othe device). The envelope function of the NB-4 makes it possible to detect any damage on the aceway of a beaing. Liquid Cystal Display Vibation data ae shown. Low battey voltage, excessive input, and PEAK mode selection ae also indicated. Hold Button Displayed vibation data (LCD) is held constant. Eaphone Output Vibational sound may be head using eaphones and the volume contolle. Output Teminal Displays eithe a vibation wavefom o a wavefom envelope signal. Helical Cable connected to hand-held pobe Pobe Type Pick-up Hand-held Vibation Pick-up Supeio high-fequency esponse allows ealy detection of touble in beaing and othe machine pats. NB-4 Main Body connected to handheld Vibation Pick-up Dimension Infomation 297 mm 01/0120 470 mm 175 mm 573 mm 347 mm Type/Capacity 01 1KVA 0120 1KVA Powe voltage 0 V 1ø Common fo 50/60 Hz 200 V 1ø Common fo 50/60 Hz Applicable beaing sizes Max 80 mm Max200 mm Min 20 mm A beaing heate heats a beaing evenly and quickly to fit the beaing on a spindle, thus enabling clean mounting without oil. A beaing heate can be used to heat not only beaings but also ing-shaped metal pats, such as geas. Featues Rapid and even heating No heating oil is equied, thus thee is no geasy dit. Suitable fo shinkage fit of beaings as well as ingshaped metal pats. Use-fiendly opeation panel In conjunction with an ulta-compact high sensitive tempeatue senso, the heate indicates pecise, eal-time tempeatues though digital display, iespective of heating speed o detection aea. The heate stats o stops at the flick of a button. The time can be set fo a maximum of 0 minutes. *Extenal input/output teminals fo emote contol on-line ae featued as standad, enabling factoy automation as well. A supeio level of safety The heate automatically stops pomptly if heat is applied without setting the tempeatue senso o in the event of a device failue. Compatible with vaious sizes of boes By selecting an I-type coe that matches the boe of a beaing, one beaing heate can be compatible with beaings of vaious sizes. Automatic heating unde optimal conditions Electical popeties change depending on the type of beaing and I-type coe used. The heate automatically detects these changes and thus always applies heat optimally. Also, as the output is adjustable fom 50% to 0% in incements of %, the heate is ideal fo delicate beaings that equie gadual heating. Max 70 mm MAX12 kg Heating pefomance cuve (example) Inne ing tempeatue incease, C 0 80 60 40 20 0 6307 6312 6305 6316 6318 6320 Deep Goove Ball Beaings I-type coe 15 mm I-type coe 25 mm I-type coe 35 mm 1 2 3 4 5 6 Heating peiod, min Peipheal Equipment 128 129

6. PERIPHERAL EQUIPMENT Gease Replenishing System FINE-LUB II Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Until ecently, high-speed spindles have used oil-ai o oil-mist lubication. Cuent woldwide concen fo the envionment equies a new system that educes noise and oil mist while suppoting clean woking envionment and enegy saving. In esponse to this demand, NSK has developed FINE-LUB II, the wold s fist gease-eplenishing system fo high-speed machine tool spindles. Dimensions 94 Gease outlet (M8 1) Ai connection pot 2 (Rc1/8) 2 Level switch (to monito emaining gease amount) (136) Ai connection pot 1 (Rc1/8) Refilling plug of gease Pessue switch 50 FINE-LUB II feeds a small amount of gease into high-speed beaings at egula intevals and dischages old gease, though an optimally shaped space, to a gease stoage located in the housing. This technology delives the wold s fist gease lubication system fo the high-speed spindles of machine tools and, at the same time, inceases the opeating lifetime. This evolutionay poduct completely tansfoms the concept of gease lubication. FINE-LUB II leads the way to a new type of gease lubication, making it faste, accuate, and moe comfotable. Model Numbe 6.5 Insciption numbe 2 115 4 7 (Installation hole) Specifications Gease outlet Featues Longe opeating life fo lubicating gease The opeating lifetime of gease is seveal hunded hous duing continuous otation at a speed of 1.8M d m n (#40 tape 20 000 min 1 ). FINE-LUB II has been developed with the aim of feeding in an appopiate amount of gease depending upon the otation speed and beaing size to avoid seizue, theeby ensuing moe than 000 hous of maintenance-fee pefomance. Contolling the dischage of lubicating gease to pevent tempeatue incease. Feeding too much gease into the inside of a beaing can cause the tempeatue to incease due to gease chuning. To pevent this, FINE-LUB II featues a built-in device to ensue that an appopiate amount of gease is dischaged. EGU - 2P1-4P2 Two of P1 pots Fou of P2 pots EGU - 6P1 Six of P1 pots Dischage amount (cc/cycle) 0.01 0.02 Code numbe P1 P2 Item Ai feeding pessue Dischage amount Tank capacity Monitoing function Pipe length Gease type Specification 0.25 to 0.4 MPa 0.01 o 0.02/beaing in a ow 200 cc Detection of emaining gease amount, detection of pessue (check of pessue incease) 2.5 m o less MTE gease System Diagam The Mechanism fo Feeding Gease to Beaings Coss-section of spindle Stoage goove fo dischaging old gease Replenished gease Housing Space fo dischaging gease Beaing shape designed specifically fo gease eplenishing Gease eplenishing method A small amount of gease is fed into a otating beaing at egula intevals though a gease inlet located nea the oute ing aceway. The gease is fed in small amounts to pevent the beaing tempeatue fom inceasing. Gease eplenishing device Gease 200 cm 3 Gease level switch Pessue switch Spindle Ai fo diving piston Ai fo pessuing tank Rotational speed signal Gease eplenishment Signal to eplenish Pessue switch Spindle Amplifie Replenishing inteval calculation Peipheal Equipment 130 High-speed angula contact ball beaings Gease dischaging method A specially shaped space fo gease dischage, located at the counte-boe side of the beaing, diects old gease into a stoage goove, peventing it fom e-enteing the inside of the beaing. Solenoid valve Ai supply souce NC contolle 131

11 12 13 14 15 16 17 18 19 HPS CK LPS LA APS MA FS AS R IGZ38-F 8 4 16 64 16 24 32 2 1 128 min./imp. 132 6. PERIPHERAL EQUIPMENT FINE-LUB Oil-Ai Lubicato Featues Remakable technological innovations continue in the field of machine tools. Paticulaly, spindle motos ae opeating faste than befoe. New developments fo impoving beaing and lubication methods to facilitate the highe speeds ae theefoe vital. NSK has made many developments in oil-ai lubication systems and oil supply equipment. In 1984, NSK intoduced the FINE-LUB oil-ai lubicato to the maket, and continues to enjoy success with this poduct. The FINE-LUB has evolved with the times, and has been adopted fo use in many machine tools, while eaning a eputation fo excellent pefomance and high eliability. The FINE-LUB oil-ai lubicato has a leading position in the oilai lubication maket. This unit povides oil-ai lubication by a system, which consists of a pump, mixing valves, and a contol unit. Reliability has been futhe impoved by incopoating safety devices. OAEM Pump Unit 380 (12) Featues Ai pessue gauge Ai connection pot (RC1/4) Wie connection pot (G1/2) Ai pessue switch Level switch Oil tank The OAEM unit is a newly developed low viscosity gea diven pump. (Opeating oil viscosity ange: 68 mm 2 /s) A special contolle is used to set lubicating intevals at 1, 2, 4, 8, 16, 24, 32, 48, 64, o 128 minutes. Standad safety devices include: ➀Oil level switch ➁Powe failue waning ➂Ai pessue switch ➃Oil pessue switch Contolle 190 Oil pessue switch 20 21 MK 5 6 7 8 9 MK 1 2 3 4 Suction 221 Gea diven pump Oil supply pot Filte Mounting hole:4-9 130 (181) 130 25 Tank (Level switch) Compessed ai [Pecautions] Contolle Pessue switch Pump Filte Pessue switch Pessue gauge Quantity contol piston Pump unit Nozzle 1.0 Mixing valve Use clean, dy compessed ai at a pessue of 0.2 0.4 MPa. Use fesh, clean lubicating oil with a viscosity of ISO VG o highe. Please take exta cae to avoid oil contamination, which can shoten the life of equipment. Take exta cae in selecting quality oil lines fo use between the pump and mixing valves. Oil lines exceeding 5 m in length equie you contact NSK pio to use. Oil lines fom the mixing valve to the spindle should be limited to 1.5 5 m. Model numbe: OAEM (Incl. contolle) OAEM-N (No contolle) Lubication: high speed spindle oil, o tubine oil Powe supply: 0 V Tank capacity: 2.7 L Effective oil level: 1.7 L Components of pump unit: Contolle, ai pessue switch, Oil pessue switch and Float switch. NSK also offes a moe economical pump unit that is CE Mak appoved. This pump can be contolled exclusively by ou contolle, o by a machine equipment sequence. Mixing Valve MVF Oil connection pot Oil connection pot M 1, fo 6 tubing Meteing nipple 67 (Dimension including ai bleed valve) Stamped numbe Ai bleed button ( 1 ) o Ai bleed plug Featues 40 50 75 11.5 Ai flow contol scew Ai connection pot M12 1 Ai bleed button ( 2 ) Oil-ai outlet M8 1, 4 tube Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 8 A 3 B 22 22 22 22 P (Dawing is fo MVF5) L Oil ai Adopts a piston-type contol fo dischaging small, fixed quantities of oil. Dischaged quantities of 0.01, 0.03, and 0.06 cm 3 pe stoke can be selected. Numbe of outlets and dischage quantities can be selected depending on each condition. Notes ( 1 ) In case the dischaged quantity is 0.01 cm 3, use Ai bleed plug fo Ai bleed pocedue. In case the dischaged quantity is 0.03 cm 3, o 0.06 cm 3, attach Ai bleed button instead of Ai bleed plug, fo Ai bleed pocedue. ( 2 ) In case the dischaged quantity is 0.03 cm 3, o 0.06 cm 3, attach the Ai bleed button to this position, duing the opeation. Optional Pats [Pessue switch] OAG Monitos fo inceases in ai and oil pessue and dop in oil pessue. (Equipped on OAEM) [Oil-Ai Senso] The oil-ai senso makes it possible to impove the eliability of oil-ai lubication by monitoing oil paticles supplied fom a mixing valve to a beaing. The device can be added late to an existing oil-ai system by connecting the device to an oil-ai pipe. B [Oil Filte] OAV-02/03 Ai Oil 2-5.5 holes Type numbe Numbe of valves L A P B MVF1 1 42 22 21 MVF2 2 64 9.5 45 21 MVF3 3 86 8 70 21 MVF4 4 8 6.5 95 21 MVF5 5 130 5 120 21 MVF6 6 155 5 145 22.5 Dischage quantity (cm 3 /stoke) Stamping numbe Code numbe 0.01 1 P1 0.03 3 P2 0.06 6 P3 Filtes emove minute foeign paticles fom the oil. Two types ae available: 3 µm and 20 µm [Ai Bleed Valve] OAV-01 Bleed valves facilitate bleeding ai afte disconnecting oil lines fo maintenance of the lubicato. Peipheal Equipment 133

6. PERIPHERAL EQUIPMENT Sealed Pecision Spaces fo Machine Tool Spindles Pat 1 Pat 2 Pat 3 Pat4 Pat 5 Pat 6 Pat 7 Pat 8 Featues Specification In the past, labyinth spaces wee used to pevent foeign matte fom enteing a beaing in a spindle. Howeve, because Mateial fo outeing space SUJ2 the cleaance between inne and oute space ings is lage, the enty of foeign matte cannot be completely pevented. NSK Mateial fo inneing space SUJ2 succeeded in naowing the gap between them by attaching seals to spaces. The double stuctue of a labyinth space plus a seal impoves the eliability of the spaces. Envionmentally-sound Attached seals pevent the leakage of gease Enhanced eliability Fo gease lubication, a double-laye stuctue of a labyinth space plus a seal povides supeio esistance against enty 3 Seal B 0-0.05 6 1 2 Oil outlet 3 (two place) Oute-ing space Inne-ing space Seal mateial Nitile ubbe, SECC Handling pecautions Note that an inne-ing space and an oute-ing space can be sepaated, so take cae that ubbe seal do not fall out o sustain damage duing handling. Use univesal combination beaings (see pages 150-151) with sealed pecision spaces. Configuation example Labyinth stuctue Sealed space of dust and coolant. The example in the figue on the left contains a tiple-seal configuation the labyinth seal which consists of the etaining D (g5) De1 Di1 d (F7) cove and the inne-ing space povide the fist seal, followed by the sealed pecision space with an additional built-in Numbeing system labyinth seal. Numbe example: X 65 - MTV Dimensions Space symbol : Seies 19: 19 Seies Nominal Boe diamete Type symbol Oil outlet Dimensions (19 Seies) Dimensions ( Seies) 134 Refeence numbe X30-MTV19 X35-MTV19 X40-MTV19 X45-MTV19 X50-MTV19 X55-MTV19 X60-MTV19 X65-MTV19 X70-MTV19 X75-MTV19 X80-MTV19 X85-MTV19 X90-MTV19 X95-MTV19 X0-MTV19 X5-MTV19 X1-MTV19 Boe diamete d (mm) 30 35 40 45 50 55 60 65 70 75 80 85 90 95 0 5 1 Oute diamete D (mm) 47 55 62 68 72 80 85 90 0 5 1 120 125 130 140 145 150 Width B (mm) Di1 (mm) 34.3 39.2 46.4 50 55.2 61.7 66 71.7 77.5 82.2 87.5 94.8 98.8 3.8 111 116 121 De1 (mm) 43 50.5 58 63.5 67.4 74.6 80 84 93 98.5 3 111.6 118 122.8 131 135.4 140.4 Space chambe (mm) 0.3 0.6 0.6 0.6 0.6 1 1 1 1 1 1 1.1 1.1 1.1 1.1 1.1 1.1 Refeence numbe X30-MTV X35-MTV X40-MTV X45-MTV X50-MTV X55-MTV X60-MTV X65-MTV X70-MTV X75-MTV X80-MTV X85-MTV X90-MTV X95-MTV X0-MTV X5-MTV X1-MTV X120-MTV Boe diamete d (mm) 30 35 40 45 50 55 60 65 70 75 80 85 90 95 0 5 1 120 Oute diamete D (mm) 55 62 68 75 80 90 95 0 1 115 125 130 140 145 150 160 170 180 Width B (mm) Di1 (mm) 36.8 41.6 47.5 53.5 58.5 64.4 69.4 73 80.8 85.8 91.4 96.4 3 8.5 112.5 120.4 124.6 134.6 De1 (mm) 49.2 56 62 69 74 82 87 92 1 6 114.6 119.6 127.8 134.5 137.8 148.5 155.5 165.5 Space chambe (mm) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.8 0.8 0.8 1 1 1 Peipheal Equipment 135

TECHNICAL GUIDE Pat5 Technical Guide 1. Life P138-145 Rolling Fatigue Life and Basic Load Rating New Life Theoy 2. Static Load Ratings and Static Equivalent Loads P146-147 3. Angula Contact Ball Beaing Combinations P148-151 Featues of Each Combination Univesal Combination 4. Peload and Rigidity P152-169 Types of Peload and Rigidity Peload and Rigidity Tables 5. Limiting Speeds P170-171 6. Lubication P172-175 7. Beaing Toleances P176-183 Toleance fo Radial Beaings Toleances fo Tapeed Boes Toleances fo Angula Contact Thust Ball Beaings 8. Designing of Shafts and Housings P184-188 Fitting of Shafts and Housings Shafts and Housing Toleance Shoulde and Fillet Dimensions Chamfe Dimensions 9. Spaces P189-193 Space Dimensions Position of Spay Nozzle Life Static Load Ratings and Static Equivalent Loads Angula Contact Ball Beaing Combinations Design of Shafts and Housings Peload and Rigidity Limiting Speeds Lubication Beaing Toleances Technical Gui de 136 Spaces 137

1. LIFE Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Rolling Fatigue Life and Basic Load Rating Beaing Life The vaious functions equied of olling beaings vay accoding to the beaing application. These functions must be pefomed fo a polonged peiod. Even if beaings ae popely mounted and coectly opeated, they will eventually fail to pefom satisfactoily due to an incease in noise and vibation, loss of unning accuacy, deteioation of gease, o fatigue flaking of the olling sufaces. Beaing life, in the boad sense of the tem, is the peiod duing which beaings continue to opeate and to satisfy thei equied functions. This beaing life may be defined as noise life, abasion life, gease life, o olling fatigue life, depending on which one causes loss of beaing sevice. Aside fom the failue of beaings to function due to natual deteioation, beaings may fail when conditions such as heatseizue, factue, scoing of the ings, wea of the seals, o othe damage occus. Conditions such as these should not be intepeted as nomal beaing failue since they often occu as a esult of eos in beaing selection, impope design o manufactue of the beaing suoundings, incoect mounting, o insufficient maintenance. inopeable due to flaking. In detemining beaing life, basic ating life is often the only facto consideed. Howeve, othe factos must also be taken into account. Fo example, the gease life of geasepelubicated beaings can be estimated. Since noise life and abasion life ae detemined accoding to individual standads fo diffeent applications, specific values fo noise o abasion life must be detemined empiically. Basic Dynamic Load Rating The basic dynamic load ating is defined as the constant load applied on beaings with stationay oute ings that the inne ings can endue fo a ating life of one million evolutions ( 6 ev). The basic load ating of adial beaings is defined as a cental adial load of constant diection and magnitude, while the basic load ating of thust beaings is defined as an axial load of constant magnitude in the same deflection as the cental axis. The load atings ae listed unde C fo adial beaings and C a fo thust beaings in the dimension tables. Basic Rating Life The following elation exists between beaing load and basic ating life: Dynamic Equivalent Load In some cases, the loads applied on beaings ae puely adial o axial loads; howeve, in most cases, the loads ae a combination of both. In addition, such loads usually fluctuate in both magnitude and diection. In such cases, the loads actually applied on beaings cannot be used fo beaings life calculations; theefoe, a hypothetical load should be estimated that has a constant magnitude and passes though the cente of the beaing, and will give the same beaing life that the beaing would attain unde actual conditions of load and otation. Such a hypothetical load is called the dynamic equivalent load. Assuming the equivalent adial load as P, the adial load as F, the axial load as F a, and the contact angle as α, the elationship between the equivalent adial load and beaing load can be appoximated as follows: P = XF + YF a whee X : Radial load facto Y : Axial load facto See Table 1.1 The axial load facto vaies depending on the contact angle. In the case of olle beaings, the contact angle emains the same } Table 1.1 Value of Factos X and Y Nomal Single, DT DB o DF if o F a Contact e F C a / F e F a / F >e F a /F e F a / F >e 0 Angle X Y X Y X Y X Y 0.178 0.38 1.47 1.65 2.39 0.357 0.40 1.40 1.57 2.28 0.714 0.43 1.30 1.46 2.11 1.070 0.46 1.23 1.38 2.00 15 1.430 0.47 1 0 0.44 1.19 1.00 1.34 0.72 1.93 2.140 0.50 1.12 1.26 1.82 3.570 0.55 1.02 1.14 1.66 5.350 0.56 1.00 1.12 1.63 18 0.57 1 0 0.43 1.00 1.00 1.09 0.70 1.63 25 0.68 1 0 0.41 0.87 1.00 0.92 0.67 1.41 30 0.80 1 0 0.39 0.76 1.00 0.78 0.63 1.24 40 1.14 1 0 0.35 0.57 1.00 0.55 0.57 0.93 50 1.49 0.73 1.00 1.37 0.57 0.73 1.00 55 1.79 0.81 1.00 1.60 0.56 0.81 1.00 60 2.17 0.92 1.00 1.90 0.55 0.92 1.00 Fo i, use 2 fo DB, DF and 1 fo DT Table 1.2 Basic Load Rating of ACBB as Multiple Sets Double Row Tiple Row Quaduple Row C C o C C o C C o 1.62 times elative to Single ow 2 times 2.15 times elative to elative to Single ow Single ow 3 times 2.64 times elative to elative to Single ow Single ow 4 times elative to Single ow Life Rolling Fatigue Life and Basic Rating Life When olling beaings ae opeated unde load, the aceways of thei inne and oute ings and olling elements ae subjected to epeated cyclic stess. Because of metal fatigue of the olling contact sufaces of the aceways and olling elements, scaly paticles may sepaate fom the beaing mateial. This phenomenon is called flaking. Rolling fatigue life is epesented by the total numbe of evolutions at which time the beaing suface will stat flaking due to stess. This is called fatigue life. Even fo seemingly identical beaings, which ae of the same type, size, and mateial and eceive the same heat teatment and othe pocessing, the olling fatigue life vaies geatly, even unde identical opeating conditions. This is because the flaking of mateials due to fatigue is subject to many othe vaiables. Consequently, basic ating life, in which olling fatigue life is teated as a statistical phenomenon, Fo ball beaings Fo olle beaings whee L : Basic ating life ( 6 ev, o h) P C L= ( L= ( L= ( L= ( ) C P 3 6 60n ) C P /3 6 60n ) C P ) C P 3 /3 (h) (h) : Beaing load (equivalent load) (N) (Refe to Page 125) : Beaing dynamic load ating (N) Fo adial beaings, C is witten C egadless of the magnitude of the axial load. In the case of single ow deep goove ball beaings and angula contact ball beaings, the contact angle inceases when the axial load is inceased. Such change in the contact angle can be expessed by the atio of the basic static load ating C 0 and axial load F a. Table 1.1 shows the axial load facto at the contact angle coesponding to this atio. Regading angula contact ball beaings, the effect of change in the contact angle on the load facto may be ignoed unde nomal conditions even if the contact angle is as lage as 25, 30 o 40. Fo the thust beaing with the contact angle of α 90 eceiving both adial and axial loads simultaneously, the equivalent axial load P a becomes as follows: P a = XF + YF a is used in pefeence to actual olling fatigue life. Suppose a numbe of beaings of the same type ae opeated Fo thust beaings, C is witten C a n : Rotational Speed (min 1 ) individually unde the same conditions. Afte a cetain peiod of time, % of them fail as a esult of flaking caused by olling fatigue. The total numbe of evolutions at this point is defined In the case of beaings that un at a constant speed, it is convenient to expess the fatigue life in tems of hous. as the basic ating life o, if the speed is constant, the basic ating life is often expessed by the total numbe of opeating hous completed when % of the beaings become 138 139

1. LIFE Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Life Calculation of Multiple Beaings as a Goup When multiple olling beaings ae used in one machine, the fatigue life of individual beaings can be detemined if the load acting on individual beaings is known. Geneally, howeve, the machine becomes inopeative if a beaing in any pat fails. It may theefoe be necessay in cetain cases to know the fatigue life of a goup of beaings used in one machine. 3 The fatigue life of the beaings vaies geatly and ou fatigue life calculation equation L = ( C ) applies to the 90% life (also called P the ating fatigue life, which is eithe the goss numbe of evolution o hous to which 90% of multiple simila beaings opeated unde simila conditions can each). In othe wods, the calculated fatigue life fo one beaing has a pobability of 90%. Since the enduance pobability of a goup of multiple beaings fo a cetain peiod is a poduct of the enduance pobability of individual beaings fo the same peiod, the ating fatigue life of a goup of multiple beaings is not detemined solely fom the shotest ating fatigue life among the individual beaings. In fact, the goup life is much shote than the life of the beaing with the shotest fatigue life. Assuming the ating fatigue life of individual beaings as L 1, L 2, L 3...L n and the ating fatigue life of the entie goup of beaings as L, the below equation is obtained : whee, e = 1.1 (both fo ball and olle beaings) Life Calculations of Peloaded Angula Contact Ball Beaings To establish the total adial (F ) and axial (F a ) load components on each beaing in a multiple aangement of peloaded angula contact ball beaings, the extenally applied adial load (F e ) and axial load (F ae ), the axial peload (F ao ) and the load distibution must be taken into account. The latte is a function of the olling element to aceway deflection which is popotional to (load) 2/3. The calculation pocedue fo popula mounting vaiations of identical beaings is detailed below. Back-to-back, Pai of Beaings Unde extenal adial load (F e ), total Peload (F ap ) is the following: when Fao Fae Fap = (1) (2) Fe F ap < F ao, use F ap = F ao F e 1.2 tanα + F ao 2 Total axial component of (F a1, F a2 ) with applied axial load on each beaing (1 and 2): F a1 = 2/3F ae + F ap 1 L e 1 1 1 = + + + + 1 L 1 e Fao L 2 e L 3 e when F a2 < 0 the peload is elieved so that F a1 = F ao, and F a2 = 0 L n e Total adial component of load (F ) on each beaing is popotioned by the atio of the axial load on each beaing to the total axial load, each component aised to the powe of 2/3: F 1 = F 2 = The dynamic equivalent adial load (P 1 ) and (P 2 ) fo each beaing is calculated fom: P 1 = XF 1 + YF a1 P 2 = XF 2 + YF a2 The values of X and Y ae obtained fom Table 1.1 (Page 139) The basic ating life (L ) of each beaing is: The two beaings may be consideed as a unit and accoding to the theoy of pobability, the life of the unit, o pai of beaings, will be shote than the shotest ating life of the individual beaings. Thus: L = 2/3 F a1 Fa1 2/3 2/3 + F a2 2/3 F a2 Fa1 2/3 2/3 + F a2 1 F e F e 16 667 C L (1) = ( ) 3 n 16 667 C L (2) = ( ) 3 n P 1 P 2 1 1 ( + ) L1.1 (1) L1.1 (2) (h) (h) 1 1.1 (h) DBD Set of Beaings Fao Fae (1) (1) (2) Unde extenal adial load (F e ), total Peload (F ap ) is the following: F ap1 = F ap2 = when F ap1 < F ao /2, use F ap1 = F ao /2 and F ap2 < F ao, use F ap2 = F ao Total axial component of load (F a1, F a2 ) on each beaing with applied axial load : F a1 = 0.4F ae + F ap1 F a2 = F ap2 0.2F ae When F a2 < 0 the peload is elieved so that Total adial component of load (F ) on each beaing : Fe F e 1.2 tanα + F ao 4 F e 1.2 tanα + F ao 2 F F a1 = ae and F a2 = 0 2 F 1 = F 2 = 2/3 F a1 2Fa1 2/3 2/3 + F a2 2/3 F a2 2Fa1 2/3 2/3 + F a2 The dynamic equivalent adial load (P 1 ) and (P 2 ) fo each beaing : P 1 = XF 1 + YF a1 P 2 = XF 2 + YF a2 F e F e The values of X and Y ae obtained fom Table 1.1, page 139. The basic ating life (L ) of each beaing : L fo the unit = 16 667 C L (1) = ( ) 3 n 16 667 C L (2) = ( ) 3 n P 1 P 2 1 1 1 ( + ) L1.1 (1) L1.1 (2) Fao (h) (h) 1 1.1 (h) DBB Set of Beaings Fao Fae (1) (1) (2) (2) Unde extenal adial load (F e ), total Peload (F ap ) is the following: F ap = When F ap < F ao /2, use F ap = F ao /2 Total axial component of load (F a1, F a2 ) on each beaing with applied axial load F a1 = 1/3F ae + F ap F a2 = Fap 1/6F ae When F a2 < 0 the peload is elieved so that Total adial component of load (F ) on each beaing : Fe F e 1.2 tanα + F ao 4 F F a1 = ae and F a2 =0 2 F1 = Fa1 2/3 2/3 + F a2 F2 = 2/3 F a1 2/3 F a2 Fa1 2/3 2/3 + F a2 The dynamic equivalent adial load (P 1 ) and (P 2 ) fo each beaing : P 1 = XF 1 + YF a1 P 2 = XF 2 + YF a2 F e 2 The values of X and Y ae obtained fom Table 1.1, page 139. The basic ating life (L ) of each beaing : L fo the unit = 16 667 C L (1) = ( ) 3 n 16 667 C L (2) = ( ) 3 n 1 F e 2 1 1 ( + ) L1.1 (1) P 1 P 2 L1.1 (2) (h) (h) 1 1.1 (h) Fao Life 140 F a2 = F ap 1/3F ae 141

1. LIFE New Life Theoy Intoduction Beaing technology has advanced apidly in ecent yeas, paticulaly in the aeas of dimensional accuacy and mateial cleanliness. As a esult, beaings can now have a longe olling fatigue life in a cleane envionment, than the life obtained by the taditional ISO life calculation fomula. This extended life is patly due to the impotant advancements in beaing elated technology such as lubication cleanliness and filtation. The conventional life calculation fomula, based on the theoies of G. Lundbeg and A. Palmgen (L-P theoy, heeafte) addesses only sub-suface oiginated flaking. This is the phenomenon in which cacks initially occu due to dynamic shea stess immediately below the olling suface then pogessively each the suface in the fom of flaking. 1 1n τ o c N e V h S Z o NSK s new life calculation fomula theoizes that olling fatigue life is the sum total of the combined effects of both subsuface oiginated flaking and suface oiginated flaking occuing simultaneously. NSK New Life Calculation Fomula (1) Sub-suface oiginated flaking A pe-condition of sub-suface oiginated flaking of olling beaings is contact of the olling elements with the aceway via a sufficient and continuous oil film unde clean lubication conditions. Fig. 1.1 plots the L life fo each test condition with maximum suface contact pessue (P max ) and the numbe of epeated stesses applied on the odinate and the abscissa, espectively. In the figue, line L theoetical is the theoetical line obtained using the conventional life calculation fomula. As maximum suface contact pessue deceases, the actual life line sepaates fom the line ceated by using conventional theoetical calculation and moves towads longe life. This sepaation suggests the pesence of fatigue load limit P u below which no olling fatigue occus. This is bette illustated in Fig. 1.2. Fig. 1.1 Life Test Result unde Clean Lubication Condition Max suface contact pessue, MPa 6 000 5 000 4 000 3 000 2 000 1 000 5 Beaing load, P P u Flat washe 6204, µ m filtated 6206, µ m filtated 6206, 3 µ m filtated 6206, µ m filtated L theoetical Longe than theoetical life (pesence of fatigue load limit) 6 7 8 9 11 Numbe of epeated stess, cycles Conventional theoy Lifetime 7306 (VIM-VAR) 20 m filtated µ M50, 6 µ m filtated Fig. 1.2 NSK s New Life Theoy That Consides Fatigue Limit NSK s new life theoy P u : fatigue load limit (2) Suface oiginated flaking Unde actual beaing opeation, the lubicant is often contaminated with foeign objects such as metal chips, bus, cast sand, etc. When the foeign paticles ae mixed in the lubicant, the paticles ae pessed onto the aceways by the olling elements and dents occu on the sufaces of the aceways and olling elements. Stess concentation occus at the edges of the dents, geneating fine cacks, which ove time, popagate into flaking of the aceways and olling elements. As shown in Fig. 1.3, the actual life is shote than conventional calculated life, unde conditions of contaminated lubication at low max suface pessue. The actual life line sepaates fom the line ceated by theoetical life calculations and moves towads a shote life. This esult shows that the actual life unde contaminated lubication is futhe shotened compaed to the theoetical life because of the decease in maximum suface contact pessue. Table 1.3 Value of Contamination Coefficient a c Application examples Fig. 1.3 Life Test Result unde Contaminated Lubication Condition Max suface contact pessue, MPa 6 000 5 000 4 000 3 000 2 000 1 000 5 6206. Debis size 74 147 µ m Hadness 870HV L theoetical Numbe of epeated stess, cycles Theefoe, the NSK new life calculation fomula consides the tend in the esults of the life test unde conditions of clean envionment and at low load zone. Based on these esults, the new life equation is a function of (P-P u )/C, which is affected by specific lubication conditions identified by the lubication paamete. Also, it is assumed that effects of diffeent types and shapes of foeign paticles ae stongly influenced by the beaing load and lubication conditions pesent, and that such a elationship can be expessed as a function of the load paamete. This elationship of the new life calculation fomula is defined by (P-P u )/C 1/a c. Calculation fomula fo suface oiginated flaking, based on the above concept, is as follows: Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Shote than theoetical life 6 7 8 9 11 1 (τ τ 1n N e u ) dv { 1 f (a c,a L ) 1} c h Z o S V Vey clean Clean Nomal Contaminated Heavily contaminated a c facto 1 0.8 0.5 0.4 0.1 0.05 Application 30 0 µm µm filtation 30 µm filtation guide filtation Sealed gease lubicated beaing fo electical appliances and infomation technology equipment, etc. Sealed gease lubicated beaing fo electic motos Sealed gease beaing fo ailway axle boxes and machine tools, etc. V = stess volume Nomal usage Automotive hub unit beaing, etc. The contamination coefficient in tems of lubication cleanliness is shown in Table 1.3. Test esults on ball and olle beaings with gease lubication and clean filtation show the life as being a numbe of times longe than that of the contaminated calculation. Yet when the foeign object is hade than Hv350, hadness becomes a facto and a dent appeas on the aceway. Fatigue damage fom these dents, can pogess to flaking in a shot time. Test esults on ball and olle beaings unde conditions of foeign object contamination show fom 1/3 to 1/ the life when compaed with conventionally calculated life. Based on these test esults, the contamination coefficient a c is classified into five steps fo NSK s new life theoy. (3) New life calculation fomula The following fomula, which combines sub-suface oiginated flaking and suface oiginated flaking, is poposed as the new life calculation fomula. 1 (τ τ 1n N e u ) c dv { 1 h Z o f (a c,a L ) } S Geate than 0 µm filtation o no filtation (oil bath, ciculating lubication, etc.) Beaing fo automotive tansmission; Beaing fo industial geabox; Beaing fo constuction machine, etc. L able = a 1 a NSK L V No filtation, pesence of many fine paticles Life 142 143

1. LIFE Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Life Coection Facto a NSK The life coection facto a NSK is the function of lubication paamete (P-P u )/C 1/a c as shown below: a NSK F {a L,, P-P ( u C a c )} NSK s new life theoy consides the life extending affect of Fig. 1.4 New Life Calculation Diagam fo Ball Beaings a NSK 0 1 K= 1 K= 0.5 K= 4 K= 2 Life of High Speed Beaings When beaings opeate at high speed, in addition to the extenal load, the intenal load geneated by the centifugal foce acting on the olling element must be taken into account. A compute should be used fo the calculation of the load conditions on beaings opeation at high speeds (in excess of 800,000 d m n). Life of Ceamic Hybid Beaings C, C o valves and L standads do not exist in ISO281 fo ceamic beaings. Howeve, ceamic beaing life tends to be longe than that of conventional steel ball beaings, unde the same appopiate opeating conditions. This may be especially tue in the situations whee the Life impoved mateial and heat teatment by coecting the contamination facto a c. The theoy also utilizes viscosity atio k (k = v/v 1 whee v is the opeational viscosity and v 1 the 0.1 K= 0.15 K= 0.1 Balance among the foces acting on the olling elements and inne/oute ings as well as changes in contact angle ae obtained by using convegence calculations( 1 ), based on the centifugal foce on the balls ae significant. equied viscosity) because the lubication paamete a L changes with the degee of oil film fomation, based on the lubicant and opeating tempeatue. The theoy indicates that 0.01 0.01 0.1 1 (P P u ) /C 1/a c load condition of the beaing (adial load, axial load, centifugal foce on olling elements, etc.). the bette the lubication conditions (highe k) the longe the life. Figues 1.4 and 1.5 show the diagams of the coection facto a NSK as a function of the new life calculation fomula. Also in Fig. 1.5 New Life Calculation Diagam fo Rolle Beaings 0 K= 1 K= 4 K= 2 Life is initially calculated fo each individual olling element unde load between inne and oute ing and then the life of the entie single ow of beaing is obtained. ( 1 ) Convegence calculations allow NSK to calculate with geat this new life calculation fomula, point contact and line contact ae consideed sepaately fo ball and olle beaings espectively. New Life Calculation Fomula L able a NSK 1 0.1 K= 0.5 K= 0.15 K= 0.1 accuacy the centifugal foce exeted on balls and to actually pefom load calculations fo each olling element. Fo life calculations on beaings used in high speed applications, please contact NSK. The concept of new life calculation fomula is simplified into one facto as shown by the fomula below in which conventional life calculation fomula (L ) is multiplied with 0.01 0.01 0.1 1 (P P u ) /C 1/a c coection facto (a NSK ) and eliability facto (a 1 ; Table 1.4): Fig. 1.6 Change in Contact Angle Due to Centifugal Foce Table 1.4 Reliability Facto L able = a 1 a NSK L Reliability (%) 90 95 96 97 98 99 Reliability Facto 1.00 0.62 0.53 0.44 0.33 0.21 To Access the NSK Calculation Tools Visit ou website at http://www.nsk.com α e Oute ing F C α i Inne ing F C : The Centifugal Foce Applied to The Rolling Elements 144 145

2. STATIC LOAD RATINGS AND STATIC EQUIVALENT LOADS Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Static Load Ratings When subjected to an excessive load o a stong shock load, olling beaings may incu a local pemanent defomation of the olling elements and aceway suface if the elastic limit is exceeded. The nonelastic defomation inceases in aea and depth as the load inceases, and when the load exceeds a cetain limit, the smooth unning of the beaing is impeded. The basic static load ating is defined as that static load which poduces the following calculated contact stess at the cente of the contact aea between the olling element subjected to the maximum stess and the aceway suface. Fo ball beaings : 4 200MPa Fo olle beaings : 4 000MPa In this most heavily contacted aea, the sum of the pemanent defomation of the olling element and that of the aceway is nealy 0.0001 times the olling element s diamete. The basic static load ating C 0 is witten C 0 fo adial beaings and C 0a fo thust beaings in the beaing tables. Static Equivalent Loads The static equivalent load is a hypothetical load that poduces a contact stess equal the maximum stess unde actual conditions, while the beaing is stationay (including vey slow otation o oscillation), in the aea of contact between the most heavily stessed olling element and beaing aceway. The static adial load passing though the beaing cente is taken as the static equivalent load fo adial beaings, while the static axial load in the diection coinciding with the cental axis is taken as the static equivalent load fo thust beaings. Static equivalent load on adial beaings. The geate of the two values calculated fom the following equations should be adopted as the static equivalent load on adial beaings. P 0 = X 0 F + Y 0 F a P 0 = F Static equivalent load on thust beaings: P 0 = X 0 F + F a α 90 Pemissible Axial Loads In ode to optimize beaing pefomance, NSK has defined the pemissible axial loads statistically, based on the following 2 situations: 1 --The limiting load at which a contact ellipse is geneated between the ball and aceway due to a change in the contact angle when a adial beaing, which is unde an axial load, ides ove the shoulde of the aceway goove. 2 --The value of a static equivalent load P 0 which is detemined fom the basic static load ating C 0 using static axial load facto Y 0. The pemissible axial load is detemined by the lowe of the two values defined above. This value has been poven though expeience, and includes a safety facto. (Refe to the beaing tables fo pemissible axial loads) Fig. 2.2 Contact Ellipse and the Limiting Axial Loads Static Load Ratings and Static Equivalent Loads Fig. 2.1 The Relation between Indentations and Basic Static Load Rating Q Dw Table 2.1 Static Equivalent Load P 0 = X 0 F + Y 0 F a Contact Single DT DB o DF Angle X 0 Y 0 X 0 Y 0 15 0.5 0.46 1 0.92 18 0.5 0.42 1 0.84 25 0.5 0.38 1 0.76 30 0.5 0.33 1 0.66 40 0.5 0.26 1 0.52 whee P 0 : Static equivalent load (N) F : Radial load (N) F a : Axial load (N) X 0 : Static adial load facto Y 0 : Static axial load facto a α Q Y When single o DT mounting and F > 0.5F + Y 0 F a, use P 0 = F Y Q = 1 + 2 0.0001D w 1 2 Pemissible Static Load Facto The pemissible static equivalent load on beaings vaies depending on the basic static load ating and also thei application and opeating conditions. The pemissible static load facto is a safety facto that is applied to the basic static load ating, and it is defined by the atio in equation below: f S = (C 0 /P 0 ) whee C 0 : Basic static load ating (N) P 0 : Static equivalent load (N) Table 2.2 Values of Pemissible Static Load Facto f s 146 Opeating conditions Lowe limit of f s Ball beaings Rolle beaings Low-noise applications 2.0 3.0 Beaings subjected to vibation and shock loads 1.5 2.0 Standad opeating conditions 1.0 1.5 147

3. ANGULAR CONTACT BALL BEARING COMBINATIONS Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Angula Contact Ball Beaing Combinations Available Nomally, NSK supplies matched supe pecision angula contact ball beaings as 2, 3, and 4 ow combinations. The combinations available fo the fixed end of spindles ae usually 2 ows (DB), 3 ows (DBD), and 4 ows (DBB) sets. Howeve, in the case of 3 ow combinations, since the peload distibution to each beaing is not equal, the optimum peload setting ange is vey limited, making them unsuitable fo high speed applications. Matched beaings ae manufactued as sets, so when they ae mounted adjacent to each othe, a given peload is automatically obtained. The vaiation pe pai of matched beaings fo boe and oute diametes is adjusted to less than 1/3 of the pemissible toleance. Table 3.1 Featues of Each Combination Load diection Moment stiffness Speed capability Heat geneation Stiffness DB DF DT DBD DBB Excellent Vey good Good Fai One diection only Two diections Shaft Bending Compaison between Back-to-back and Face-to-face Aangements Moment stiffness is diffeent between Back-to-back and Faceto-face aangements as shown in the shaft bending compaison calculation example below. In this example, angula contact ball beaings (75BNRXET) ae used in the font side and the typical shaft deflections ae shown fo both DB and DF configuations. When 1 000 N of adial load is applied on the spindle nose, adial displacements on the spindle nose ae calculated as follows. σ DB = 2.4079 2 σ DF = 2.9853 2 This demonstates the effect of the distance between effective load centes on spindle bending. Fig. 3.4 Spindle Displacement Cuve DF Aangement DB Aangement Radial Load: 1 000 N Angula Contact Ball Beaing Combinations Featues of Each Combination Back-to-back Aangement, DB Axial loads in both diections and adial loads can be sustained. Since the distance between the effective load centes is lage, this type is suitable if moments ae applied. Howeve, if accuacy of housing is not enough and thee is a misalignment in the spindle, intenal loads of beaings could be lage enough to possibly cause pematue failue due to geate moment stiffness. Fig. 3.1 The Distance between the Effective Load Centes of Back-to-back and Face-to-face Aangements Mounting Instuctions fo Angula Contact Ball Beaings Matching Method Diection of Matching Fo matched beaings, the mounting ode and load application diection ae vey impotant. A V is maked on the oute diamete sufaces of the beaings as shown in the figue on the ight. When the beaings ae mounted so thei maks coectly fom a V, they ae popely matched and aligned. On the side suface o chamfeed pat of the inne ings, the symbol is maked to indicate the position of maximum adial unout. Optimum accuacy is achieved when the beaing is mounted so the symbol is placed just opposite the position of shaft maximum eccenticity. Fig. 3.6 Combinations of Angula Contact Ball Beaings DB DF DT Face-to-face Aangement, DF Compaed with the DB type, the distance between the effective load centes is small, so the capacity to sustain moments is infeio to the DB type. On the othe hand, this type is suitable fo using with housings that have less accuacy o lage shaft deflections due to low bending stiffness of shaft. The distance between the effective load centes DB The distance between the effective load centes DF Fig. 3.2 Load Diection in Back-to-Back and Tandem Aangements DBD DFD DTD Tandem Aangement, DT Axial loads in one diection and adial loads can be sustained. Since axial stiffness of this type is twice the value of a single ow type, this aangement is used when the axial load in one diection is heavy. Fig. 3.5 The Symbol fo the Position of Maximum Radial Runout of Inne Ring DBB DFF DBT 3 ows Aangement, DBD Axial loads in both diections and adial loads can be sustained. Howeve, the peload distibution to each beaing is not equal, and peload on the counte side (single side) is twice that of othe side. Consequently, this type is unsuitable fo high speed opeation because of the lage incease of intenal load of the single side which could lead to beaing failue. DB Fig. 3.3 Intenal Peload in DBD Aangement Peload=500 N DT DFT DTT 4 ows Aangement, DBB Axial loads in both diections and adial loads can be sustained. In situations that have the same axial cleaance as DB aangement, peload and stiffness ae twice that of the DB aangement. Also, the pemissible axial load of a 4 ow aangement is lage than that of a DB aangement. 250 N 250 N 500 N 148 149

3. ANGULAR CONTACT BALL BEARING COMBINATIONS Univesal Combination NSK supplies univesal combination angula contact ball beaings that have the same amount of stand out on both the font and back face. This means that when beaings that have the same efeence numbe ae combined, they have the specified amount fo each standad peload. Fo univesal combination beaings, the V combination maks on the oute diamete suface of oute ing pevent diection mistakes, ensue coect matching when they ae mounted, and indicate the diection of the contact angle. Fig. 3.7 Univesal Combination f Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Notice fo Use of Single Univesal (SU) Beaings When these beaings ae used as pat of multiple combined beaings, it is ecommended that the vaiation of boe and oute diamete toleance is within 1/3 of toleance ange. Thee ae also special beaings with special accuacy Class 4Y that can accommodate small vaiations of boe and oute diamete toleance. Class 4Y toleance has the same unning accuacy as Class 4 but has a naowe toleance ange of boe and oute diamete than Class 4. It is suitable fo andom matching method univesal combination beaings. Class 4Y is suitable fo use andom matching method univesal combination beaings. Howeve, when these beaings ae opeated ove 1 500 000 d m n, thee is a possibility that this vey small vaiation of fits with eithe the shaft o the housing can cause beaing failue because of imbalance of intenal load in each ow. If these beaings ae consideed fo such high speed applications, this issue should be taken into account. Fig. 3.8 Toleance of P4 and P4Y Accuacy Applicable to any aangement because f (stand out of font face) is same as b (stand out of back face). b Vaiation of boe toleance Vaiation of oute diamete toleance Toleance Range of P4Y Toleance Range of P4 Toleance Range of P4 Toleance Range of P4Y Angula Contact Ball Beaing Combinations Negative Cleaance: 2f When beaings ae mounted in andom matching method, vaiation of toleance should be consideed. Negative Cleaance: 2b DB aangement Peload is stand out of back face x 2 = 2b (=2f) and it is the specified amount fo each standad peload. Diffeence between SU and DU Beaings Thee ae 2 types of NSK univesal combination beaings as shown in the table below. Table 3.2 Featues of SU and DU Beaings DF aangement Peload is stand out of font face x 2 = 2f (=2b) and it is the specified amount fo each standad peload. DT aangement Thee is no cleaance on DT suface because stand out of font face f is same as stand out of back face b. This situation is the same as beaings combined as DT. SU DU Row of beaings 1 2 Vaiation of boe and oute diamete toleance Contolled in 1/3 of toleance Combination Mak and Matching Method fo Univesal Combination Beaings Boe and Oute Diamete Toleance (Class 4Y) Fig. 3.9 Univesal Beaings Combinations DBD DB DF DT DFD DTD DBB DFF DBT Table 3.3 Toleance of Boe Diamete of Inne Ring Boe diamete Class 4 Class 4Y (Contolled to medium value) Ove Incl High Low High Low 30 50 0 6 1 3 50 80 0 7 2 5 80 120 0 8 3 6 120 150 0 3 7 Toleances fo beaings unde 30 mm boe ae the same as values quoted between 30 50 mm boe. Table 3.4 Toleance of Oute Diamete of Oute Ring Unit: µm Unit: µm Oute diamete Class 4 Class 4Y (Contolled to medium value) Ove Incl High Low High Low 50 80 0 7 2 6 80 120 0 8 2 6 120 150 0 9 3 7 150 180 0 3 7 180 200 0 11 4 9 200 Unde 215 0 11 2 9 Toleances fo beaings unde 50 mm oute diamete ae the same as values quoted between 50 80 mm oute diamete. DFT DTT 150 151

4. PRELOAD AND RIGIDITY Regading the igidity of machine tool spindles, it is possible to think of the beaings as being spings. Axial displacement, when an axial load is applied to the spindle, is detemined by the axial igidity of the fixed end beaings. When high adial igidity is equied, cylindical olle beaings ae geneally used. Axial loads ae usually sustained by angula contact ball beaings. The bigge the contact angle of the angula contact ball beaings, the highe the axial igidity. Beaings of the same boe size, which have moe olling elements (diamete seies 0 o 9; o BNR o BNR19 seies), have highe igidity, even though the diamete o the olling elements is smalle. Nomally, peload is applied to beaings in ode to incease igidity of machine tool spindles. But if the peload is excessively high, flaking and possible seizue will esult. Many uses incease igidity by using a combination of two o moe angula contact ball beaings. This is especially tue fo ball scew suppot beaings, whee high igidity is equied, the contact angle is big, and peload is highe than that fo a spindle. Axial loads ae widely sustained with two o thee beaings. Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Change of Rigidity by Peload Position Peload and Axial Rigidity When the inne ings of the duplex beaings shown in Fig. 4.3 ae fixed axially, beaings A and B ae displaced δ aoa and δ aob and axial space δ ao between the inne ings is eliminated. With this condition, a peload F ao is imposed on each beaing. The elation between axial load, F a and displacement in a duplex set is shown in Fig. 4.4. Figues 4.5 and 4.6 illustate the same concepts fo a DBD aangement. Back-to-Back Aangement (DB) DBD Aangement Fig. 4.3 Peloaded DB Aangement Fig. 4.5 Peloaded DBD Aangement Beaing A Beaing B Beaing AA side Beaing B side F ao F ao F ao F ao F a δ ao F a δ ao Pupose The main puposes of peloaded beaings in a machine tool spindle ae as follows: To impove and maintain the unning accuacy of the shaft. To incease beaing igidity. To minimize noise due to axial vibation and esonance. To pevent false binelling. To pevent sliding between the olling elements and aceways due to gyoscopic moments. To maintain the olling elements in thei pope position. Usually a peload is applied to beaings by using two o moe beaings in combination with each othe, such as angula contact ball beaings o tapeed olle beaings. Cylindical olle beaings can be peloaded by making the adial intenal cleaance negative. (1) Position Peload A position peload is achieved by fixing two axially opposed beaings in a position that emains unchanged while in opeation. In pactice, the following thee methods ae geneally used to obtain a position peload. 1. By installing a duplex beaing set with peviously adjusted stand-out dimensions and axial cleaance 2. By using a space o shim of pope size to obtain the equied spacing and peload (see Fig. 4.1). 3. By utilizing bolts o nuts to allow adjustment of the axial peload (In this case, the stating toque should be measued to veify the pope peload. Howeve, this peload, thus isking vetical displacement (tilting) of the beaing.) Fig. 4.1 Position Peload (2) Constant Pessue Peload A constant pessue peload is achieved using a coil o leaf sping. Even if the elative position of the beaings change duing opeation, the magnitude of the peload emains elatively constant. An angula contact ball beaing aangement fo high speed otation is shown in Fig. 4.2. Fig. 4.2 Constant Pessue Peload Fig. 4.4 Peloaded Axial Displacement of DB Aangement Beaing B Axial load Beaing A F a F aa F ao FaB δ aa δ ab δ aoa δ aob Side A Side B F a : Axial load applied fom outside : Axial load imposed on Beaing A F aa F ab δ a δ aa δ ab δ aoa δ aob δ a : Axial load imposed on Beaing B : Displacement of duplex set : Displacement of Beaing A : Displacement of Beaing B Axial displacement Displacement of one beaing on side B Axial load δ a δ aoa δ aob Fig. 4.6 Peloaded Axial Displacement of DBD Aangement Displacement of both beaings on side AA δ aa δ ab δ aoa δ aob δ ao F a F aa F ao F ab Displacement of one beaing on side AA Side AA Side B F a : Axial load applied fom outside : Axial load imposed on Beaing AA F aa F ab δ a δ aa δ ab : Axial load imposed on Beaing B : Displacement of tiplex set : Displacement of Beaing AA : Displacement of Beaing B Axial displacement Peload and Rigidity method cannot be ecommended fo high pecision machine tool spindles due to difficulty in veifying the pope 152 153

4. PRELOAD AND RIGIDITY Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Constant Pessue Peload and Axial Rigidity Fig. 4.7 illustates duplex beaing unde constant pessue peload. The deflection cuve of the sping is nealy paallel to the hoizontal axis due to the igidity of the spings being smalle than that of the beaing. As a esult, igidity unde constant pessue peload is appoximately equal to that fo a single beaing with a peload of F ao being applied to it. Fig. 4.8 compaes the igidity of a beaing with position peloading and one with constant pessue peloading. Fig. 4.7 Axial Displacement with Constant Pessue Peload Axial load δ a δ ao δ aa Axial load Beaing with position peload δ a Fa Fao Fig. 4.8 Compaison of Stiffness and Peloading Beaing with constant pessue peload Axial displacement Beaing without peload δ a Fa δ a Beaing A Axial displacement Compaison of Peloading Methods Position peload and constant pessue peload can be compaed as follows: (1) When both of the peloads ae equal, the position peload povides geate beaing igidity. In othe wods, the deflection due to extenal loads is less fo beaings with a position peload. (2) Unde position peload, the peload vaies depending on such factos as a diffeence in axial expansion due to a tempeatue diffeence between the shaft and housing, a diffeence in adial expansion due to a tempeatue diffeence between the inne and oute ings, and deflection due to load. Unde constant pessue peload, it is possible to minimize any change in peload because the vaiation of the sping load with shaft expansion and contaction is negligible. Fom the foegoing explanation, it is seen that position peloads ae geneally pefeed fo inceasing igidity while constant pessue peloads ae moe suitable fo high speed applications. Peload Amount A lage peload esults in highe igidity. Howeve, if peload is lage than necessay, abnomal heat is geneated, which educes fatigue life. In exteme cases, it may esult in excessive wea o even seizue. Theefoe, the amount of peload should be caefully studied and selected to avoid excessive peload while taking into consideation the type of application and the opeating conditions. High Speed Spindles and Peload When beaings opeate at high speed, the contact suface pessue between the balls and the inne and oute ing aceways inceases due to expansion of the intenal axial load caused by centifugal foce, geneation of intenal axial load caused by centifugal foce on the balls, and tempeatue diffeence between inne and oute ings. Fo beaings having a contact angle, such as angula contact ball beaings, pue olling motion with sliding due to spin moments and gyoscopic moments on the balls may occu. Sliding inceases as beaing speed inceases. As a esult, the intensity of heat geneated in the contact aeas inceases and the viscosity of the lubicating oil deceases. In some cases, a beakdown of the oil film occus, esulting in complete seizue of the beaing. In othe wods, if the contact suface pessue at low speed opeation is equal to that of high speed opeation, then heat geneation, which is due to sliding at high speeds, becomes moe intense. This concept can be expessed quantitatively as a Pvvalue, whee P is the contact suface pessue, and v is the slip ate. The Pv value can be applied to the olling contact aea of the beaing. If the Pv value is constant, sliding is geate at high speed opeation than at low speed opeation. Wheeas velocity is inceased, it becomes necessay to educe the contact suface pessue. NSK can calculate contact suface pessue and slip ate geneated duing high speed opeations by compute. Taking advantage of abundant empiical test data and actual maket esults, we can detemine the peload accoding to limiting factos, which ae based on the lubicating method and otating speed. Fo opeations exceeding 800,000 d m n, please contact NSK. Special Cleaance Fo special cleaance of combined angula contact ball beaings, NSK offes both CA and CP cleaances. CA: axial cleaance (Cleaance exists in the axial diection) CP: peload cleaance (Peload is geneated) Fig. 4.9 Special Cleaance + a Axial cleaance (CA) Peload Adjustment When you change peload (fo example EL L ), please adjust the diffeence of the measued axial cleaance, by a space. (When inceasing peload, inne space should be shote, and oute space should be shote when deceasing peload) Please efe to Pages 156 166 of the measued axial cleaances. Please efe the measuing load of axial cleaance to Table 4.1. Table 4.1 Measuing load of axial cleaance a Peload cleaance (CP) Nominal Outside Diamete (mm) Ove Incl Measuing load (N) 50 24.5 50 120 49 120 200 98 200 196 Applied to the beaing with the O. D. less than mm. Fig. 4. Radial Cleaance in Double Row Cylindical Rolle Beaing and Vaiation of Rolling Fatigue Life Life atio Radial displacement, mm 1.2 1.0 0.8 0.6 0.4 0.2 Beaing : NN3020 Radial load : 4 900 N 0 0.020 0.0 0 0.0 0.020 0.030 0.040 0.0075 0.005 0.0025 Radial cleaance (mm) Fig. 4.11 Radial Cleaance in Double Row Cylindical Rolle Beaing and Vaiation of Rigidity Beaing : NN3020 Radial load : 4 900 N 0 0.020 0.0 0 0.0 0.020 0.030 0.040 Radial cleaance, mm Intenal Cleaance in Cylindical Rolle Beaings In ode fo machine tool spindles to have high unning accuacy and igidity, beaings ae used with minimum intenal cleaance o peload afte mounted. Cylindical olle beaings with tapeed boes ae usually used to allow easie adjustment of intenal cleaance. In geneal, cylindical olle beaings fo the font end (fixed end) of the spindle ae adjusted to apply a peload duing opeating. Beaing fo the ea end (fee end) ae adjusted when mounted to poduce a slight cleaance duing opeating. The amount of adial intenal cleaance afte mounted is based on seveal factos such speed, load, lubicating method, beaing size, equied igidity, life, etc. Fig. 4. illustates the elation between adial intenal cleaance in a beaing and life. Fig. 4.11 shows the elation between adial intenal cleaance and adial elastic displacement of an NN3020 (Boe diamete 0 mm, outside diamete 150 mm, width 37 mm). Peload and Rigidity 154 155

4. PRELOAD AND RIGIDITY Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Peload and Rigidity (DB and DF Aangement) High Pecision Angula Contact Ball Beaings (Standad seies) Calculation of adial igidity Multiply axial igidity by factos in table A. Table A EL L M H 15 6.5 6.0 5.0 4.5 18 4.5 25 2.0 30 1.4 40 0.7 Calculation of peload and axial igidity fo combination beaings Multiply by factos in table B. Fo adial igidity, multiply the value obtained in table A with factos in table B. Table B DBD DBB Peload facto 1.36 2 Axial igidity 1.48 2 Radial igidity 1.54 2 79 seies, C angle Nominal contact angle 15 Steel ball and Ceamic ball 70 seies, C angle Nominal contact angle 15 Steel ball and Ceamic ball Nominal EL L M H Boe Numbe Beaing Boe Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) (N) (N/µm) (N) (N/µm) 00 7 (5) 15 (2) 14 29 ( 1) 19 59 ( 6) 27 01 12 8.6 (4) 12 15 (2) 16 39 ( 3) 24 78 ( 8) 34 02 15 12 (3) 14 25 (0) 20 49 ( 4) 26 0 ( 11) 38 03 17 12 (3) 15 25 (0) 20 59 ( 5) 30 120 ( 12) 43 04 20 19 (1) 19 39 ( 3) 26 78 ( 8) 35 150 ( 15) 48 05 25 19 (1) 21 39 ( 2) 28 0 ( 9) 43 200 ( 17) 61 06 30 24 (0) 25 49 ( 3) 33 0 ( 9) 45 200 ( 16) 65 07 35 34 (2) 29 69 ( 2) 39 150 ( 9) 55 290 ( 18) 78 08 40 39 (1) 32 78 ( 3) 42 200 ( 12) 63 390 ( 22) 88 09 45 50 (0) 37 0 ( 5) 50 200 ( 12) 66 390 ( 21) 94 50 50 (0) 39 0 ( 4) 51 250 ( 14) 78 490 ( 24) 111 11 55 60 ( 1) 45 120 ( 6) 58 290 ( 15) 90 590 ( 26) 127 12 60 60 ( 1) 46 120 ( 5) 60 290 ( 14) 93 590 ( 25) 128 13 65 75 ( 2) 53 150 ( 7) 71 340 ( 16) 4 690 ( 27) 146 14 70 0 ( 4) 59 200 ( ) 79 490 ( 22) 119 980 ( 35) 168 15 75 0 ( 4) 61 200 ( ) 88 490 ( 21) 120 980 ( 35) 171 16 80 0 ( 4) 62 200 ( 9) 80 490 ( 21) 124 980 ( 34) 173 17 85 145 ( 6) 73 290 ( 13) 97 640 ( 25) 138 1 270 ( 41) 191 18 90 145 ( 3) 79 290 ( 9) 2 740 ( 23) 156 1 470 ( 39) 219 19 95 145 ( 3) 81 290 ( 9) 5 780 ( 24) 165 1 570 ( 40) 231 20 0 195 ( 5) 83 390 ( 13) 112 880 ( 27) 164 1 770 ( 46) 231 21 5 195 ( 5) 86 390 ( 13) 116 880 ( 27) 167 1 770 ( 45) 235 22 1 195 ( 5) 89 390 ( 13) 120 930 ( 27) 173 1 860 ( 45) 244 24 120 270 ( 8) 2 540 ( 17) 135 1 270 ( 35) 200 2 550 ( 56) 278 26 130 320 ( ) 8 640 ( 20) 148 1 470 ( 38) 214 2 940 ( 61) 302 28 140 320 ( ) 111 640 ( 19) 150 1 470 ( 37) 218 2 940 ( 60) 309 30 150 395 ( 7) 124 790 ( 18) 166 1 790 ( 38) 239 3 560 ( 63) 334 32 160 425 ( 8) 134 855 ( 19) 179 1 930 ( 39) 258 3 840 ( 64) 361 34 170 485 ( 9) 151 970 ( 20) 200 2 180 ( 40) 288 4 3 ( 65) 403 36 180 595 ( 12) 158 1 190 ( 25) 211 2 650 ( 48) 302 5 340 ( 78) 425 38 190 605 ( 12) 162 1 2 ( 25) 217 2 790 ( 49) 315 5 600 ( 79) 443 40 200 785 ( 16) 183 1 570 ( 31) 244 3 570 ( 58) 352 7 1 ( 92) 493 Nominal EL L M H Boe Numbe Beaing Boe Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) (N) (N/µm) (N) (N/µm) 00 12 (3) 12 25 (0) 17 49 ( 5) 23 0 ( 12) 32 01 12 12 (3) 14 25 (0) 18 59 ( 6) 26 120 ( 14) 37 02 15 14 (3) 16 29 ( 1) 20 69 ( 7) 29 150 ( 16) 43 03 17 14 (2) 16 29 ( 1) 21 69 ( 7) 31 150 ( 16) 45 04 20 24 (0) 21 49 ( 4) 28 120 ( 12) 42 250 ( 22) 59 05 25 29 ( 1) 24 59 ( 5) 32 150 ( 14) 48 290 ( 24) 68 06 30 39 (1) 29 78 ( 3) 39 200 ( 13) 59 390 ( 24) 83 07 35 60 ( 1) 36 120 ( 7) 49 250 ( 16) 68 490 ( 28) 94 08 40 60 ( 1) 39 120 ( 6) 51 290 ( 17) 77 590 ( 30) 1 09 45 75 ( 3) 43 150 ( 8) 58 340 ( 19) 85 690 ( 33) 121 50 75 ( 2) 46 150 ( 8) 63 390 ( 20) 96 780 ( 34) 136 11 55 0 ( 4) 51 200 ( 11) 69 490 ( 24) 2 980 ( 40) 145 12 60 0 ( 4) 53 200 ( 11) 70 540 ( 26) 1 1 080 ( 42) 158 13 65 125 ( 6) 61 250 ( 13) 82 540 ( 24) 117 1 080 ( 39) 164 14 70 145 ( 7) 68 290 ( 14) 88 740 ( 30) 135 1 470 ( 48) 190 15 75 145 ( 7) 70 290 ( 14) 92 780 ( 31) 144 1 570 ( 49) 202 16 80 195 ( 6) 76 390 ( 14) 3 930 ( 31) 152 1 860 ( 52) 216 17 85 195 ( 6) 78 390 ( 14) 6 980 ( 32) 161 1 960 ( 52) 225 18 90 245 ( 8) 87 490 ( 18) 117 1 180 ( 37) 172 2 350 ( 60) 242 19 95 270 ( 9) 93 540 ( 19) 124 1 180 ( 36) 176 2 350 ( 58) 246 20 0 270 ( 9) 97 540 ( 18) 127 1 270 ( 37) 187 2 550 ( 60) 264 21 5 320 ( 11) 3 640 ( 21) 134 1 470 ( 42) 198 2 940 ( 67) 277 22 1 370 ( 13) 4 740 ( 25) 137 1 770 ( 49) 203 3 530 ( 78) 286 24 120 415 ( 14) 116 830 ( 26) 153 1 960 ( 50) 225 3 920 ( 79) 317 26 130 490 ( 16) 126 980 ( 29) 167 2 260 ( 54) 244 4 5 ( 85) 344 28 140 500 ( 11) 132 1 000 ( 24) 174 2 2 ( 47) 248 4 420 ( 77) 349 30 150 575 ( 13) 141 1 150 ( 27) 187 2 560 ( 52) 267 5 0 ( 84) 374 32 160 625 ( 14) 147 1 250 ( 29) 197 2 930 ( 57) 288 5 840 ( 90) 403 34 170 780 ( 18) 160 1 560 ( 35) 213 3 560 ( 66) 309 7 150 ( 4) 435 36 180 930 ( 21) 179 1 860 ( 39) 238 4 160 ( 71) 342 8 320 ( 111) 479 38 190 1 030 ( 23) 188 2 060 ( 42) 251 4 640 ( 76) 360 9 340 ( 119) 507 40 200 1 150 ( 25) 198 2 300 ( 45) 264 5 170 ( 81) 379 350 ( 126) 533 Peload and Rigidity 79 seies, A5 angle Nominal contact angle 25 Steel ball and Ceamic ball 70 seies, A5 angle Nominal contact angle 25 Steel ball and Ceamic ball Nominal EL L M H Boe Numbe Beaing Boe Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) (N) (N/µm) (N) (N/µm) 00 9.8 (2) 24 20 (1) 31 49 ( 3) 44 0 ( 6) 59 01 12 16 (1) 32 29 ( 1) 40 59 ( 3) 52 120 ( 7) 70 02 15 16 (1) 33 39 ( 1) 46 78 ( 4) 60 150 ( 9) 78 03 17 19 (1) 34 39 ( 1) 46 78 ( 4) 62 150 ( 8) 81 04 20 29 (0) 43 59 ( 3) 60 120 ( 6) 75 250 ( 12) 3 05 25 34 ( 1) 56 69 ( 3) 70 150 ( 7) 95 290 ( 12) 123 06 30 39 ( 1) 61 78 ( 3) 77 150 ( 6) 99 290 ( 11) 131 07 35 50 (0) 70 0 ( 3) 94 250 ( 8) 127 490 ( 15) 170 08 40 60 ( 1) 72 120 ( 3) 97 290 ( 9) 139 590 ( 16) 182 09 45 75 ( 1) 87 150 ( 4) 114 340 ( ) 160 690 ( 17) 207 50 75 ( 1) 94 150 ( 4) 124 390 ( ) 175 780 ( 18) 235 11 55 0 ( 2) 112 200 ( 5) 144 440 ( 11) 198 880 ( 18) 263 12 60 0 ( 2) 117 200 ( 5) 150 440 ( ) 198 880 ( 18) 267 13 65 0 ( 2) 125 200 ( 5) 161 490 ( 11) 223 980 ( 18) 289 14 70 145 ( 3) 138 290 ( 7) 183 690 ( 14) 249 1 370 ( 24) 334 15 75 145 ( 3) 142 290 ( 7) 188 740 ( 15) 267 1 470 ( 24) 347 16 80 170 ( 4) 156 340 ( 8) 203 780 ( 15) 274 1 570 ( 25) 367 17 85 220 ( 5) 172 440 ( 9) 229 980 ( 17) 306 1 960 ( 29) 402 18 90 245 ( 4) 188 490 ( 8) 253 1 080 ( 16) 340 2 160 ( 27) 449 19 95 245 ( 3) 195 490 ( 8) 262 1 180 ( 17) 363 2 350 ( 28) 475 20 0 295 ( 5) 197 590 ( ) 266 1 270 ( 19) 346 2 550 ( 31) 463 21 5 295 ( 4) 203 590 ( 9) 264 1 370 ( 19) 368 2 750 ( 32) 490 22 1 320 ( 5) 222 640 ( ) 284 1 470 ( 20) 391 2 940 ( 33) 517 24 120 440 ( 7) 244 880 ( 13) 328 1 960 ( 24) 441 3 920 ( 39) 580 26 130 490 ( 7) 262 980 ( 14) 346 2 160 ( 25) 460 4 3 ( 41) 611 28 140 490 ( 7) 273 980 ( 13) 348 2 260 ( 26) 479 4 5 ( 42) 635 30 150 625 ( 7) 308 1 250 ( 14) 393 2 880 ( 28) 540 5 860 ( 47) 719 32 160 665 ( 7) 330 1 330 ( 14) 422 3 230 ( 29) 592 6 290 ( 47) 775 34 170 775 ( 8) 376 1 550 ( 15) 478 3 520 ( 29) 653 7 1 ( 48) 867 36 180 1 0 ( ) 397 2 020 ( 19) 514 4 420 ( 35) 693 8 830 ( 57) 917 38 190 1 035 ( ) 409 2 070 ( 19) 531 4 550 ( 35) 717 9 1 ( 57) 949 40 200 1 280 ( 12) 453 2 560 ( 22) 585 5 840 ( 41) 801 11 620 ( 66) 1 057 When a ceamic ball is used, Peload and axial igidity value will be 1.2 times the value of steel ball. The value in ( ) shows a measued axial cleaance. Nominal EL L M H Boe Numbe Beaing Boe Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) (N) (N/µm) (N) (N/µm) 00 19 (1) 29 39 ( 2) 41 78 ( 5) 51 150 ( ) 67 01 12 19 (1) 31 39 ( 2) 45 0 ( 6) 60 200 ( 12) 81 02 15 19 (1) 33 39 ( 1) 43 0 ( 6) 65 200 ( 11) 84 03 17 24 (0) 41 49 ( 2) 52 120 ( 7) 75 250 ( 13) 99 04 20 39 ( 1) 51 78 ( 4) 68 200 ( ) 97 390 ( 17) 128 05 25 50 ( 2) 61 0 ( 5) 79 200 ( 9) 99 390 ( 16) 133 06 30 60 ( 1) 68 120 ( 4) 89 290 ( ) 129 590 ( 18) 171 07 35 75 ( 1) 78 150 ( 5) 7 390 ( 12) 149 780 ( 21) 198 08 40 0 ( 2) 95 200 ( 6) 127 440 ( 12) 168 880 ( 21) 223 09 45 0 ( 2) 99 200 ( 6) 132 490 ( 13) 181 980 ( 22) 238 50 120 ( 3) 118 250 ( 7) 154 590 ( 14) 208 1 180 ( 24) 278 11 55 170 ( 4) 127 340 ( 9) 170 780 ( 18) 235 1 570 ( 29) 307 12 60 170 ( 4) 134 340 ( 9) 179 780 ( 17) 241 1 570 ( 28) 317 13 65 195 ( 5) 157 390 ( 9) 196 880 ( 18) 272 1 770 ( 29) 356 14 70 245 ( 6) 170 490 ( 11) 218 1 080 ( 20) 293 2 160 ( 33) 390 15 75 245 ( 6) 179 490 ( 11) 229 1 180 ( 21) 316 2 350 ( 34) 418 16 80 320 ( 6) 187 640 ( 11) 245 1 470 ( 23) 343 2 940 ( 37) 448 17 85 320 ( 5) 196 640 ( 11) 257 1 470 ( 22) 352 2 940 ( 36) 462 18 90 390 ( 7) 218 780 ( 13) 275 1 770 ( 25) 374 3 530 ( 41) 494 19 95 415 ( 7) 227 830 ( 13) 287 1 860 ( 25) 392 3 730 ( 42) 525 20 0 415 ( 7) 235 830 ( 13) 299 1 960 ( 26) 417 3 920 ( 42) 548 21 5 490 ( 8) 246 980 ( 15) 317 2 260 ( 28) 430 4 5 ( 46) 571 22 1 590 ( ) 258 1 180 ( 18) 330 2 650 ( 33) 447 5 300 ( 53) 588 24 120 635 ( ) 281 1 270 ( 18) 361 2 940 ( 33) 491 5 880 ( 54) 654 26 130 785 ( 12) 305 1 570 ( 20) 396 3 430 ( 36) 536 6 860 ( 58) 7 28 140 785 ( 9) 317 1 570 ( 18) 413 3 660 ( 35) 569 7 270 ( 56) 750 30 150 930 ( 11) 351 1 850 ( 20) 446 4 070 ( 37) 601 8 250 ( 61) 800 32 160 1 080 ( 12) 376 2 160 ( 22) 482 4 700 ( 40) 649 9 380 ( 65) 858 34 170 1 270 ( 14) 401 2 550 ( 25) 514 5 900 ( 47) 707 11 600 ( 75) 929 36 180 1 550 ( 16) 450 3 0 ( 28) 577 6 820 ( 50) 779 13 560 ( 80) 1 028 38 190 1 660 ( 17) 460 3 320 ( 29) 599 7 560 ( 53) 819 15 130 ( 85) 1 084 40 200 1 850 ( 18) 493 3 700 ( 31) 631 8 360 ( 56) 860 16 820 ( 90) 1 141 When a ceamic ball is used, Peload and axial igidity value will be 1.2 times the value of steel ball. The value in ( ) shows a measued axial cleaance. 156 157

4. PRELOAD AND RIGIDITY Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Peload and Rigidity (DB and DF Aangement) High Pecision Angula Contact Ball Beaings (Standad seies) Calculation of adial igidity Multiply axial igidity by factos in table A. Table A EL L M H 15 6.5 6.0 5.0 4.5 18 4.5 25 2.0 30 1.4 40 0.7 Calculation of peload and axial igidity fo combination beaings Multiply by factos in table B. Fo adial igidity, multiply the value obtained in table A with factos in table B. Table B DBD DBB Peload facto 1.36 2 Axial igidity 1.48 2 Radial igidity 1.54 2 70 seies, A angle Nominal contact angle 30 Steel ball 72 seies, C angle Nominal contact angle 15 Steel ball Nominal EL L M H Boe Numbe Beaing Boe Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) (N) (N/µm) (N) (N/µm) 00 25 (0) 44 0 (-5) 71 2 ( ) 94 330 ( 15) 115 01 12 25 (0) 48 1 (-5) 78 220 ( ) 4 360 ( 15) 127 02 15 25 (0) 50 1 (-5) 85 240 ( ) 113 390 ( 15) 139 03 17 25 (0) 52 120 (-5) 91 250 ( ) 122 420 ( 15) 151 04 20 25 (0) 58 130 (-5) 3 280 ( ) 139 470 ( 15) 170 05 25 25 (0) 61 140 (-5) 111 290 ( ) 149 5 ( 15) 183 06 30 50 (0) 85 190 (-5) 138 390 ( ) 180 640 ( 15) 217 07 35 50 (0) 92 2 ( 5) 150 420 ( ) 196 700 ( 15) 237 08 40 50 (0) 0 220 ( 5) 168 460 ( ) 220 760 ( 15) 267 09 45 50 (0) 3 230 ( 5) 175 480 ( ) 230 1 180 ( 20) 324 50 50 (0) 1 250 ( 5) 194 530 ( ) 255 1 270 ( 20) 360 11 55 50 (0) 112 250 ( 5) 196 880 ( 15) 311 1 270 ( 20) 360 12 60 50 (0) 116 250 ( 5) 205 930 ( 15) 327 1 370 ( 20) 380 13 65 50 (0) 124 270 ( 5) 224 980 ( 15) 360 1 470 ( 20) 417 14 70 50 (0) 127 270 ( 5) 230 1 080 ( 16) 370 2 060 ( 25) 482 15 75 50 (0) 131 280 ( 5) 241 1 080 ( 15) 387 2 160 ( 25) 505 16 80 0 (0) 168 760 ( ) 340 1 770 ( 20) 464 3 040 ( 30) 572 17 85 0 (0) 173 780 ( ) 355 1 860 ( 20) 486 3 240 ( 30) 600 18 90 0 (0) 174 780 ( ) 358 2 450 ( 25) 542 3 920 ( 35) 650 19 95 0 (0) 180 8 ( ) 372 2 550 ( 25) 568 4 120 ( 35) 680 20 0 0 (0) 185 840 ( ) 368 2 750 ( 25) 595 4 3 ( 35) 713 21 5 0 (0) 185 840 ( ) 388 2 750 ( 25) 591 4 3 ( 35) 707 22 1 0 (0) 180 1 320 ( 15) 443 3 330 ( 30) 620 5 980 ( 45) 774 24 120 0 (0) 193 1 470 ( 15) 486 3 630 ( 30) 683 6 570 ( 45) 853 26 130 0 (0) 200 1 470 ( 15) 507 4 7 ( 35) 772 7 940 ( 50) 942 28 140 200 (0) 206 1 770 ( 15) 557 5 300 ( 35) 828 8 730 ( 50) 1 005 30 150 200 (0) 256 1 830 ( 15) 573 5 850 ( 37) 876 11 700 ( 60) 1 146 32 160 200 (0) 260 1 880 ( 15) 591 5 545 ( 35) 870 12 070 ( 60) 1 143 34 170 200 (0) 262 2 669 ( 20) 669 6 024 ( 37) 899 12 048 ( 60) 1 178 36 180 200 (0) 273 3 580 ( 24) 778 7 157 ( 40) 1 001 14 314 ( 64) 1 311 38 190 200 (0) 276 3 851 ( 25) 809 8 081 ( 43) 1 060 16 162 ( 69) 1 389 40 200 200 (0) 279 5 012 ( 30) 902 13 314 ( 60) 1 294 26 628 ( 95) 1 708 The value in ( ) shows a measued axial cleaance. Nominal EL L M H Boe Numbe Beaing Boe Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) (N) (N/µm) (N) (N/µm) 00 14 (3) 13 29 ( 1) 18 69 ( 8) 27 150 ( 18) 38 01 12 19 (1) 16 39 ( 3) 21 0 ( 12) 33 200 ( 22) 46 02 15 19 (1) 17 39 ( 3) 23 0 ( 11) 34 200 ( 21) 48 03 17 24 (0) 19 49 ( 4) 25 150 ( 16) 42 290 ( 28) 59 04 20 34 ( 2) 23 69 ( 7) 30 200 ( 20) 49 390 ( 33) 70 05 25 39 (1) 26 78 ( 4) 36 200 ( 15) 53 390 ( 26) 76 06 30 60 ( 1) 32 120 ( 8) 43 290 ( 20) 66 590 ( 35) 94 07 35 75 ( 3) 37 150 ( ) 50 390 ( 25) 75 780 ( 43) 8 08 40 0 ( 5) 44 200 ( 13) 60 490 ( 29) 90 980 ( 47) 126 09 45 125 ( 7) 49 250 ( 16) 67 540 ( 30) 94 1 080 ( 49) 132 50 125 ( 7) 52 250 ( 15) 69 590 ( 31) 2 1 180 ( 50) 143 11 55 145 ( 8) 56 290 ( 17) 74 780 ( 38) 117 1 570 ( 60) 163 12 60 195 ( 11) 64 390 ( 22) 86 930 ( 42) 126 1 860 ( 67) 179 13 65 220 ( 12) 71 440 ( 23) 95 1 080 ( 44) 141 2 160 ( 70) 200 14 70 245 ( 9) 75 490 ( 20) 0 1 180 ( 43) 148 2 350 ( 69) 2 15 75 270 ( ) 81 540 ( 21) 8 1 230 ( 42) 157 2 450 ( 68) 220 16 80 295 ( 12) 83 590 ( 24) 9 1 370 ( 47) 159 2 750 ( 76) 224 17 85 345 ( 14) 88 690 ( 27) 120 1 670 ( 53) 177 3 330 ( 85) 251 18 90 390 ( 15) 97 780 ( 29) 126 1 860 ( 57) 187 3 730 ( 90) 263 19 95 440 ( 18) 98 880 ( 33) 130 2 060 ( 63) 192 4 120 ( 99) 271 20 0 490 ( 20) 1 980 ( 36) 137 2 350 ( 68) 202 4 7 ( 7) 285 21 5 540 ( 21) 8 1 080 ( 38) 144 2 650 ( 73) 216 5 300 ( 114) 305 22 1 635 ( 24) 117 1 270 ( 43) 156 2 940 ( 78) 228 5 880 ( 121) 321 24 120 700 ( 19) 128 1 400 ( 38) 170 3 2 ( 73) 247 6 350 ( 116) 345 26 130 760 ( 20) 138 1 520 ( 39) 183 3 400 ( 73) 262 6 740 ( 116) 367 28 140 925 ( 24) 152 1 850 ( 45) 202 4 1 ( 82) 288 8 300 ( 131) 406 30 150 1 1 ( 28) 167 2 220 ( 51) 222 4 960 ( 92) 318 9 970 ( 145) 447 72 seies, A5 angle Nominal contact angle 25 Steel ball Nominal EL L M H Boe Numbe Beaing Boe Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) (N) (N/µm) (N) (N/µm) 00 19 (1) 29 39 ( 2) 41 0 ( 7) 58 200 ( 13) 73 01 12 29 ( 1) 36 59 ( 3) 49 150 ( 9) 70 290 ( 16) 92 02 15 34 ( 1) 43 69 ( 4) 57 200 ( 11) 83 390 ( 19) 111 03 17 39 ( 1) 46 78 ( 4) 60 200 ( 11) 87 390 ( 18) 116 04 20 60 ( 3) 59 120 ( 6) 73 290 ( 14) 4 590 ( 24) 140 05 25 75 ( 2) 68 150 ( 5) 90 340 ( 12) 124 690 ( 22) 167 06 30 0 ( 3) 85 200 ( 7) 7 440 ( 15) 147 880 ( 25) 192 07 35 125 ( 4) 95 250 ( 8) 118 590 ( 18) 167 1 180 ( 30) 218 08 40 145 ( 4) 4 290 ( 9) 136 740 ( 20) 195 1 470 ( 33) 258 09 45 170 ( 5) 115 340 ( ) 147 880 ( 22) 212 1 770 ( 37) 280 50 195 ( 6) 129 390 ( 11) 163 980 ( 23) 233 1 960 ( 37) 306 11 55 245 ( 7) 141 490 ( 13) 181 1 180 ( 26) 255 2 350 ( 42) 337 12 60 295 ( 8) 155 590 ( 15) 202 1 470 ( 29) 281 2 940 ( 47) 374 13 65 345 ( 9) 177 690 ( 15) 221 1 670 ( 30) 314 3 330 ( 48) 414 14 70 390 ( 8) 188 780 ( 15) 238 1 860 ( 30) 331 3 730 ( 49) 438 15 75 415 ( 8) 199 830 ( 15) 253 1 960 ( 30) 352 3 920 ( 49) 466 16 80 465 ( 9) 200 930 ( 17) 258 2 160 ( 33) 356 4 3 ( 54) 472 17 85 540 ( ) 217 1 080 ( 19) 283 2 450 ( 35) 383 4 900 ( 57) 507 18 90 635 ( 12) 239 1 270 ( 21) 304 2 940 ( 39) 416 5 880 ( 64) 556 19 95 685 ( 13) 240 1 370 ( 23) 308 3 140 ( 42) 419 6 280 ( 68) 557 20 0 785 ( 14) 251 1 570 ( 25) 325 3 530 ( 45) 441 7 060 ( 73) 587 21 5 885 ( 15) 267 1 770 ( 27) 348 3 920 ( 48) 471 7 850 ( 77) 624 22 1 980 ( 16) 280 1 960 ( 29) 368 4 4 ( 51) 496 8 830 ( 82) 660 24 120 1 140 ( 15) 315 2 280 ( 28) 409 5 180 ( 52) 559 350 ( 85) 739 26 130 1 200 ( 15) 334 2 4 ( 28) 435 5 500 ( 52) 595 11 000 ( 83) 788 28 140 1 480 ( 18) 373 2 970 ( 32) 481 6 650 ( 58) 654 13 480 ( 93) 870 30 150 1 8 ( 21) 416 3 620 ( 36) 532 7 990 ( 64) 719 16 350 ( 4) 960 The value in ( ) shows a measued axial cleaance. Peload and Rigidity 158 159

4. PRELOAD AND RIGIDITY Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Peload and Rigidity (DB and DF Aangement) High Pecision Angula Contact Ball Beaings (Standad seies) 72 seies, A angle Nominal contact angle 30 Steel ball Calculation of adial igidity Multiply axial igidity by factos in table A. Table A EL L M H 15 6.5 6.0 5.0 4.5 18 4.5 25 2.0 30 1.4 40 0.7 Ulta High Speed Angula Contact Ball Beaings (ROBUST seies) BNR19S, BNR29S Nominal contact angle 18 Steel ball Calculation of peload and axial igidity fo combination beaings Peload and axial igidity can be obtained by multiplying factos in table B. Fo adial igidity, multiply the value obtained in table A with factos in table B. Table B DBD DBB Peload facto 1.36 2 Axial igidity 1.48 2 Radial igidity 1.54 2 Nominal EL L M H Boe Numbe Beaing Boe Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) (N) (N/µm) (N) (N/µm) 00 25 (0) 44 0 ( 5) 71 2 ( ) 94 01 12 25 (0) 47 1 ( 5) 78 220 ( ) 3 360 ( 15) 125 02 15 25 (0) 50 1 ( 5) 85 240 ( ) 114 390 ( 15) 139 03 17 25 (0) 52 190 ( 5) 8 250 ( ) 120 4 ( 15) 145 04 20 25 (0) 55 260 ( ) 128 440 ( 15) 155 650 ( 20) 180 05 25 50 (0) 79 350 ( ) 160 580 ( 15) 193 840 ( 20) 223 06 30 50 (0) 85 380 ( ) 175 630 ( 15) 2 9 ( 20) 423 07 35 50 (0) 88 400 ( ) 184 660 ( 15) 220 1 270 ( 25) 285 08 40 50 (0) 95 440 ( ) 205 730 ( 15) 246 1 470 ( 26) 318 09 45 50 (0) 98 450 ( ) 212 1 080 ( 20) 292 1 860 ( 30) 363 50 50 (0) 3 480 ( ) 227 1 180 ( 20) 314 2 060 ( 30) 390 11 55 50 (0) 6 490 ( ) 235 1 670 ( 26) 364 2 650 ( 35) 438 12 60 50 (0) 1 5 ( ) 246 1 670 ( 25) 380 2 750 ( 35) 455 13 65 50 (0) 117 550 ( ) 270 1 860 ( 25) 416 3 040 ( 35) 500 14 70 0 (0) 150 1 080 ( 15) 345 2 650 ( 30) 480 3 920 ( 40) 562 15 75 0 (0) 157 1 080 ( 15) 366 2 750 ( 30) 512 4 220 ( 40) 598 16 80 0 (0) 154 1 080 ( 15) 355 2 650 ( 30) 494 4 020 ( 40) 575 17 85 0 (0) 160 1 180 ( 16) 370 3 430 ( 35) 560 5 790 ( 50) 678 18 90 0 (0) 162 1 670 ( 20) 434 4 3 ( 40) 615 5 980 ( 50) 697 19 95 360 ( 5) 248 1 670 ( 20) 421 4 220 ( 40) 595 6 670 ( 55) 7 20 0 370 ( 5) 252 1 670 ( 20) 430 5 0 ( 45) 645 7 650 ( 60) 758 21 5 380 ( 5) 260 2 260 ( 25) 493 5 200 ( 45) 665 8 920 ( 65) 818 22 1 380 ( 5) 266 2 350 ( 25) 504 6 180 ( 50) 720 200 ( 70) 871 24 120 550 ( 5) 320 2 840 ( 25) 570 8 140 ( 55) 843 11 570 ( 70) 964 26 130 560 ( 5) 340 3 730 ( 30) 660 9 8 ( 60) 942 13 530 ( 75) 1 068 28 140 580 ( 5) 352 5 000 ( 36) 750 11 470 ( 65) 1 022 15 490 ( 80) 1 150 30 150 600 ( 5) 366 5 000 ( 35) 772 12 0 ( 66) 1 063 16 500 ( 81) 1 194 High Pecision Angula Contact Ball Beaings (Miniatue seies) Nominal EL L M Beaing Boe Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) (N) (N/µm) 25 25 (0) 26 94 ( 8) 43 188 ( 16) 57 30 50 (0) 36 0 ( 8) 48 200 ( 15) 63 35 50 (0) 37 140 ( 8) 55 280 ( 17) 73 40 50 (0) 38 140 ( 8) 57 280 ( 16) 74 45 50 (0) 41 150 ( 8) 62 300 ( 16) 82 50 50 (0) 44 160 ( 8) 68 320 ( 16) 89 55 50 (0) 46 170 ( 8) 71 340 ( 16) 94 60 50 (0) 47 170 ( 8) 74 340 ( 16) 97 65 50 (0) 50 180 ( 8) 79 360 ( 16) 4 70 50 (0) 50 180 ( 8) 80 360 ( 16) 4 75 50 (0) 52 180 ( 8) 83 460 ( 19) 117 80 50 (0) 53 190 ( 8) 86 474 ( 19) 121 85 50 (0) 54 190 ( 8) 88 646 ( 24) 138 90 0 (0) 75 280 ( 8) 1 709 ( 21) 154 95 0 (0) 76 290 ( 8) 1 768 ( 22) 163 0 0 (0) 72 330 ( ) 1 871 ( 26) 161 5 0 (0) 74 330 ( ) 120 898 ( 26) 166 1 0 (0) 76 400 ( 12) 130 925 ( 26) 172 120 0 (0) 78 4 ( 12) 130 1 275 ( 33) 198 130 0 (0) 80 712 ( 20) 160 1 408 ( 35) 209 140 0 (0) 82 732 ( 20) 160 1 508 ( 36) 220 150 200 (0) 1 930 ( 20) 185 1 894 ( 38) 242 Peload and Rigidity Small size angula contact ball beaing 70, 72 seies, A angle Beaing numbes with a C suffix: nominal contact angle 15, 30 Steel ball BER19S, BER29S Nominal contact angle 25 Steel ball EL L M H Beaing Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity Numbe (N) (N/µm) (N) (N/µm) (N) (N/µm) (N) (N/µm) 725C 1.3 () 4.0 5.5 (7) 7.3 12.1 (4).3 24.2 (0) 14.4 725A 5.0 (3) 18.5.3 (2) 23.8 24.5 (0) 32.6 49.0 ( 3) 42.5 706C 1.5 () 4.3 7.9 (6) 8.3 15.1 (3) 11.1 30.3 ( 2) 15.4 706A 4.9 (3) 18.6 16.8 (1) 28.7 24.4 (0) 32.8 48.8 ( 3) 42.4 726C 1.8 (9) 5.1 9.2 (5) 9.6 17.6 (2) 12.8 35.2 ( 3) 27.8 726A 3.7 (3) 18.4 16.2 (1) 30.8 34.0 ( 1) 40.3 68.0 ( 4) 52.4 707C 1.8 (9) 5.1 9.2 (5) 9.6 17.6 (2) 12.8 35.2 ( 3) 17.8 707A 3.7 (3) 18.4 16.2 (1) 30.8 34.0 ( 1) 40.3 68.0 ( 4) 52.4 708C 4.2 (7) 7.5 14.1 (3) 12.2 28.6 ( 1) 16.7 57.1 ( 7) 23.3 708A 8.1 (2) 26.3 24.5 (0) 38.8 46.4 ( 2) 48.9 92.8 ( 5) 63.4 728C 4.2 (7) 7.5 14.1 (3) 12.2 28.5 ( 1) 16.7 57.0 ( 7) 23.3 728A 8.1 (2) 26.3 24.5 ( 1) 38.8 46.4 ( 2) 48.9 92.9 ( 5) 63.4 The value in ( ) shows a measued axial cleaance. Nominal EL L M Beaing Boe Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) (N) (N/µm) 25 25 (0) 42 150 ( 8) 80 300 ( 14) 5 30 25 (0) 58 160 ( 8) 90 320 ( 14) 116 35 50 (0) 61 2 ( 8) 0 420 ( 15) 132 40 50 (0) 63 220 ( 8) 1 440 ( 15) 137 45 50 (0) 67 240 ( 8) 120 480 ( 15) 152 50 50 (0) 72 250 ( 8) 130 500 ( 15) 164 55 50 (0) 75 260 ( 8) 140 520 ( 15) 174 60 50 (0) 78 270 ( 8) 140 540 ( 15) 181 65 50 (0) 82 290 ( 8) 150 580 ( 15) 196 70 50 (0) 83 290 ( 8) 150 598 ( 15) 198 75 50 (0) 86 300 ( 8) 160 619 ( 15) 206 80 50 (0) 88 3 ( 8) 170 639 ( 15) 214 85 50 (0) 90 3 ( 8) 170 889 ( 19) 245 90 0 (0) 120 430 ( 8) 2 968 ( 17) 273 95 0 (0) 130 440 ( 8) 2 996 ( 17) 282 0 0 (0) 120 520 ( ) 2 1 131 ( 20) 279 5 0 (0) 120 530 ( ) 220 1 169 ( 20) 290 1 0 (0) 130 550 ( ) 230 1 206 ( 20) 301 120 0 (0) 130 680 ( 12) 250 1 743 ( 26) 351 130 0 (0) 135 972 ( 16) 289 1 880 ( 27) 368 140 0 (0) 135 1 002 ( 16) 300 1 944 ( 27) 381 150 200 (0) 175 1 308 ( 17) 336 2 555 ( 30) 428 The value in ( ) shows a measued axial cleaance. 160 161

4. PRELOAD AND RIGIDITY Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Peload and Rigidity (DB and DF Aangement) Ulta High Speed Angula Contact Ball Beaings (ROBUST seies) BNR19H, BNR19X, BNR19XE, BNR29H BNR29X Nominal contact angle 18 Ceamic ball Calculation of adial igidity Multiply axial igidity by factos in table A. Table A EL L M H 15 6.5 6.0 5.0 4.5 18 4.5 25 2.0 30 1.4 40 0.7 BNRS, BNR20S Nominal contact angle 18 Steel ball Calculation of peload and axial igidity fo combination beaings Peload and axial igidity can be obtained by multipling factos in table B. Fo adial igidity, multiply the value obtained in table A with factos in table B. Table B DBD DBB Peload facto 1.36 2 Axial igidity 1.48 2 Radial igidity 1.54 2 Nominal EL L M Beaing Boe Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) (N) (N/µm) 25 25 (0) 29 5 ( 8) 51 2 ( 15) 67 30 50 (0) 40 1 ( 8) 55 220 ( 15) 72 35 50 (0) 41 150 ( 8) 64 300 ( 16) 83 40 50 (0) 42 160 ( 8) 66 320 ( 17) 87 45 50 (0) 45 170 ( 8) 72 340 ( 16) 95 50 50 (0) 49 180 ( 8) 78 360 ( 16) 3 55 50 (0) 51 180 ( 8) 82 360 ( 15) 6 60 50 (0) 52 190 ( 8) 85 380 ( 16) 112 65 50 (0) 55 200 ( 8) 91 400 ( 16) 120 70 50 (0) 56 200 ( 8) 92 400 ( 16) 120 75 50 (0) 58 200 ( 8) 96 525 ( 19) 137 80 50 (0) 59 2 ( 8) 99 542 ( 19) 142 85 50 (0) 61 2 ( 8) 0 744 ( 24) 162 90 0 (0) 83 3 ( 8) 130 804 ( 21) 180 95 0 (0) 85 3 ( 8) 130 873 ( 22) 190 0 0 (0) 81 360 ( ) 130 994 ( 26) 188 5 0 (0) 83 370 ( ) 130 1 026 ( 26) 194 1 0 (0) 85 450 ( 12) 150 1 058 ( 26) 201 120 0 (0) 87 460 ( 12) 150 1 469 ( 33) 233 130 0 (0) 90 809 ( 20) 158 1 625 ( 35) 245 140 0 (0) 92 833 ( 20) 195 1 744 ( 36) 259 150 200 (0) 120 1 040 ( 20) 214 2 166 ( 38) 284 Nominal EL L M Beaing Boe Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) (N) (N/µm) 30 50 (0) 39 1 ( 5) 52 220 ( 13) 69 35 50 (0) 41 1 ( 5) 55 220 ( 12) 73 40 50 (0) 44 1 ( 5) 60 220 ( 11) 77 45 50 (0) 44 1 ( 5) 60 220 ( 11) 77 50 50 (0) 47 120 ( 5) 64 249 ( 12) 85 55 50 (0) 48 120 ( 5) 67 302 ( 14) 95 60 50 (0) 51 130 ( 5) 71 345 ( 15) 4 65 50 (0) 53 130 ( 5) 75 364 ( 15) 111 70 50 (0) 53 230 ( ) 93 505 ( 20) 125 75 50 (0) 54 240 ( ) 96 520 ( 20) 129 80 0 (0) 71 330 ( ) 1 606 ( 19) 141 85 0 (0) 73 330 ( ) 1 622 ( 19) 145 90 0 (0) 74 340 ( ) 120 823 ( 24) 163 95 0 (0) 76 350 ( ) 120 846 ( 24) 168 0 0 (0) 78 350 ( ) 120 870 ( 24) 174 5 0 (0) 80 420 ( 12) 130 1 054 ( 27) 195 1 0 (0) 81 540 ( 15) 150 1 144 ( 29) 200 120 0 (0) 85 560 ( 15) 160 1 208 ( 29) 213 130 0 (0) 85 732 ( 20) 166 1 508 ( 36) 220 140 200 (0) 5 775 ( 15) 178 1 606 ( 30) 236 150 200 (0) 1 916 ( 18) 190 1 917 ( 35) 253 Peload and Rigidity BER19H, BER19X, BER19XE, BER29H, BER29X Nominal contact angle 25 Ceamic ball BERS, BER20S Nominal contact angle 25 Steel ball Nominal EL L M Beaing Boe Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) (N) (N/µm) 25 25 (0) 47 172 ( 8) 96 342 ( 14) 124 30 50 (0) 65 180 ( 8) 0 360 ( 14) 134 35 50 (0) 68 240 ( 8) 120 480 ( 15) 153 40 50 (0) 70 250 ( 8) 120 500 ( 15) 160 45 50 (0) 75 260 ( 8) 140 520 ( 15) 174 50 50 (0) 80 280 ( 8) 150 560 ( 15) 190 55 50 (0) 84 300 ( 8) 160 600 ( 15) 203 60 50 (0) 87 300 ( 8) 160 600 ( 14) 209 65 50 (0) 92 320 ( 8) 180 640 ( 14) 225 70 50 (0) 93 330 ( 8) 180 689 ( 15) 233 75 50 (0) 96 340 ( 8) 190 713 ( 15) 243 80 50 (0) 98 350 ( 8) 190 738 ( 15) 252 85 50 (0) 0 360 ( 8) 200 1 032 ( 19) 290 90 0 (0) 140 480 ( 8) 240 1 1 ( 17) 321 95 0 (0) 140 490 ( 8) 250 1 143 ( 17) 332 0 0 (0) 130 580 ( ) 250 1 302 ( 20) 328 5 0 (0) 140 600 ( ) 260 1 346 ( 20) 341 1 0 (0) 140 620 ( ) 260 1 390 ( 20) 354 120 0 (0) 150 780 ( 12) 300 2 023 ( 26) 414 130 0 (0) 150 1 115 ( 16) 340 2 185 ( 27) 434 140 0 (0) 150 1 151 ( 16) 353 2 261 ( 27) 450 150 200 (0) 198 1 484 ( 17) 393 2 948 ( 30) 504 The value in ( ) shows a measued axial cleaance. Nominal EL L M Beaing Boe Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) (N) (N/µm) 30 50 (0) 63 220 ( 8) 1 440 ( 15) 140 35 50 (0) 67 240 ( 8) 120 480 ( 15) 153 40 50 (0) 72 250 ( 8) 130 500 ( 15) 165 45 50 (0) 73 250 ( 8) 130 500 ( 15) 166 50 50 (0) 77 270 ( 8) 140 540 ( 15) 180 55 50 (0) 80 350 ( ) 160 700 ( 18) 205 60 50 (0) 84 380 ( ) 170 760 ( 18) 222 65 50 (0) 88 400 ( ) 180 800 ( 18) 235 70 50 (0) 88 400 ( ) 180 800 ( 18) 235 75 50 (0) 90 5 ( 12) 200 1 020 ( 21) 263 80 0 (0) 120 620 ( 12) 220 1 240 ( 22) 290 85 0 (0) 120 640 ( 12) 230 1 280 ( 22) 300 90 0 (0) 120 650 ( 12) 240 1 300 ( 22) 305 95 0 (0) 130 670 ( 12) 240 1 340 ( 22) 316 0 0 (0) 130 690 ( 12) 250 1 380 ( 22) 327 5 0 (0) 130 9 ( 15) 290 1 820 ( 26) 369 1 0 (0) 130 930 ( 15) 290 1 860 ( 26) 379 120 0 (0) 140 980 ( 15) 3 1 960 ( 26) 403 130 0 (0) 140 1 002 ( 16) 3 2 004 ( 27) 389 140 200 (0) 180 1 098 ( 13) 325 2 196 ( 23) 421 150 200 (0) 180 1 274 ( 15) 345 2 562 ( 28) 444 The value in ( ) shows a measued axial cleaance. 162 163

4. PRELOAD AND RIGIDITY Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Peload and Rigidity (DB and DF Aangement) Ulta High Speed Angula Contact Ball Beaings (ROBUST seies) Calculation of adial igidity Multiply axial igidity by factos in table A. Table A EL L M H 15 6.5 6.0 5.0 4.5 18 4.5 25 2.0 30 1.4 40 0.7 Ulta High Pecision Angula Contact Ball Beaings (ROBUST seies BGR) Calculation of peload and axial igidity fo combination beaings Peload and axial igidity can be obtained by multipling factos in table B. Fo adial igidity, multiply the value obtained in table A with factos in table B. Table B DBD DBB Peload facto 1.36 2 Axial igidity 1.48 2 Radial igidity 1.54 2 BNRH, BNRX, BNRXE, BNR20H, BNR20X Nominal contact angle 18 Ceamic ball BGR19S Nominal contact angle 15 Steel ball BGR19H, BGR19X Nominal contact angle 15 Ceamic ball Nominal EL L M Beaing Boe Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) (N) (N/µm) 30 50 (0) 43 1 ( 5) 59 220 ( 11) 79 35 50 (0) 46 120 ( 5) 63 240 ( 12) 83 40 50 (0) 49 120 ( 5) 68 240 ( 11) 88 45 50 (0) 49 120 ( 5) 69 240 ( 11) 88 50 50 (0) 52 130 ( 5) 73 279 ( 12) 99 55 50 (0) 54 130 ( 5) 76 341 ( 14) 1 60 50 (0) 57 140 ( 5) 82 391 ( 15) 121 65 50 (0) 60 140 ( 5) 87 413 ( 15) 130 70 50 (0) 59 260 ( ) 1 578 ( 20) 147 75 50 (0) 61 270 ( ) 1 597 ( 20) 151 80 0 (0) 80 360 ( ) 130 684 ( 19) 164 85 0 (0) 82 370 ( ) 130 703 ( 19) 169 90 0 (0) 83 370 ( ) 130 938 ( 24) 191 95 0 (0) 85 380 ( ) 140 965 ( 24) 197 0 0 (0) 87 390 ( ) 140 993 ( 24) 204 5 0 (0) 89 470 ( 12) 160 1 209 ( 28) 229 1 0 (0) 91 600 ( 15) 170 1 315 ( 29) 235 120 0 (0) 95 630 ( 15) 180 1 391 ( 29) 250 130 0 (0) 95 833 ( 20) 195 1 745 ( 36) 260 140 200 (0) 125 860 ( 15) 206 1 829 ( 30) 276 150 200 (0) 125 1 025 ( 18) 221 2 194 ( 35) 297 BERH, BERX, BERXE, BER20H, BER20X Nominal contact angle 25 Ceamic ball EL Nominal Beaing Boe Peload Axial Rigidity (mm) (N) (N/µm) 25 (0) 15.2 12 25 (0) 16.8 15 25 (0) 16.6 17 25 (0) 17.5 20 25 (0) 18.1 25 25 (0) 20.6 BGRS Nominal contact angle 15 Steel ball EL Nominal Beaing Boe Peload Axial Rigidity (mm) (N) (N/µm) 6 25 (0) 11.0 7 25 (0) 12.0 8 25 (0) 13.0 25 (0) 14.0 12 25 (0) 15.0 15 25 (0) 16.0 17 25 (0) 17.0 20 25 (0) 18.0 25 25 (0) 19.0 EL Nominal Beaing Boe Peload Axial Rigidity (mm) (N) (N/µm) 25 (0) 16.8 12 25 (0) 18.5 15 25 (0) 18.4 17 25 (0) 19.3 20 25 (0) 20.1 25 25 (0) 22.9 BGRH, BGRX Nominal contact angle 15 Ceamic ball EL Nominal Beaing Boe Peload Axial Rigidity (mm) (N) (N/µm) 6 25 (0) 12.6 7 25 (0) 13.7 8 25 (0) 14.4 25 (0) 15.9 12 25 (0) 16.9 15 25 (0) 18.0 17 25 (0) 19.0 20 25 (0) 20.0 25 25 (0) 21.6 Peload and Rigidity Nominal EL L M Beaing Boe Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) (N) (N/µm) 30 50 (0) 71 250 ( 8) 130 500 ( 15) 163 35 50 (0) 75 260 ( 8) 140 520 ( 15) 175 40 50 (0) 80 280 ( 8) 150 560 ( 15) 191 45 50 (0) 81 280 ( 8) 150 560 ( 14) 192 50 50 (0) 86 300 ( 8) 160 600 ( 14) 208 55 50 (0) 89 400 ( ) 190 800 ( 18) 240 60 50 (0) 94 430 ( ) 200 860 ( 18) 260 65 50 (0) 99 450 ( ) 2 900 ( 17) 275 70 50 (0) 98 450 ( ) 2 900 ( 17) 275 75 50 (0) 0 580 ( 12) 240 1 160 ( 21) 306 80 0 (0) 130 700 ( 12) 260 1 400 ( 21) 336 85 0 (0) 130 720 ( 12) 270 1 440 ( 21) 347 90 0 (0) 140 740 ( 12) 280 1 480 ( 21) 355 95 0 (0) 140 760 ( 12) 290 1 520 ( 21) 367 0 0 (0) 150 780 ( 12) 300 1 560 ( 21) 381 5 0 (0) 150 1 040 ( 15) 330 2 080 ( 26) 430 1 0 (0) 150 1 060 ( 15) 340 2 120 ( 26) 440 120 0 (0) 160 1 120 ( 15) 370 2 240 ( 26) 469 130 0 (0) 160 1 150 ( 16) 370 2 302 ( 27) 469 140 200 (0) 200 1 240 ( 13) 380 2 476 ( 23) 489 150 200 (0) 200 1 444 ( 15) 403 2 957 ( 28) 552 The value in ( ) shows a measued axial cleaance. BGR02S Nominal contact angle 15 Steel ball EL Nominal Beaing Boe Peload Axial Rigidity (mm) (N) (N/µm) 25 (0) 14.5 12 25 (0) 15.2 15 25 (0) 16.2 17 25 (0) 16.7 20 25 (0) 17.4 25 50 (0) 25.3 The value in ( ) shows a measued axial cleaance. BGR02H, BGR02X Nominal contact angle 15 Ceamic ball EL Nominal Beaing Boe Peload Axial Rigidity (mm) (N) (N/µm) 25 (0) 16.0 12 25 (0) 17.0 15 25 (0) 18.0 17 25 (0) 18.6 20 25 (0) 19.4 25 50 (0) 28.1 164 165

4. PRELOAD AND RIGIDITY Peload and Rigidity (DB and DF Aangement) High Speed Angula Contact Thust Ball Beaings (ROBUST seies) Peload and Rigidity Double-Diection Angula Contact Thust Ball Beaings (TAC seies) Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 BARS Nominal contact angle 30 Steel ball BARH Nominal contact angle 30 Ceamic ball TAC20 seies Nominal contact angle 60 Steel ball Nominal EL L Beaing Boe Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) 40 2 ( 5) 150 430 ( ) 200 45 2 ( 5) 150 430 ( ) 200 50 220 ( 5) 170 460 ( ) 220 55 230 ( 5) 180 600 ( 12) 250 60 240 ( 5) 190 650 ( 12) 270 65 250 ( 5) 200 690 ( 12) 290 70 250 ( 5) 200 9 ( 15) 320 75 260 ( 5) 2 940 ( 15) 330 80 340 ( 5) 240 1 0 ( 15) 360 85 350 ( 5) 240 1 130 ( 15) 370 90 360 ( 5) 250 1 660 ( 20) 430 95 360 ( 5) 260 1 720 ( 20) 450 0 370 ( 5) 270 1 770 ( 20) 460 5 380 ( 5) 280 1 820 ( 20) 470 1 390 ( 5) 280 1 870 ( 20) 490 120 390 ( 5) 300 1 980 ( 20) 520 130 390 ( 5) 300 2 530 ( 25) 550 140 580 ( 5) 360 3 190 ( 25) 655 150 580 ( 5) 360 3 690 ( 28) 690 160 590 ( 5) 370 4 080 ( 30) 720 170 600 ( 5) 380 4 2 ( 30) 750 180 605 ( 5) 385 5 200 ( 35) 800 190 6 ( 5) 390 5 370 ( 35) 830 200 6 ( 5) 390 5 990 ( 38) 860 BTRS Nominal contact angle 40 Steel ball Nominal EL L Beaing Boe Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) 40 3 ( 5) 260 700 ( ) 350 45 3 ( 5) 260 700 ( ) 350 50 330 ( 5) 290 760 ( ) 390 55 350 ( 5) 3 800 ( ) 4 60 370 ( 5) 330 860 ( ) 440 65 390 ( 5) 350 9 ( ) 470 70 390 ( 5) 350 1 560 ( 15) 560 75 400 ( 5) 360 1 6 ( 15) 590 80 5 ( 5) 400 1 820 ( 15) 630 85 520 ( 5) 420 1 880 ( 15) 650 90 530 ( 5) 430 2 830 ( 20) 770 95 550 ( 5) 450 2 930 ( 20) 790 0 560 ( 5) 460 3 030 ( 20) 820 5 570 ( 5) 470 3 120 ( 20) 850 1 580 ( 5) 490 3 2 ( 20) 870 120 6 ( 5) 520 3 420 ( 20) 930 130 6 ( 5) 520 4 4 ( 25) 980 140 8 ( 5) 600 5 3 ( 25) 1 140 150 820 ( 5) 605 5 370 ( 25) 1 160 160 830 ( 5) 615 5 480 ( 25) 1 180 170 850 ( 5) 635 7 280 ( 30) 1 330 180 855 ( 5) 640 9 080 ( 35) 1 450 190 875 ( 5) 660 9 390 ( 35) 1 500 200 875 ( 5) 660 11 290 ( 38) 1 600 The value in ( ) shows a measued axial cleaance. Nominal EL L Beaing Boe Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) 40 230 ( 5) 175 485 ( ) 230 45 230 ( 5) 180 490 ( ) 235 50 245 ( 5) 195 525 ( ) 255 55 255 ( 5) 200 690 ( 12) 290 60 270 ( 5) 220 750 ( 12) 320 65 285 ( 5) 240 800 ( 12) 340 70 285 ( 5) 240 1 060 ( 15) 375 75 290 ( 5) 245 1 090 ( 15) 390 80 380 ( 5) 275 1 260 ( 15) 420 85 390 ( 5) 280 1 280 ( 15) 430 90 400 ( 5) 290 1 930 ( 20) 5 95 405 ( 5) 300 1 970 ( 20) 520 0 420 ( 5) 3 2 060 ( 20) 550 5 420 ( 5) 315 2 090 ( 20) 555 1 440 ( 5) 330 2 180 ( 20) 580 120 455 ( 5) 350 2 3 ( 20) 620 130 455 ( 5) 350 2 960 ( 25) 650 BTRH Nominal contact angle 40 Ceamic ball Nominal EL L Beaing Boe Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) 40 350 ( 5) 300 800 ( ) 4 45 355 ( 5) 3 8 ( ) 415 50 375 ( 5) 335 875 ( ) 450 55 395 ( 5) 350 915 ( ) 475 60 425 ( 5) 390 1 000 ( ) 520 65 450 ( 5) 415 1 060 ( ) 560 70 450 ( 5) 415 1 830 ( 15) 670 75 460 ( 5) 430 1 890 ( 15) 700 80 570 ( 5) 475 2 120 ( 15) 745 85 580 ( 5) 475 2 160 ( 15) 780 90 600 ( 5) 505 3 320 ( 20) 9 95 605 ( 5) 505 3 390 ( 20) 940 0 630 ( 5) 540 3 560 ( 20) 980 5 640 ( 5) 540 3 6 ( 20) 1 0 1 665 ( 5) 575 3 770 ( 20) 1 040 120 700 ( 5) 615 4 020 ( 20) 1 115 130 700 ( 5) 615 5 200 ( 25) 1 170 Nominal C6 C7 C8 Beaing Boe Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) (N) (N/µm) 140 980 1 200 3 626 1 900 9 3 2 600 150 980 1 2 4 704 2 060 9 408 2 640 160 1 274 1 370 4 802 2 140 780 2 830 170 2 058 1 650 6 762 2 450 13 720 3 120 180 2 940 1 875 6 762 2 475 15 680 3 265 190 3 038 1 940 7 056 2 560 18 620 3 560 200 3 038 1 950 7 056 2 570 18 620 3 570 TAC29 seies Nominal contact angle 60 Steel ball Nominal C6 C7 C8 Beaing Boe Peload Axial Rigidity Peload Axial Rigidity Peload Axial Rigidity (mm) (N) (N/µm) (N) (N/µm) (N) (N/µm) 150 196 775 4 116 2 150 7 056 2 590 160 196 800 4 4 2 260 7 448 2 720 170 196 800 4 4 2 370 7 742 2 860 180 1 078 1 470 4 4 2 320 9 800 3 040 190 1 078 1 440 4 606 2 440 290 3 200 200 1 078 1 500 4 606 2 430 11 760 3 340 220 1 176 1 615 4 900 2 620 12 740 3 615 240 1 176 1 690 5 096 2 750 13 230 3 800 260 1 176 1 670 5 096 2 720 13 230 3 750 280 1 274 1 755 5 390 2 865 13 720 3 950 Peload and Rigidity 166 167

4. PRELOAD AND RIGIDITY Peload and Rigidity Angula Contact Thust Ball Beaing fo Ball Scew Suppot Radial Intenal Cleaance of Cylindical Rolle Beaings Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 TAC B seies (fo machine tool) Nominal contact angle 60 Steel ball C9 Peload Cleaance in matched beaings with tapeed boe Unit: µm Duplex Set Aangement (DB o DF) Tiplex Set Aangement (DBD o DFD) Quaduplex Set Aangement (DBB o DFF) Beaing Numbe Peload Axial Rigidity Stating Toque Peload Axial Rigidity Stating Toque Peload Axial Rigidity Stating Toque (N) (N/µm) (N m) (N) (N/µm) (N m) (N) (N/µm) (N m) 15TAC47B 1 000 555 0.05 1 370 1 795 0.07 2 0 1 1 0.11 17TAC47B 1 000 555 0.05 1 370 1 795 0.07 2 0 1 1 0.11 20TAC47B 1 000 555 0.05 1 370 1 795 0.07 2 0 1 1 0.11 25TAC62B 1 490 733 0.09 2 030 1 050 0.12 2 980 1 465 0.17 30TAC62B 1 563 772 0.09 2 130 1 5 0.12 3 130 1 545 0.18 35TAC72B 1 785 890 0. 2 430 1 275 0.14 3 570 1 780 0.21 40TAC72B 1 860 930 0.11 2 530 1 330 0.14 3 720 1 860 0.21 40TAC90B 2 365 15 0.18 3 220 1 465 0.24 4 730 2 030 0.36 45TAC75B 2 005 05 0.12 2 730 1 445 0.16 4 015 2 015 0.23 45TAC0B 2 880 1160 0.23 3 920 1 670 0.31 5 760 2 320 0.46 50TAC0B 3 0 12 0.24 4 095 1 745 0.32 6 020 2 425 0.48 55TAC0B 3 0 12 0.24 4 095 1 745 0.32 6 020 2 425 0.48 55TAC120B 3 520 1430 0.28 4 790 2 055 0.37 7 040 2 855 0.56 60TAC120B 3 520 1430 0.28 4 790 2 055 0.37 7 040 2 855 0.56 C Peload Duplex Set Aangement (DB o DF) Tiplex Set Aangement (DBD o DFD) Quaduplex Set Aangement (DBB o DFF) Beaing Numbe Peload Axial Rigidity Stating Toque Peload Axial Rigidity Stating Toque Peload Axial Rigidity Stating Toque (N) (N/µm) (N m) (N) (N/µm) (N m) (N) (N/µm) (N m) 15TAC47B 2 150 750 0.14 2 950 1 080 0.20 04 300 1 470 0.29 17TAC47B 2 150 750 0.14 2 950 1 080 0.20 04 300 1 470 0.29 20TAC47B 2 150 750 0.14 2 950 1 080 0.20 04 300 1 470 0.29 25TAC62B 3 150 1 000 0.23 4 300 1 470 0.31 06 250 1 960 0.46 30TAC62B 3 350 1 030 0.24 4 500 1 520 0.33 06 650 2 0 0.49 35TAC72B 3 800 1 180 0.28 5 200 1 7 0.37 07 650 2 350 0.55 40TAC72B 3 900 1 230 0.28 5 300 1 8 0.38 07 850 2 400 0.57 40TAC90B 5 000 1 320 0.48 6 750 1 960 0.65 300 2 650 0.96 45TAC75B 4 0 1 270 0.29 5 600 1 9 0.40 08 250 2 550 0.59 45TAC0B 5 900 1 520 0.58 8 050 2 2 0.78 11 800 3 000 1.16 50TAC0B 6 0 1 570 0.60 8 250 2 300 0.80 12 300 3 0 1.18 55TAC0B 6 0 1 570 0.60 8 250 2 300 0.80 12 300 3 0 1.18 55TAC120B 6 650 1 8 0.64 9 0 2 650 0.86 13 200 3 550 1.27 60TAC120B 6 650 1 8 0.64 9 0 2 650 0.86 13 200 3 550 1.27 TAC 02, 03 seies (fo electic injection machine) Nominal contact angle 50 55 Steel ball C8 Peload Duplex Set Aangement (DB o DF) Tiplex Set Aangement (DBD o DFD) Quaduplex Set Aangement (DBT o DFT) Beaing Numbe Peload Axial Rigidity Stating Toque Peload Axial Rigidity Stating Toque Peload Axial Rigidity Stating Toque (N) (N/µm) (N m) (N) (N/µm) (N m) (N) (N/µm) (N m) 15TAC02AT85 365 262 0.017 495 385 0.024 575 490 0.027 25TAC02AT85( 1 ) 1 440 520 0.113 1 960 755 0.153 2 260 950 0.175 TAC35-2T85 2 270 705 0.266 3 0 1 020 0.360 3 550 1 280 0.415 40TAC03AT85 2 270 705 0.266 3 0 1 020 0.360 3 550 1 280 0.415 45TAC03AT85 2 740 775 0.355 3 750 1 120 0.480 4 300 1 4 0.550 TAC45-2T85 3 550 880 0.520 4 850 1 270 0.705 5 600 1 600 0.8 50TAC03AT85 3 550 880 0.520 4 850 1 270 0.705 5 600 1 600 0.8 55TAC03AT85 4 0 945 0.650 5 600 1 370 0.880 6 500 1 720 1.000 60TAC03AT85 4 750 1 020 0.8 6 450 1 480 1.0 7 450 1 850 1.250 80TAC03AM 7 350 1 270 1.550 000 1 840 2.0 11 500 2 330 2.450 0TAC03CMC( 2 ) 1 000 830 0.5 1 400 1 240 0.147 1 600 1 575 0.166 120TAC03CMC( 2 ) 1 0 930 0.120 1 500 1 378 0.163 1 800 1 775 0.196 ( 1 ) Value of 25TAC02AT85 is based on H peload. ( 2 ) Values of 0TAC03CMC and 120TAC03CMC ae based on EL peload. Nominal Beaing Boe Cleaance in Matched Beaings with Tapeed Boe (mm) CC9( 1 ) CC0 CC1 CC2 CC( 2 ) CC3 CC4 CC5 ove incl min max min max min max min max min max min max min max min max 024 030 05 08 15 025 025 035 040 050 050 060 060 070 080 095 030 040 05 12 08 15 12 025 025 040 045 055 055 070 070 080 095 1 040 050 05 15 20 15 030 030 045 050 065 065 080 080 095 1 125 050 065 05 15 20 15 035 035 050 055 075 075 090 090 1 130 150 065 080 20 15 30 20 040 040 060 070 090 090 1 1 130 150 170 080 0 25 20 35 25 045 045 070 080 5 5 125 125 150 180 205 0 120 25 20 35 25 050 050 080 095 120 120 145 145 170 205 230 120 140 15 30 25 40 30 060 060 090 5 135 135 160 160 190 230 260 140 160 15 35 30 50 35 065 065 0 115 150 150 180 180 215 260 295 160 180 15 35 30 50 35 075 075 1 125 165 165 200 200 240 285 320 180 200 20 40 30 50 40 080 080 120 140 180 180 220 220 260 315 355 200 225 20 45 35 60 45 090 090 135 155 200 200 240 240 285 350 395 225 250 25 50 40 65 50 0 0 150 170 215 215 265 265 315 380 430 250 280 25 55 40 70 55 1 1 165 185 240 240 295 295 350 420 475 ( 1 ) Applicable to cylindical olle beaings of ISO accuacy Class 4 and 5 with tapeed boes. ( 2 ) Denotes nomal cleaance fo matched cylindical olle beaings. Cleaance in matched beaings with cylindical boe Nominal Beaing Boe Cleaance in Matched Beaings with Cylindical Boe (mm) CC1 CC2 CC( 3 ) CC3 CC4 CC5 ove incl min max min max min max min max min max min max 024 030 05 15 025 025 035 040 050 050 060 070 080 030 040 05 15 12 025 025 040 045 055 055 070 080 095 040 050 05 18 15 030 030 045 050 065 065 080 095 1 050 065 05 20 15 035 035 050 055 075 075 090 1 130 065 080 25 20 040 040 060 070 090 090 1 130 150 080 0 30 25 045 045 070 080 5 5 125 155 180 0 120 30 25 050 050 080 095 120 120 145 180 205 120 140 35 30 060 060 090 5 135 135 160 200 230 140 160 35 35 065 065 0 115 150 150 180 225 260 160 180 40 35 075 075 1 125 165 165 200 250 285 180 200 15 45 40 080 080 120 140 180 180 220 275 315 200 225 15 50 45 090 090 135 155 200 200 240 305 350 225 250 15 50 50 0 0 150 170 215 215 265 330 380 250 280 20 55 55 1 1 165 185 240 240 295 370 420 ( 3 ) Denotes nomal cleaance fo matched cylindical olle beaings. Unit: µm Peload and Rigidity 168 169

5. LIMITING SPEEDS Limiting Speeds The limiting speeds listed in the Beaing Dimensional Tables ae guideline values. They ae based on a single beaing that is lightly peloaded by means of a sping and subjected to elatively light loads with good heat dissipation. The limiting speeds with gease lubication ae detemined using high quality gease in appopiate amounts. Those listed fo oil lubication ae based on the use of oil-ai (o oil mist) lubication. In situations whee the lubicating oil is used as a means to emove heat, highe speed can be achieved, howeve a lage amount of oil must be pessue fed though the beaing, so thee is a significant loss of powe. When single beaings ae used in two, thee o fou ow combinations, o the peload is inceased to impove spindle igidity, limiting speeds will be lowe than those listed. Please consult NSK fo gease lubication, as gease life must be also taken into consideation. Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Factos Influencing Limiting Speeds The limiting speed of the beaing, inside of the spindle, is affected by the following opeating conditions. 1. Lubication Method The thickness of the lubicating film ceated by the oil-ai o oil mist lubication eplenishment method is lage compaed to the thickness ceated by the gease lubication method. Theefoe the limiting speed is highe when the oil-ai o oil mist lubication method is used. In the case of jet lubication, the lage volume of oil supplied into the beaing fo lubication also emoves heat efficiently so that much highe opeating speeds ae possible. Speed Factos The limiting speed of a matched beaing set opeating unde position peload conditions is calculated by multiplying the limiting speed of a single beaing in the set by the appopiate adjustment facto listed in Table 5.1. In this table, peloads mean the peload values afte the beaing has been attached to the spindle. Peload values afte the beaing has been mounted on the spindle will change as a esult of the shaft fit equiements of high speed opeation and space defomation due to tightening foce. In such case, paticula in high speed applications, it is necessay to adjust the space lengths elative to each othe in ode to compensate fo the changes in peload afte beaing mounting. Table 5.1 Speed Factos Aangement EL L M H DB 0.85 0.80 0.65 0.55 DBB 0.80 0.75 0.60 0.45 DBD 0.75 0.70 0.55 0.40 2. Combination If beaings ae used as multiple beaing sets, the numbe of beaings in the set affects the limiting speed. As the numbe is inceased, the limiting speed becomes lowe because the ability to dissipate that heat becomes lowe. 3. Peload If the peload afte mounted is high, the contact suface pessue between the olling elements and aceways inceases, which causes exta heat. As a esult of this heat, the peload duing opeation inceases futhe and the isk of beaing failue will be highe. To avoid this type of beaing failue, the limiting speed is educed. Also in case of cylindical olle beaings, when the adial cleaance is educed and the peload inceases duing opeation, the limiting speed is educed. 4. Dive Method The limiting speed of a beaing will also change depending on the spindle dive system. In the case of moto built-in spindles the heat inside of the spindles is highe. If thee is also a jacket-cooling system, the tempeatue diffeence between the inne ing and the oute ing becomes highe, so the peload is inceased and the limiting speed becomes lowe (see Fig. 5.2). Jacket cooling also affects the cleaance between the beaing and the housing (see Fig. 5.3). Theefoe, the cleaance between the beaing and the housing could become negative, in which case the peload would be inceased. Limiting Speeds Factos that Change Peload Fig. 5.1 Peload Setting Study Flow Peload incease due to defomation of inne ing space caused by nut tightening foce Peload incease due to centifugal foce on balls Peload incease due to inne/oute ing tempeatue diffeence Peload change due to heat expansion of balls Fig. 5.2 The Influence of the Jacket Cooling on Limiting Speed Fig. 5.3 The Influence of the Cleaance between the Beaing & the Housing on Limiting Speed Initial peload o axial cleaance Peload incease due to intefeence fits between inne ing and shaft Defomation of oute ing space due to compession by etaining cove (Decease of Peload) Peload afte mounted necessay peload foce fo cutting in low speed Taget K A 0 N/ µ m (K A : Axial igidity) Expansion of inne ing aceway due to centifugal foce (Incease of Peload) Decease of intefeence fits by expansion of inne ing and shaft due to centifugal foce (Decease of Peload) Pope peload to ensue high speed opeation Stability in high speed P V Citeia P : Contact pessue between balls and aceway V : Gyo slip + Spin slip velocity Fatigue Life Oute ing tempeatue ise, C 55 50 90BNRXTDB 45 Peload afte mounted: 250 N 40 Lubication: oil-ai 35 30 Without jacket cooling, Inne ing Without jacket cooling, Oute ing 25 3 C, 21/min, Inne ing 3 C, 21/min, Oute ing 20 0 C, 51/min, Inne ing 15 0 C, 51/min, Oute ing 5 0 0 4 000 8 000 12 000 16 000 20 000 Speed, min 1 Oute ing tempeatue ise, C 30 25 20 15 5 90BNRXTDB Peload ofte mounted: 150 N Lubication: oil-ai Jacket cooling: +3 C, 21/min Loose amount on housing: 21 µ m Loose amount on housing: 7 µ m Abnomal tempeatue ise Abnomal tempeatue ise 0 0 4 000 8 000 12 000 16 000 20 000 Speed, min 1 170 171

172 6. LUBRICATION Puposes of Lubication The main puposes of lubication ae to educe fiction and wea inside the beaing that may cause pematue failue. The effects of lubication may be biefly explained as follows: (1) Reduction of Fiction and Wea Diect metallic contact between the beaing ings, olling elements, and cage, which ae the basic pats of a beaing, is pevented by an oil film which educes the fiction and wea in the contact aeas. (2) Extension of Fatigue Life The olling fatigue life of beaings depends geatly upon the viscosity and film thickness between the olling contact sufaces. A heavy film thickness polongs the fatigue life, but it is shotened if the viscosity of the oil is too low so the film thickness is insufficient. (3) Dissipation of Heat Ciculating lubication may be used to cay away fictional heat o heat tansfeed fom the outside to pevent the beaing fom oveheating and oil fom deteioating. (4) Othes Adequate lubication also helps to pevent foeign mateial fom enteing the beaings and guads against coosion o usting. Lubicating Methods Fo machine tool spindles in which high accuacy is impotant, it is necessay to pevent excessive tempeatue ise of the spindle to educe themal defomation. Beaing heat geneation is divided into a load tem detemined by the beaing type and load, and a speed tem detemined by the lubicating method and speed. Geneally, the speed tem is geate, but if a lubicating method esulting in a small speed tem is selected, the influence of the load tem cannot be disegaded. Theefoe, it is impotant to select a low heat geneating beaing (load tem) and lubicating method (speed tem). Regading heat geneation, both the lubication method and quantity of lubicant have impotant effects. Lubication using a small amount of gease is common since this method is economical, maintenance fee, and thee is little heat geneation. At high speeds, to maintain a constant low tempeatue, the oil-ai lubication method, which equies a minimum quantity of oil, was developed. The elation between oil quantity and heat geneation (fictional loss) and tempeatue ise is aleady known as shown in Fig. 6.1. Theefoe, fo machine tool spindles, to avoid excessive tempeatue ise, adoption of a lubicating method aiming at eithe zone A o B is necessay. The lubicating methods in zones A and B ae summaized in Table 6.1. Dynamic toque of beaing (heat geneation) M=Ml+Mv Heat Geneation Tempeatue Rise Tempeatue ise Seizue Load tem (Detemined by beaing type and load) Ml=f 1Fd m whee f 1 : Coefficient detemined by beaing type and load F : Load d m : Pitch cicle diamete of olling element Speed tem (Detemined by oil viscosity, amount, speed) Mv=f 0 ( ν 0 n) 2/3 dm 3 whee f 0 : Coefficient detemined by beaing and lubicating method ν0 : Kinematic viscosity of oil n : Speed Fig. 6.1 Oil Quantity and Tempeatue Rise Amount of heat geneation Zone A Oil-ai lubication Oil mist lubication Gease lubication Zone B Foced ciculation lubication Jet lubication Oil Quantity Table 6.1 Compaison of Lubicating Methods Lubicating Methods Gease Lubication Oil Mist Lubication Jet Lubication Oil-Ai Lubication Gease Lubication (1) Recommended Geases Lithium base geases with mineal oil as the base oil have good sticking popeties and excellent chaacteistics fo olling beaings. These ae usually usable ove a tempeatue ange of C to +1 C. As gease fo high speed machine tool spindles that equie low tempeatue ise and long life, a consistency No.2 gease with a synthetic base oil (dieste, dieste + mineal oil, etc.) is ecommended. Table 6.2 lists the band names and popeties of geases widely used in machine tools main spindles and ball scew suppot beaings. (2) Gease Life Gease life depends geatly upon opeating tempeatue; theefoe, it is necessay to keep the tempeatue of the beaing (including atmospheic tempeatue) coole, in ode to extend the gease life. High pefomance wide ange gease is often used fo high Table 6.2 Gease Band Names and Popeties Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Advantages Cost is low. Limitation of tempeatue ise is possible. Maintenance fee. Since new oil is always fed, no fea of oil deteioation. Dust and cutting fluid cannot easily ente. Since the oil flow ate is high, dust and cutting fluid cannot ente and seizue hadly eve occus. Because of cooling by oil, the beaing tempeatue can be contolled to some degee. Since oil quantity contol is possible, the optimum quantity of oil is fed and heat geneation is low. Besides little heat-geneation, thee is a cooling effect of the ai, so the tempeatue is low. Since new oil is always fed, no fea of oil deteioation. Dust, cutting fluid cannot easily ente. Envionmental pollution mist is slight. Disadvantages If packed gease deteioates, seizue may occu. May allow penetation of dust o cutting fluid. Pollution of envionment. Oil supply quantity vaies depending on the oil viscosity and tempeatue, so contol of a small flow ate is difficult. It is difficult to confim that oil is actually fed. Fictional loss is high. Since oil leaks, it is difficult to use fo vetical spindles. Cost is high. Cost is athe high. Confimation of whethe oil is actually fed to beaing is difficult. speed spindle beaings, o spindle moto beaings. The following equation shows the mean life of wide ange gease: log t = 6.12 1.4n/Nmax (0.018 0.006n/Nmax) T whee t : Mean Gease life (h) N max : Limiting speed (min 1 ) n : Opeating speed (min 1 ) T : Beaing unning tempeatue ( C) (3) Quantity of Gease fo High Speed Spindle Beaings To opeate beaings at high speed with gease lubication, the ecommended quantity to be packed is % to 20% of intenal space. If too much gease is packed, duing unning in, abnomal heat geneation occus and this may cause the gease to deteioate. To avoid such a isk, it is necessay to un in spindles fo a sufficient time. Based on thei expeience, NSK detemines the packing quantity which allows easy unning in and will povide sufficient lubication. Fo the amount, please efe to the tables on Page 175. Base oils Dopping Woking Band names Manufactues Thickenes Base oils viscosity point tempeatue Main application mm 2 s(40 C) ( C) ange, ( C) MTE NSK Baium complex Este oil 20 200 30 to +120 Beaings fo high speed spindles, high speed cylindical olle beaings MTS NSK Uea Este+Synthetic hydo cabon oil 22 220 40 to +130 Beaings fo high speed spindles Isoflex NCA15 Klübe Baium complex Dieste oil + Mineal oil 20 250 30 to +120 Beaings fo main spindles Multemps PS No.2 Kyodo Yushi Lithium Dieste oil + Mineal oil 16 189 50 to +1 Beaings fo main spindles Mobilux 2 Mobil Lithium Mineal oil 26 190 to +1 Beaings fo boing heads, live centes Multemp LRL3 Kyodo Yushi Lithium Tetaeste oil 37 208 30 to +130 Beaings fo main spindles Stabagus NBU8EP Klübe Baium complex Mineal oil 5 220 30 to +130 Heavy load cylindical olle beaings Alvania 2 Shell Lithium Mineal oil 130 182 to +1 Ball scew suppot beaings ENS NSK Uea Tetaeste oil 32 260 40 to +160 Beaings fo motos WPH NSK Diuea Tetaeste oil 96 259 40 to +150 Ball scew suppot beaings Lubication 173

6. LUBRICATION Oil Lubication (1) Oil Mist Lubication and Oil-Ai Lubication (Minimal Oil Quantity Lubication) Spay oiling is a method of spaying oil by tuning it into a mist using compessed ai. It is also called oil mist lubication. Oil-ai lubication is a method of feeding oil continuously by injecting oil into a compessed ai steam by means of a mixing valve that intemittently dischages the minimum quantity of oil using a constant-quantity piston. Fig. 6.2 shows the ecommended oil quantity fo the lubication methods descibed above, each quantity is fo one beaing. In case of oil mist lubication, it s necessay to adjust the oil quantity to accommodate fo the effects of the banches in path tubing, and leakage fom the gaps aound the spaces. Please ask NSK, as the oil quantity should be inceased, in cases whee the d m n value is highe than 1 800 000. Fo the position of the spay nozzle, please efe to Page 192. Boe numbe Boe diamete (mm) Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 The Recommended Gease Quantities fo High-speed Spindle Beaings Unit: cc/beaing Angula contact ball beaing : 15% of intenal space Cylindical olle beaing : % of intenal space BNR19 BNR BGR19 BGR BGR02 BAR NN49 NN39 NN30 N 79xx 70xx 72xx BTR X-quantity X-quantity X-quantity X-quantity X-quantity X-quantity X-quantity X-quantity 05 5 00.03 06 6 00.04 00.07 07 7 00.07 08 8 00.12 00. 00 00.06 00.13 00.16 (2) Jet Lubication Jet lubication is mainly used fo high speed beaings with a d m n value 0 4. Though one to seveal nozzles, jets of lubicating oil unde a constant pessue pass though the beaings. At high speed, the ai suounding the beaing otates togethe with the beaing and foms an ai wall. The speed of the jet fom each nozzle must be faste by 20% than the cicumfeential speed of the inne ing outside suface. Since the jet lubication uses a lage quantity of oil, thee is much agitation esistance, so it is necessay to dissipate the heat effectively using a lage oil dischage outlet and foced dischage. Fo machine tool spindle beaings, this method is used in some applications as a means fo stable opeation at ulta high speeds (see Fig. 6.3). Fo the position of the spay nozzle, please efe to page 192. Fig. 6.3 Spindle Stuctue with Jet Lubication Fig. 6.2 Recommended Oil Quantity fo Each Boe Size of Beaing (Minimal Oil Quantity Lubication) Oil quantity, cc/h 0.30 0.20 0. 0.03 cc/16 min Angula contact ball beaing 1.2d 3 0.03 cc/8 min Cylindical olle beaing 0.4d 3 0.01 cc/16 min 0.00 0 50 0 150 200 250 Beaing boe, mm 0.01 cc/8 min 01 12 00.06 00.14 00.23 02 15 00.11 00.18 00.29 03 17 00.13 00.24 00.41 04 20 00.23 00.44 00.68 05 25 00.27 00.52 00.85 0.4 06 30 00.31 00.69 1.2 00.58 0.6 0.4 07 35 00.48 00.98 1.7 00.78 0.8 0.6 08 40 00.75 1.2 2.1 00.92 1.0 0.7 09 45 00.83 1.5 2.6 1.2 1.3 1.0 50 00.91 1.6 3.0 1.2 1.4 1.1 11 55 1.1 2.4 3.9 1.7 2.0 1.5 12 60 1.2 2.6 4.8 1.8 2.1 1.6 13 65 1.3 2.6 5.7 1.9 2.2 1.6 14 70 2.1 3.6 6.5 2.8 3.2 2.4 15 75 2.3 3.6 7.0 2.9 3.5 2.5 16 80 2.4 5.1 8.7 3.8 4.7 3.5 17 85 3.5 5.3 11.00 4.0 4.9 3.7 18 90 3.6 6.6 13.00 5.5 6.5 4.5 19 95 3.6 6.8 16.00 5.7 6.6 4.7 20 0 4.9 7.2 19.00 6.1 5.4 4.5 6.8 4.9 Lubication Oil inlet 21 5 5.1 9.0 23.00 7.6 5.6 4.6 9.3 5.9 22 1 5.2 12.00 27.00 9.1 5.7 4.8 11.00 7.5 24 120 7.9 12.00 31.00 9.8 8.4 6.5 12.50 8.1 26 130 9.0 18.00 34.00 15.00 11.00 8.5 18.00 12.40 28 140 9.9 20.00 42.00 17.00 12.00 9.3 20.00 12.90 30 150 14.00 25.00 53.00 22.00 24.00 14.00 23.00 32 160 16.00 34.00 26.00 20.00 15.00 29.00 34 170 14.00 42.00 33.00 21.00 15.00 38.00 36 180 22.00 51.00 46.00 28.00 23.00 51.00 38 190 27.00 47.00 50.00 30.00 24.00 54.00 Ai seal Additional oil outlet Main oil outlet Ai seal 40 200 39.00 76.00 61.00 44.00 35.00 69.00 44 220 42.00 37.00 48 240 41.00 40.00 52 260 77.00 70.00 56 280 80.00 75.00 174 The gease quantity of xxtac20(29)x(d) should be same as the double ow cylindical olle beaing s, which is assembled with this beaing togethe. Use the gease listed on Page 173, and multiply 0.93 (density) to the quantity above, fo the weight of the gease. Fo the ecomended gease quantity fo angula contact thust ball beaing fo ball scew suppot, please efe to Page 1-113. 175

176 7. BEARING TOLERANCES The toleance fo the bounday dimensions and unning accuacy of NSK adial beaings ae specified by the Accuacies of Rolling Beaings in ISO 492/199/582/1132-1, and Rolling Beaing Toleances in JIS B 1514. In addition to the above toleances, NSK manufactues angula contact ball beaings with pecision classes ABEC 5, 7, and 9 as specified by Ameican Beaing Manufactues Association (ABMA) Standad 20. Rough definitions of the items listed fo unning accuacy and thei measuing methods ae descibed in Fig. 7.1 and Table 7.1. Futhe details ae available in ISO 5593, Rolling Beaings Vocabulay in JIS B 04, and Measuing Methods fo Rolling Beaings in JIS B 1515. Table 7.1 Running Accuacy Inne Ring Oute Ring Dial Gauge Radial unout of assembled beaing inne ing K ia Rotating Stationay A Radial unout of assembled beaing oute ing K ea Stationay Rotating A Assembled beaing inne ing face (backface) unout with aceway S ia Rotating Stationay B 1 Assembled beaing oute ing face (backface) unout with aceway S ea Stationay Rotating B 2 Inne ing efeence face (backface, whee applicable) unout with aceway S d Rotating Stationay C Vaiation of beaing outside suface geneatix inclination with oute ing efeence face (backface) S D N/A Rotating D Toleance fo Radial Beaings Inne Ring Table 7.2 Inne Ring (Class 5) Nominal Boe Diamete Single Plane Mean d Boe Dia. Deviation (mm) dmp( 2 ) ( 1 ) Applicable to individual ings manufactued fo combined beaings. ( 2 ) Applicable to beaings with cylindical boes. ( 3 ) Class 3 is NSK s oiginal accuacy. Toleance of beaing boe diamete and oute ing diamete ae Class 4. Othe toleances ae Class 2. ( 4 ) Applicable to ball beaings. Remaks: Boe Dia. Vaiation in a Single Radial Plane Mean Boe Dia. Radial Runout Inne Ring Run Inne Ring Deviation of Single Inne Ring Width V dp ( 2 ) Face Runout Bs Inne Ring Vaiation of Inne Ring out with Boe Diamete Seies with Raceway Single Beaing ( V dmp ( 2 ) K ia S 1 ) Width Vaiation 9 0, 2, 3 d S ia( 4 ) Combined Beaing Single Beaing Combined Beaing V Bs ove incl high low max max max max max high low max 2.5 0 5 5 4 3 4 7 7 0 40 250 5 18 0 5 5 4 3 4 7 7 0 80 250 5 18 30 0 6 6 5 3 4 8 8 0 120 250 5 30 50 0 8 8 6 4 5 8 8 0 120 250 5 50 80 0 9 9 7 5 5 8 8 0 150 250 6 80 120 0 8 5 6 9 9 0 200 380 7 120 180 0 13 13 7 8 0 250 380 8 180 250 0 15 15 12 8 11 13 0 300 500 250 315 0 18 18 14 9 13 13 15 0 350 500 13 Table 7.3 Inne Ring (Class 4) Nominal Boe Diamete Single plane mean Deviation of a d boe dia. deviation Single Boe Dia. (mm) dmp( 2 ) ds( 2 ) Boe dia. Vaiation in a Single Mean Boe Dia. Radial Runout Inne Ring Inne Ring Deviation of Single inne Ring Width Radial Plane V dp ( 2 ) Face Runout Bs Inne Ring Vaiation of Inne Ring Runout with boe Diamete Seies with Raceway Single Beaing ( V dmp ( 2 ) K ia S 1 ) Width Vaiation 9 0, 2, 3 d S ia( 4 ) Combined Beaing Single Beaing Combined Beaing V Bs ove incl high low high low max max max max max high low max 2.5 0 4 0 4 4 3 2 2.5 3 3 0 40 250 2.5 18 0 4 0 4 4 3 2 2.5 3 3 0 80 250 2.5 18 30 0 5 0 5 5 4 2.5 3 4 4 0 120 250 2.5 30 50 0 6 0 6 6 5 3 4 4 4 0 120 250 3 50 80 0 7 0 7 7 5 3.5 4 5 5 0 150 250 4 80 120 0 8 0 8 8 6 4 5 5 5 0 200 380 4 120 180 0 0 8 5 6 6 7 0 250 380 5 180 250 0 12 0 12 12 9 6 8 7 8 0 300 500 6 1. The cylindical boe diamete toleance limit (high), as pe the no-go side of a plug gauge as specified in this table, is not necessaily applicable within a distance of 1.2 times the chamfe dimension (max) fom the ing face. 2. ABMA Standads ABEC5, ABEC7, and ABEC9 ae equivalent to ISO (JIS) Classes 5, 4, and 2 espectively. ABMA Standads ae applicable to angula contact ball beaings. Unit: µm Unit: µm Fig. 7.1 Measuing Methods fo Running Accuacy Measuing weight Inne ing (Class 4Y) (As fo Class 4Y (P4Y), boe diamete dimensional accuacy and outside diamete dimensional accuacy ae special.) Table 7.6 Toleance of Boe Diamete of Inne Ring B 1 Table 7.4 Inne Ring (Class 3) ( 3 ) Boe diamete (mm) Class 4 Class 4Y (Contolled to medium value) ove incl high low high low 30 50 0 06 1 3 50 80 0 07 2 5 80 120 0 08 3 6 120 150 0 3 7 C Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 B 2 Measuing weight A Nominal Boe Diamete Single Plane Mean Boe Dia. Vaiation Mean Boe Dia. Radial Runout Inne Ring Runout Inne Ring Deviation of Single Inne Ring Width Inne Ring Width d Boe Dia. Deviation Deviation of a Single Boe Dia. in a Single Face Runout Bs Vaiation of Inne Ring with Boe Vaiation (mm) dmp( 2 ) ds( 2 ) Radial Plane with Raceway V dmp ( 2 ) K ia S Single Beaing ( 1 ) d V V dp( 2 ) S ia( 4 ) Bs Combined Beaing Single Beaing Combined Beaing ove incl high low high low max max max max max high low max 2.5 0 4 0 4 2.5 1.5 1.5 1.5 1.5 0 40 250 1.5 18 0 4 0 4 2.5 1.5 1.5 1.5 1.5 0 80 250 1.5 18 30 0 5 0 5 2.5 1.5 2.5 1.5 2.5 0 120 250 1.5 30 50 0 6 0 6 2.5 1.5 2.5 1.5 2.5 0 120 250 1.5 50 80 0 7 0 7 4 2 2.5 1.5 2.5 0 150 250 1.5 80 120 0 8 0 8 5 2.5 2.5 2.5 2.5 0 200 380 2.5 120 150 0 0 7 3.5 2.5 2.5 2.5 0 250 380 2.5 150 180 0 0 7 3.5 5 4 5 0 250 380 4.0 180 250 0 12 0 12 8 4 5 5 5 0 300 500 5.0 Unit: µm (max) 1.2 D (max) 1.2 Toleances fo beaings unde 30 mm boe ae the same as values quoted fo beaings with boes between 30 50 mm. Class 4Y is NSK s popietay accuacy standad, in which toleance of a beaing boe diamete and an oute ing diamete ae in a special class (contolled to medium value) and othe toleances ae Class 4. Class 4Y has the same unning accuacy as Class 4 but has a naowe toleance ange of boe and oute diamete than Class 4. It is suitable fo univesal combination beaings. A Stop (at two points) C Unit: µm Table 7.5 Inne Ring (Class 2) Unit: µm Nominal Boe Diamete Single Plane Mean Boe Dia. Vaiation Mean Boe Dia. Radial Runout Inne Ring Runout Inne Ring Deviation of Single Inne Ring Width Inne Ring Width d Boe Dia. Deviation Deviation of a Single Boe Dia. in a Single Face Runout Bs Vaiation of Inne Ring with Boe Vaiation (mm) dmp( 2 ) ds( 2 ) Radial Plane with Raceway V dmp ( 2 ) K ia S Single Beaing ( 1 ) d V V dp( 2 ) S ia( 4 ) Bs Combined Beaing Single Beaing Combined Beaing ove incl high low high low max max max max max high low max 2.5 0 2.5 0 2.5 2.5 1.5 1.5 1.5 1.5 0 40 250 1.5 18 0 2.5 0 2.5 2.5 1.5 1.5 1.5 1.5 0 80 250 1.5 18 30 0 2.5 0 2.5 2.5 1.5 2.5 1.5 2.5 0 120 250 1.5 30 50 0 2.5 0 2.5 2.5 1.5 2.5 1.5 2.5 0 120 250 1.5 50 80 0 4.0 0 4.0 4 2 2.5 1.5 2.5 0 150 250 1.5 80 120 0 5.0 0 5.0 5 2.5 2.5 2.5 2.5 0 200 380 2.5 120 150 0 7.0 0 7.0 7 3.5 2.5 2.5 2.5 0 250 380 2.5 150 180 0 7.0 0 7.0 7 3.5 5 4 5.0 0 250 380 4.0 180 250 0 8.0 0 8.0 8 4 5 5 5.0 0 300 500 5.0 Beaing Toleances 177

7. BEARING TOLERANCES Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Toleance fo Radial Beaings Oute Ring Table 7.6 Oute Ring (Class 5) Nominal Outside Diamete D (mm) Single Plane Mean Outside Dia. Deviation Dmp Outside Dia. Vaiation in a Single Radial Plane Vaiation of Outside V Mean Outside Radial Runout Oute Ring Face Deviation of Single Oute Ring Dp Suface Geneatix Dia. Vaiation of Oute Ring Diamete Seies Inclination with Face Runout with Raceway Oute Ring Width Width Vaiation V 9 0, 2 Dmp K ea S S ea ( 1 ) Cs V Cs D ove incl high low max max max max max max 6 18 0 5 5 4 03 5 8 8 5 18 30 0 6 6 5 03 6 8 8 5 30 50 0 7 7 5 04 7 8 8 5 50 80 0 9 9 7 05 8 8 Equal to the value of 6 80 120 0 8 05 9 11 inne ing ( Bs) of the 8 120 150 0 11 11 8 06 11 13 same beaing 8 150 180 0 13 13 07 13 14 numbe. 8 180 250 0 15 15 11 08 15 11 15 250 315 0 18 18 14 09 18 13 18 11 315 400 0 20 20 15 20 13 20 13 Table 7.7 Oute Ring (Class 4) Unit: µm Unit: µm Outside Dia. Vaiation in a Single Radial Plane Vaiation of Outside Nominal Outside Diamete Single Plane Mean Deviation of Single V Mean Outside Radial Runout Oute Ring Face Deviation of Single Oute Ring Dp Suface Geneatix D Outside Dia. Deviation Outside Dia. Dia. Vaiation of Oute Ring Diamete Seies Inclination with Face Runout with Raceway Oute Ring Width Width Vaiation (mm) Dmp DS V 9 0, 2 Dmp K ea S S ea ( 1 ) Cs V Cs D ove incl high low high low max max max max max max 6 18 0 4 0 4 4 3 2 3 04 05 2.5 18 30 0 5 0 5 5 4 2.5 4 04 05 2.5 30 50 0 6 0 6 6 5 3 5 04 05 2.5 50 80 0 7 0 7 7 5 3.5 5 04 05 Equal to the value 3 80 120 0 8 0 8 8 6 4 6 05 06 of inne ing ( Bs) of 4 120 150 0 9 0 9 9 7 5 7 05 07 the same beaing 5 150 180 0 0 8 5 8 05 08 numbe. 5 180 250 0 11 0 11 11 8 6 07 7 250 315 0 13 0 13 13 7 11 08 7 315 400 0 15 0 15 15 11 8 13 13 8 ( 1 ) Applicable to ball beaings. ( 2 ) Class 3 is NSK s oiginal accuacy. Toleance of beaing boe diamete and oute ing diamete ae Class 4. Othe toleances ae Class 2. Remaks: 1. The cylindical boe diamete toleance limit (high), as pe the no-go side of a plug gauge as specified in this table, is not necessaily applicable within a distance of 1.2 times the chamfe dimension (max) fom the ing face. 2. ABMA Standads ABEC5, ABEC7, and ABEC9 ae equivalent to ISO (JIS) Classes 5, 4, and 2 espectively. ABMA Standads ae applicable to angula contact ball beaings. Table 7.8 Oute Ring (Class 3)( 2 ) Nominal Outside Diamete Single Plane Mean Deviation of Single Outside Dia. Vaiation Mean Outside Radial Runout Vaiation of Outside Oute Ring Face Deviation of Single Oute Ring Suface Geneatix D Outside Dia. Deviation Outside Dia. in a Single Radial Plane Dia. Vaiation of Oute Ring Runout with Raceway Oute Ring Width Width Vaiation Inclination with Face (mm) Dmp Ds V Dp V Dmp K ea S ea ( 1 ) Cs V Cs ove incl high low high low max max max max max max 6 18 0 4 0 4 2.5 1.5 1.5 1.5 1.5 1.5 18 30 0 5 0 5 4 2 2.5 1.5 2.5 1.5 30 50 0 6 0 6 4 2 2.5 1.5 2.5 1.5 50 80 0 7 0 7 4 2 4 1.5 4 Equal to the value 1.5 80 120 0 8 0 8 5 2.5 5 2.5 5 of inne ing ( Bs) 2.5 120 150 0 9 0 9 5 2.5 5 2.5 5 of the same 2.5 150 180 0 0 7 3.5 5 2.5 5 beaing numbe. 2.5 180 250 0 11 0 11 8 4 7 4 7 4 250 315 0 13 0 13 8 4 7 5 7 5 315 400 0 15 0 15 5 8 7 8 7 Table 7.9 Oute Ring (Class 2) Nominal Outside Diamete Single Plane Mean Deviation of Single Outside Dia. Vaiation Mean Outside Radial Runout Vaiation of Outside Oute Ring Face Deviation of Single Oute Ring Suface Geneatix D Outside Dia. Deviation Outside Dia. in a Single Radial Plane Dia. Vaiation of Oute Ring Runout with Raceway Oute Ring Width Width Vaiation Inclination with Face (mm) Dmp Ds V Dp V Dmp K ea S ea ( 1 ) Cs V Cs ove incl high low high low max max max max max max 6 18 0 2.5 0 2.5 2.5 1.5 1.5 1.5 1.5 1.5 18 30 0 4 0 4 4 2 2.5 1.5 2.5 1.5 30 50 0 4 0 4 4 2 2.5 1.5 2.5 1.5 50 80 0 4 0 4 4 2 4 1.5 4 Equal to the value 1.5 80 120 0 5 0 5 5 2.5 5 2.5 5 of inne ing ( Bs) 2.5 120 150 0 5 0 5 5 2.5 5 2.5 5 of the same 2.5 150 180 0 7 0 7 7 3.5 5 2.5 5 beaing numbe. 2.5 180 250 0 8 0 8 8 4 7 4 7 4 250 315 0 8 0 8 8 4 7 5 7 5 315 400 0 0 5 8 7 8 7 Oute ing (Class 4Y) Table 7.11 Toleance of Oute Diamete of Oute Ring Unit: µm Oute diamete (mm) Class 4 Class 4Y (Contolled to medium value) ove incl high low high low 50 80 0 07 2 6 80 120 0 08 2 6 120 150 0 09 3 7 150 180 0 3 7 180 200 0 11 4 9 200 215 and less 0 11 2 9 Toleances fo beaings unde 50 mm oute diamete ae the same as values quoted fo beaings with oute diametes between 50 80 mm. Class 4Y is NSK s popietay accuacy standad in which toleance of a beaing boe diamete and an oute ing diamete ae in a special class (contolled to medium value) and othe toleances ae Class 4. Class 4Y has the same unning accuacy as Class 4 but has a naowe toleance ange of boe and oute diamete than Class 4. It is suitable fo univesal combination beaings. S D S D Unit: µm Unit: µm Beaing Toleances 178 179

7. BEARING TOLERANCES Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Toleances fo Tapeed Boes of Cylindical Rolle Beaings Table 7. KR Tapeed Boes Unit: µm Toleances fo Tapeed Boes The boe accuacy of tapeed boe cylindical olle beaings is specified by ISO. Howeve, in this standad, the toleances ae athe wide. Fo pecision-class cylindical olle beaings, NSK established its own naowe toleances. As is customay, howeve, two tape angles ae available within the toleance ange specified by ISO (see Fig. 7.2). (NSK teminated poduction of K tapeed boe cylindical olle Fig. 7.2 Toleances KR K Tape 1:12 (4 46 18.8 ) Toleances confom to ISO d (Refeence) ( 2 ) dmp (mm) d1mp dmp ove incl high low high low max 18 30 +13 0 +3 0 4 30 50 +16 0 +3 0 5 50 80 +19 0 +4 0 6 80 120 +22 0 +5 0 7 120 180 +25 0 +7 0 9 180 250 +29 0 +9 0 12 ( 1 ) Boe diamete vaiation in a single adial plane, which is applicable to all adial planes of tapeed boes. ( 2 ) Tape angula toleance, 4 46 18.8 +25 0 V dp ( 1 ) beaings and is poducing only KR tapeed boe cylindical olle beaings.) KR : NSK s oiginal toleance fo tapeed boes has a vey naow ange that is positioned towads the lowe limit of the standad ISO ange. This NSK toleance is naowe than that of ISO, which enhances easie mounting. Table 7.11 K Tapeed Boes Unit: µm d (mm) dmp d1mp dmp V dp ( 1 ) Fig. 7.3 Tapeed Boe Toleances Nominal tapeed boe OK : NSK s oiginal toleance fo tapeed boe has a vey naow ange that is positioned midange of the ISO standad. Boe dimensional toleances ae identical to those of ISO. Tapeed boe with a single plane mean boe diamete deviation fom basic boe diamete ove incl high low high low max 18 30 +21 0 +21 0 4 30 50 +25 0 +25 0 5 50 80 +30 0 +30 0 6 80 120 +35 0 +35 0 7 120 180 +40 0 +40 0 9 180 250 +46 0 +46 0 12 250 315 +52 0 +52 0 14 315 400 +57 0 +57 0 16 400 500 +63 0 +63 0 18 ( 1 ) Boe diamete vaiation in an single adial plane, which is applicable to all adial planes of tapeed boes. d1mp dmp 2 d α Tape 1:12 d1 (d + dmp) α (d 1 + d1mp) Beaing Toleances B B d : Nominal boe diamete d 1 : Theoetical lage boe end of tapeed boe d 1 =d+ B dmp : Single plane mean boe diamete deviation in the theoetical small boe end of the boe d1mp : 1 12 Single plane mean boe diamete deviation in the theoetical lage boe end of the boe B: Nominal inne ing width α : Half of tape angle of tapeed boe α=2 23 9.4 =2.38594 =0.041643ad 180 181

7. BEARING TOLERANCES Toleances fo Angula Contact Thust Ball Beaings Toleances fo high speed angula contact thust ball beaing (Class 4A( 1 ) of BAR and BTR types) Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Toleances fo Angula Contact Ball Beaing fo Ball Scew Suppot Machine Tool Applications Table 7.14 Inne ing Unit: µm Nominal Boe Single Plane Deviation of a Boe Dia. Vaiation in Mean Boe Radial Inne Ring Inne Ring Inne Ring Deviation of Diamete Mean Boe Single Boe Dia. a Single Radial Plane Dia. Runout of Runout Face Runout Width Single Inne Dia. Deviation V dp Vaiation Inne Ring with Boe with Raceway Vaiation Ring Width d dmp ds Diamete Seies V dmp K ia S d S ia V Bs Bs ( Cs) (mm) 9 0 ove incl high low high low max max max max max max max high low 50 0 6 0 6 06 5 3 4 4 4 3 0 300 50 80 0 7 0 7 07 5 3.5 4 5 5 4 0 500 80 120 0 8 0 8 08 6 4 5 5 5 4 0 500 120 150 0 0 8 5 6 6 7 5 0 750 150 180 0 0 8 5 6 6 7 5 0 750 180 250 0 12 0 12 12 9 6 8 7 8 6 0 1 000 Table 7.18 TAC B seies Unit: µm Deviation of Inne Inne o Oute Ring Deviation of Boe Diamete Deviation of Outside Diamete Nominal Boe o Ring Width Runout with Raceway Outside Diametes Toleance Classes Toleance Classes Toleance Classes Toleance Classes (mm) PN7A PN7A PN7A PN7B PN7A PN7B PN7B PN7B ove incl high low high low high low high low high low max 18 0 4 0 4 0 120 2.5 18 30 0 5 0 4 0 120 2.5 30 50 0 6 0 4 0 6 0 4 0 120 2.5 50 80 0 7 0 5 0 7 0 5 0 150 2.5 80 120 0 8 0 6 0 8 0 6 0 200 2.5 Remak: Vaiation of oute ing width is the same as that fo the inne ing of the same beaing. Class PN7A is the standad toleance fo these beaings. This coesponds to ISO Class 4 fo adial ball beaings, but fo the unout of the inne and oute ings, moe stingent values ae applied. Table 7.15 Oute ing Unit: µm Nominal Outside Single Plane Deviation of Outside Dia. Vaiation Mean Outside Radial Vaiation of Outside Oute Ring Oute Ring Diamete Mean Outside Single Outside Dia. in a Single Radial Plane Dia. Vaiation Runout of Suface Geneatix Face Runout Width Dia. Deviation V Dp Oute Ring Inclination with Face with Raceway Vaiation D Dmp Ds Diamete Seies V Dmp K ea S D S ea V Cs (mm) 9 0 ove incl high low high low max max max max max max max 80 30 37 30 37 7 5 3.5 5 4 5 3 80 120 40 48 40 48 8 6 4 6 5 6 4 120 150 50 59 50 59 9 7 5 7 5 7 5 150 180 50 60 50 60 8 5 8 5 8 5 180 250 50 61 50 61 11 8 6 7 7 250 315 60 73 60 73 13 7 11 8 7 ( 1 ) NSK specification. Equivalent to ISO Class 4 except fo toleance of oute ing outside diamete. Toleances fo double diection angula contact thust ball beaing (Class 7( 2 ) of TAC type) Table 7.16 Toleances of inne ing, oute ing, and beaing height Unit: µm Nominal Boe Deviation of a Single Deviation of the Radial Runout of Assembled Inne Ring Inne ing (Oute Ring) Diamete Boe Diamete Actual Beaing Height Beaing Inne Ring (Oute Ring) Runout Face Runout with Raceway d ds Ts K ia with Boe S ia (mm) (K ea ) S d (S ea ) ove incl high low high low max max max 30 0 5 0 300 5 4 3 30 50 0 5 0 400 5 4 3 50 80 0 8 0 500 6 5 5 80 120 0 8 0 600 6 5 5 120 180 0 0 700 8 8 5 180 250 0 13 0 800 8 8 6 250 315 0 15 0 900 6 315 400 0 18 0 1200 12 7 ( 2 ) NSK specification Table 7.17 Toleance of oute ing Unit: µm Nominal Outside Deviation of Diamete Single Outside Dia. D Ds (mm) ove incl high low 30 50 25 41 50 80 30 49 80 120 36 58 120 180 43 68 180 250 50 79 250 315 56 88 315 400 62 98 400 500 68 8 500 630 76 120 The sticte Class PN7B applies to the dimensional toleances of the boes and outside diametes of single-ow univesal aangement beaings (SU). Electical Injection Molding Machine Table 7.19 TAC 02 and 03 seies Unit: µm Inne o Oute Ring Nominal Boe o Deviation of Boe Diamete Deviation of Outside Diamete Deviation of Inne Ring Width Runout with Raceway Outside Diamete Toleance Class (mm) PN5D ove incl high low high low high low max 18 0 05 0 080 5 18 30 0 06 0 120 5 30 50 0 08 0 07 0 120 8 50 80 0 09 0 09 0 150 8 80 120 0 0 0 200 8 120 150 0 11 150 180 0 13 180 250 0 15 250 315 0 18 Remak: Vaiation of oute ing width is the same as that fo the inne ing of the same beaing. Class PN5D is the standad toleance fo these beaings. This coesponds to ISO Class 5 fo adial ball beaings, but fo the unout of the inne and oute ings, moe stingent values ae applied. Beaing Toleances 182 183

8. DESIGN OF SHAFTS AND HOUSINGS Fitting of Shafts and Housings It is of utmost impotance that shafts and housings ae accuately and pecisely mated in ode to take full advantage of the pecision beaings capabilities, which include otational accuacy, high speed pefomance, and low heat geneation. When the inne ing o oute ing is mounted onto a shaft o into a housing with some intefeence, the shape of shaft o housing (out of oundness) is tansfeed to the beaing aceway sufaces and affects unning accuacy. When multiple angula contact ball beaings ae used, cylindicality affects the distibution of peload fo each beaing. Theefoe, the mating pats should be as accuate as possible. Inaccuate mating of pats can cause the fomation of peaks o idges along the shaft of a pecision lathe, which can affect the quality of finished wok. Table 8.1 Fits on Shafts ( 1 ) Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 If the tape of the inne ing fo a double ow cylindical olle beaing with a tapeed boe does not match that of the shaft, the esidual cleaance will be diffeent fo two of the ows. Theefoe, load will not be sustained nomally, and will impai igidity o cause iegula movement of the olles due to tape of the inne ing goove. We ecommend that you gauge the tapeed pats to be mated with beaings. Contact should cove moe than 80% of the total suface aea that is dyed blue. The ecommended accuacy and suface oughness of beaing mounting seats ae shown in following tables: Table 8.3 Toleance fo and Mean Roughness of Shafts a b d A 184 Beaing Type Shaft Oute Diamete (mm) Toleance of Shaft ( 2 ) Oute Diamete (mm) Taget Intefeence ( 2 ) ( 4 ) (mm) ove incl min max min max 18 0.003 0 0 0.002 T 18 50 0.004 0 0 0.0025T Machine tool 50 80 0.005 0 0 0.003 T spindle beaing ( 3 ) 80 120 0.003 0.003 0 0.004 T 120 180 0.004 0.004 0 0.004 T 180 250 0.005 0.005 0 0.005 T 18 0.008 0 Angula contact thust 18 30 0.009 0 ball beaing fo ball 30 50 0.011 0 scew suppot 50 80 0.013 0 80 120 0.015 0 Table 8.2 Fits on Housings ( 1 ) Beaing Type Housing Boe Diamete (mm) Toleance of Housing ( 2 ) Boe Diamete (mm) Taget Cleaance ( 2 ) ( 4 ) (mm) ove incl min max min max 18 50 0.002 0.002 0.002L 0.006L 50 80 0.0025 0.0025 0.002L 0.006L Angula contact ball 80 120 0.003 0.003 0.003L 0.008L beaing (Fixed end) 120 180 0.004 0.004 0.003L 0.008L 180 250 0.005 0.005 0.005L 0.0L 18 50 0 0.004 0.006L 0.011L 50 80 0 0.005 0.006L 0.011L Angula contact ball 80 120 0 0.006 0.009L 0.015L beaing (Fee end) 120 180 0 0.008 0.009L 0.015L 180 250 0 0.0 0.015L 0.022L 18 50 0.006 0 0.002L 0.002T 50 80 0.007 0 0.002L 0.002T Cylindical olle 80 120 0.008 0 0.002L 0.002T beaing 120 180 0.009 0 0.002L 0.002T 180 250 0.011 0 0.002L 0.002T 18 Angula contact thust 18 30 ball beaing fo ball 30 50 0 0.016 scew suppot 50 80 0 0.019 Toleance Gades and Mean Roughness (µm) Shaft Diamete Out-of-oundness ( ) Cylindicity ( ) Runout ( ) Coaxiality ( ) Roughness (mm) a b c d R a Beaing Accuacy Beaing Accuacy Beaing Accuacy Beaing Accuacy Beaing Accuacy ove incl P5, P4 P3, P2 P5, P4 P3, P2 P5, P4 P3, P2 P5, P4 P3, P2 P5, P4 P3, P2 0.7 0.5 0.7 0.5 2 1.2 4 2.5 0.2 0.1 18 1 0.6 1 0.6 2.5 1.5 5 3 0.2 0.1 18 30 1.2 0.7 1.2 0.7 3 2 6 4 0.2 0.1 30 50 1.2 0.7 1.2 0.7 3.5 2 7 4 0.2 0.1 50 80 1.5 1 1.5 1 4 2.5 8 5 0.2 0.1 80 120 2 1.2 2 1.2 5 3 6 0.4 0.2 120 180 2.5 1.7 2.5 1.7 6 4 12 8 0.4 0.2 180 250 3.5 2.2 3.5 2.2 7 5 14 0.4 0.2 250 315 4 3 4 3 8 6 16 12 0.4 0.2 Table 8.4 Toleance fo and Mean Roughness of Housings 80 120 0 0.022 Toleance Gades and Mean Roughness (µm) ( 1 ) The fitting data above povides geneal ecommendations fo machine tool spindles opeating unde nomal conditions and fo d m n values of less than Housing Boe Diamete Out-of-oundness ( ) Cylindicity ( ) Runout ( ) Coaxiality ( ) Roughness 800,000. Fo high speeds, heavy loads, o oute ing otation, please contact NSK fo assistance. (mm) a 1 b 1 c 1 d 1 R a ( 2 ) Use the taget intefeence when the beaing can be matched to the shaft o housing, Othewise, use the shaft oute diamete and housing boe Beaing Accuacy Beaing Accuacy Beaing Accuacy Beaing Accuacy Beaing Accuacy minimum and maximum fo andom matching. ove incl P5, P4 P3, P2 P5, P4 P3, P2 P5, P4 P3, P2 P5, P4 P3, P2 P5, P4 P3, P2 18 1 0.6 1 0.6 2.5 1.5 5 3 0.4 0.2 ( 3 ) Applies to angula contact ball beaings: 70XX, 79XX, 72XX, BNR and BER 18 30 1.2 0.7 1.2 0.7 3 2 6 4 0.4 0.2 Angula contact thust ball beaings: BAR, BTR and TAC 30 50 1.2 0.7 1.2 0.7 3.5 2 7 4 0.4 0.2 Cylindical olles beaings: NXX, NN30XX, NN39XX, NN49XX and NNU49XX. 50 80 1.5 1 1.5 1 4 2.5 8 5 0.4 0.2 ( 4 ) T=Intefeence o tight fit 80 120 2 1.2 2 1.2 5 3 6 0.8 0.4 L=Cleaance o loose fit 120 180 2.5 1.7 2.5 1.7 6 4 12 8 0.8 0.4 180 250 3.5 2.2 3.5 2.2 7 5 14 0.8 0.4 250 315 4 3 4 3 8 6 16 12 1.6 0.8 315 400 4.5 3.5 4.5 3.5 9 6.5 18 13 1.6 0.8 c 1 AB A A C AB a 1 b 1 d 1 B A B c 1 AB Design of Shafts and Housings 185

8. DESIGN OF SHAFTS AND HOUSINGS Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Shoulde and Fillet Dimensions Table 8.5 Shoulde and Fillet Dimensions fo Angula Contact Ball Beaings Unit: mm Table 8.6 Shoulde and Fillet Dimension fo Cylindical Rolle Beaings Unit: mm Dimension Seies 19 Dimension Seies Dimension Seies 02 Nominal 79XX, BNR19, BER19, BAR19, 70XX, BNR, BER, BAR, 72XX, BGR02 Boe BTR19, BGR19, TAC29X BTR, BGR, TAC20X Diamete d a D a D b a b d a D a D b a b d a D a D b a b (min) (max) (max) (max) (max) (min) (max) (max) (max) (max) (min) (max) (max) (max) (max) 005 000.7.5 00.13.5 0.3 006 000.8.5 00.14.5 0.3 000.8.5 00.16.5 0.3 007 000.9.5 00.16.5 0.3 008 00..5 00.19.5 0.3 00..5 00.21.5 0.3 0 00.12.5 00.19.5 00.20.8 0.3 00.15 00.12.5 00.23.5 00.24.8 0.3 00.15 015 025 00.27.5 0.6 0.3 012 00.14.5 00.21.5 00.22.8 0.3 00.15 00.14.5 00.25.5 00.26.8 0.3 00.15 017 027 00.29.5 0.6 0.3 015 00.17.5 00.25.5 00.26.8 0.3 00.15 00.17.5 00.29.5 00.30.8 0.3 00.15 020 030 00.32.5 0.6 0.3 017 00.19.5 00.27.5 00.28.8 0.3 00.15 00.19.5 00.32.5 00.33.8 0.3 00.15 022 035 00.37.5 0.6 0.3 020 00.22.5 00.34.5 00.35.8 0.3 00.15 025 037 00.39.5 0.6 0.3 026 041 042 1.0 0.5 025 00.27.5 00.39.5 00.40.8 0.3 00.15 030 042 00.44.5 0.6 0.3 031 046 047 1.0 0.5 030 00.32.5 00.44.5 00.45.8 0.3 00.15 036 049 050 1.0 0.5 036 056 057 1.0 0.5 035 040 050 00.52.5 0.6 0.3 041 056 057 1.0 0.5 042 065 067 1.0 0.6 040 045 057 00.59.5 0.6 0.3 046 062 063 1.0 0.5 047 073 075 1.0 0.6 045 050 063 00.65.5 0.6 0.3 051 069 070 1.0 0.5 052 078 080 1.0 0.6 050 055 067 00.69.5 0.6 0.3 056 074 075 1.0 0.5 057 083 085 1.0 0.6 055 061 074 075 1.0 0.5 062 083 085 1.0 0.6 064 091 094 1.5 0.8 060 066 079 080 1.0 0.5 067 088 090 1.0 0.6 069 1 4 1.5 0.8 065 071 084 085 1.0 0.5 072 093 095 1.0 0.6 074 111 114 1.5 0.8 070 076 094 095 1.0 0.5 077 3 5 1.0 0.6 079 116 119 1.5 0.8 075 081 099 0 1.0 0.5 082 8 1 1.0 0.6 084 121 124 1.5 0.8 080 086 4 5 1.0 0.5 087 118 120 1.0 0.6 090 130 134 2.0 1.0 085 092 113 115 1.0 0.6 092 123 125 1.0 0.6 095 140 144 2.0 1.0 090 097 118 120 1.0 0.6 099 131 134 1.5 0.8 0 150 154 2.0 1.0 095 2 123 125 1.0 0.6 4 136 139 1.5 0.8 7 158 163 2.0 1.0 0 7 133 135 1.0 0.6 9 141 144 1.5 0.8 112 168 173 2.0 1.0 5 112 138 140 1.0 0.6 115 150 154 2.0 1.0 117 178 183 2.0 1.0 1 117 143 145 1.0 0.6 120 160 164 2.0 1.0 122 188 193 2.0 1.0 120 127 158 160 1.0 0.6 130 170 174 2.0 1.0 132 203 208 2.0 1.0 130 139 171 174 1.5 0.8 140 190 194 2.0 1.0 144 216 223 2.5 1.0 140 149 181 184 1.5 0.8 150 200 204 2.0 1.0 154 236 243 2.5 1.0 150 160 200 204 2.0 1.0 162 213 218 2.0 1.0 164 256 263 2.5 1.0 160 170 2 214 2.0 1.0 172 228 233 2.0 1.0 174 276 283 2.5 1.0 170 180 220 224 2.0 1.0 182 248 253 2.0 1.0 188 292 301 3.0 1.5 180 190 240 244 2.0 1.0 192 268 273 2.0 1.0 198 302 311 3.0 1.5 190 200 250 254 2.0 1.0 202 278 283 2.0 1.0 208 322 331 3.0 1.5 200 212 268 273 2.0 1.0 212 298 303 2.0 1.0 218 342 351 3.0 1.5 220 242 282 287 2.0 1.0 240 263 301 306 2.0 1.0 260 283 341 345 2.0 1.0 280 304 360 365 2.0 1.0 Dimension Seies 19 Dimension Seies (Double ow) Dimension Seies (Single ow) Nominal NN39, NN49, NNU49 NN30XX NXX Boe d a d 1a d c D a a d a d 1a D a a d a d 1a D a Diamete a (min) (min) (min) (max) (min) (max) (max) (min) (max) (min) (max) (min) (min) (max) (min) (max) 025 029 029 043 042 0.6 030 035 036 050 050 1.0 035 036 051 049 0.5 035 040 041 057 056 1.0 040 041 057 056 0.5 040 045 046 063 062 1.0 045 046 063 062 0.6 045 050 051 070 069 1.0 050 051 070 069 0.6 050 055 056 075 074 1.0 055 056 075 074 0.6 055 00.61.5 062 00.83.5 083 1.0 00.61.5 061 00.83.5 083 1.0 060 00.66.5 067 00.88.5 088 1.0 00.66.5 066 00.88.5 088 1.0 065 00.71.5 072 00.93.5 093 1.0 00.71.5 071 00.93.5 093 1.0 070 00.76.5 077 0.3.5 2 1.0 00.76.5 076 0.3.5 2 1.0 075 00.81.5 082 0.8.5 7 1.0 00.81.5 081 0.8.5 7 1.0 080 00.86.5 087 0.118.5 115 1.0 00.86.5 086 0.118.5 115 1.0 085 00.91.5 092 0.123.5 120 1.0 00.91.5 091 0.123.5 120 1.0 090 098 099 132 129 1.5 098 097 132 129 1.0 095 3 4 137 134 1.5 3 2 137 134 1.0 0 0.6.5 8 115 0.133.5 131 1.0 8 9 142 139 1.5 8 7 142 139 1.0 5 0.111.5 113 120 0.138.5 136 1.0 114 115 151 148 2.0 114 114 151 148 1.0 1 0.116.5 118 125 0.143.5 141 1.0 119 121 161 157 2.0 119 119 161 157 1.0 120 0.126.5 128 137 0.158.5 0.154.5 1.0 129 131 171 167 2.0 129 129 171 167 1.0 130 138 140 148 172 169 1.5 139 141 191 185 2.0 139 140 191 185 1.0 140 148 150 158 182 180 1.5 149 151 201 195 2.0 149 150 0.203.5 194 1.0 150 159 162 171 201 197 2.0 161 162 214 209 2.0 160 169 172 182 211 207 2.0 171 172 229 222 2.0 170 179 182 192 221 217 2.0 181 183 249 239 2.0 180 189 193 205 241 234 2.0 191 193 269 258 2.0 190 199 203 217 251 0.245.5 2.0 201 203 279 268 2.0 200 211 214 228 269 261 2.0 211 214 299 285 2.0 220 231 234 289 281 2.0 240 251 254 309 302 2.0 260 271 275 349 338 2.0 280 291 295 369 358 2.0 Fig. 8.1 Figue of Shoulde and Fillet Dimension a a b a Da da Db da a a Design of Shafts and Housings a a Da da a d1a dc da d1a Da da d1a Da 186 187

8. DESIGN OF SHAFTS AND HOUSINGS 9. SPACERS Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Chamfe Dimension Limits and Cone Radius of Shaft o Housing Fig. 8.2 Chamfe Dimension Space Dimensions The dimensions of standad spaces fo angula contact ball beaings (19, 29,, 20 and 02 seies) ae listed below: (max) o 1 (max) (Radial diection) (min) o 1 (min) (max) o 1 (max) Spaces Side face o inne/oute ing (Axial diection) (min) o 1 (min) (min) o 1 (min) Beaing Boe suface o outside suface : chamfe dimension of inne/oute ing 1 : chamfe dimension of inne/oute ing (Font side) Pemissible Pemissible Refeence Chamfe Nominal Boe Diamete Chamfe Dimension fo Cone Radius of Dimension d Inne/Oute Rings Shaft o fo Inne/Oute Rings (min) (max) o 1 (max) Housing a o 1 (min) ove incl Radial Diection Axial Diection ( 1 ) max 0.05 0.1 0.2 0.05 0.08 0.16 0.3 0.08 0.1 0.2 0.4 0.1 0.15 0.3 0.6 0.15 0.2 0.5 0.8 0.2 0.3 40 0.6 1 0.3 0.3 40 0.8 1 0.3 0.6 40 1 2 0.6 0.6 40 1.3 2 0.6 1 50 1.5 3 1 1 50 1.9 3 1 1.1 120 2 3.5 1 1.1 120 2.5 4 1 1.5 120 2.3 4 1.5 1.5 120 3 5 1.5 Remaks: The pecise shape of chamfe sufaces has not been specified but its pofile in the axial plane shall not intesect an ac of adius (min) o 1 (min) touching the side face of an inne ing and boe suface, o the side face of an oute ing and outside suface. Table 8.7 Chamfe Dimension Limits Unit: mm Unit: mm Pemissible Pemissible Refeence Chamfe Nominal Boe Diamete Chamfe Dimension fo Cone Radius of Dimension d Inne/Oute Rings Shaft o fo Inne/Oute Rings (min) (max) o 1 (max) Housing a o 1 (min) ove incl Radial Diection Axial Diection ( 1 ) max 2 80 3 4.5 2 2 80 220 3.5 5 2 2 220 3.8 6 2 2.1 280 4 6.5 2 2.1 280 4.5 7 2 2.5 0 3.8 6 2 2.5 0 280 4.5 6 2 2.5 280 5 7 2 3 280 5 8 2.5 3 280 5.5 8 2.5 4 6.5 9 3 5 8 4 6 13 5 7.5 12.5 17 6 9.5 15 19 8 12 18 24 15 21 30 12 19 25 38 15 ( 1 ) Fo beaings with nominal widths less than 2 mm, the value of (max) in the axial diection is the same as that in the adial diection. Additional infomation: Mateial of space: Steel (SUJ2) o S C steel When using spaces, paallelism of space end sufaces should be less than 0.003 mm. 19 o 29 Seies Standad Spaces fo Dimension Seies 19 o 29 (79, BNR19, BER19, BNR29, BER29, BGR19) Unit: mm Boe Numbes Oute Ring Space Inne Ring Space Nominal Boe Oute Diamete Diamete Oute Diamete ( 1 ) Boe Oute Diamete Boe ( 2 ) Space Chamfe 00 0 022 021.5 00.17.5 00.14.5 0.5 0.2 01 012 024 023.5 00.19.5 00.16.5 012.5 0.2 02 015 028 027.5 00.23.5 00.19.5 015.5 0.2 03 017 030 029.5 00.25.5 00.21.5 017.5 0.2 04 020 037 036.5 00.31.5 026 020.5 0.2 05 025 042 041.5 036 031 025.5 0.2 06 030 047 046.5 041 036 030.5 0.2 07 035 055 054.5 048 042 035.5 0.3 08 040 062 061.5 00.54.5 00.47.5 040.5 0.3 09 045 068 067.5 060 053 045.5 0.3 050 072 071.5 066 056 050.5 0.3 11 055 080 079.5 072 064 055.5 0.5 12 060 085 084.5 077 068 060.5 0.5 13 065 090 089.5 082 073 065.5 0.5 14 070 0 099.5 00.91.5 079 070.5 0.5 15 075 5 4.5 00.96.5 084 075.5 0.5 16 080 1 9.5 0.1.5 00.89.5 080.5 0.5 17 085 120 119.5 1 095 085.5 0.5 18 090 125 124.2 116 0 090.5 0.5 19 095 130 129.2 120 6 095.5 0.5 20 0 140 139.2 129 112 0.5 0.5 21 5 145 144.2 133 117 5.5 0.5 22 1 150 149.2 138 122 1.5 0.5 24 120 165 164.2 152 133 120.5 0.5 26 130 180 179.2 166 144 130.8 0.8 28 140 190 189.2 176 154 140.8 0.8 30 150 2 209.2 193 167 150.8 1.0 32 160 220 219.2 213 175 160.8 1.0 34 170 230 229.2 214 188 170.8 1.0 36 180 250 249.2 231 200 180.8 1.0 38 190 260 259.2 242 206 190.8 1.0 40 200 280 279.2 255 225 200.8 1.0 ( 1 ) Fo oute ing spaces opeating unde oil mist lubication o jet lubication, the oute diamete of the oute ing space is the same as that of the beaing outside diamete. Recommend maintaining a toleance of g5 o bette. ( 2 ) Fo high speed opeations exceeding a value of d m n 70 4, the boe diamete of the inne ing space is the same as that of the beaing boe. Recommend maintaining a toleance of F6 o bette. 188 189

9. SPACERS Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Additional infomation: Mateial of space: Steel (SUJ2) o S C steel When using spaces, paallelism of space end sufaces should be less than 0.003 mm. o 20 Seies Standad spaces fo dimension seies o 20 (70, BNR, BER, BNR20, BER20, BGR) Unit: mm 02 Seies Standad spaces fo dimension seies 02 (72, BGR02) Boe Numbes Oute Ring Space Inne Ring Space Nominal Boe Oute Diamete Diamete Oute Diamete ( 1 ) Boe Oute Diamete Boe ( 2 ) Space Chamfe 00 0 026 025.5 00.21.5 00.14.5 0.5 0.2 01 012 028 027.5 00.23.5 017 012.5 0.2 02 015 032 031.5 027 020 015.5 0.2 03 017 035 034.5 00.29.5 023 017.5 0.2 04 020 042 041.5 035 027 020.5 0.3 05 025 047 046.5 00.40.5 032 025.5 0.3 06 030 055 054.5 00.47.5 038 030.5 0.5 07 035 062 061.5 054 043 035.5 0.5 08 040 068 067.5 060 048 040.5 0.5 09 045 075 074.5 066 055 045.5 0.5 050 080 079.5 071 060 050.5 0.5 11 055 090 089.5 081 066 055.5 0.5 12 060 095 094.5 086 069 060.5 0.5 13 065 0 099.5 091 074 065.5 0.5 14 070 1 9.5 098 083 070.5 0.5 15 075 115 114.5 5 085 075.5 0.5 16 080 125 124.2 112 093 080.5 0.5 17 085 130 129.2 117 099 085.5 0.5 18 090 140 139.2 126 4 090.5 0.8 19 095 145 144.2 131 9 095.5 0.8 20 0 150 149.2 136 114 0.5 0.8 21 5 160 159.2 144 121 5.5 1.0 22 1 170 169.2 153 128 1.5 1.0 24 120 180 179.2 166 136 120.5 1.0 26 130 200 199.2 177 150 130.8 1.0 28 140 2 209.2 190 160 140.8 1.0 30 150 225 224.2 203 172 150.8 1.2 32 160 240 239.2 217 183 160.8 1.2 34 170 260 259.2 0.230.5 0.199.5 170.8 1.2 36 180 280 279.2 250 2 180.8 1.2 38 190 290 289.2 261 221 190.8 1.2 40 200 3 309.2 278 232 200.8 1.2 ( 1 ) Fo oute ing spaces opeating unde oil mist lubication o jet lubication, the oute diamete of the oute ing space is the same as that of the beaing outside diamete. Recommend maintaining a toleance of g5 o bette. ( 2 ) Fo high speed opeations exceeding a value of d m n 70 4, the boe diamete of the inne ing space is the same as that of the beaing boe. Recommend maintaining a toleance of F6 o bette. Unit: mm Boe Numbes Oute Ring Space Inne Ring Space Nominal Boe Oute Diamete Diamete Oute Diamete ( 1 ) Boe Oute Diamete Boe ( 2 ) Space Chamfe 00 0 030 029.5 025 017 0.5 0.3 01 012 032 031.5 027 018 012.5 0.3 02 015 035 034.5 029 021 015.5 0.3 03 017 040 039.5 033 024 017.5 0.3 04 020 047 046.5 039 028 020.5 0.5 05 025 052 051.5 044 033 025.5 0.5 06 030 062 061.5 053 040 030.5 0.5 07 035 072 071.5 062 046 035.5 0.5 08 040 080 079.5 068 052 040.5 0.5 09 045 085 084.5 075 056 045.5 0.5 050 090 089.5 080 060 050.5 0.5 11 055 0 099.5 090 065 055.5 0.8 12 060 1 9.5 095 075 060.5 0.8 13 065 120 119.5 5 080 065.5 0.8 14 070 125 124.2 1 085 070.5 0.8 15 075 130 129.2 115 090 075.5 0.8 16 080 140 139.2 125 095 080.5 1.0 17 085 150 149.2 135 5 085.5 1.0 18 090 160 159.2 140 1 090.5 1.0 19 095 170 169.2 150 115 095.5 1.0 20 0 180 179.2 160 125 0.5 1.0 21 5 190 189.2 170 132 5.5 1.0 22 1 200 199.2 175 135 1.5 1.0 24 120 215 214.2 190 145 120.5 1.0 26 130 230 229.2 203 157 130.8 1.2 28 140 250 249.2 220 170 140.8 1.2 30 150 270 269.2 233 189 150.8 1.2 ( 1 ) Fo oute ing spaces opeating unde oil mist lubication o jet lubication, the oute diamete of the oute ing space is the same as that of the beaing outside diamete. Recommend maintaining a toleance of g5 o bette. ( 2 ) Fo high speed opeations exceeding a value of d m n 70 4, the boe diamete of the inne ing space is the same as that of the beaing boe. Recommend maintaining a toleance of F6 o bette. Spaces 190 191

9. SPACERS Pat 1 Pat 2 Pat 3 Pat 4 Pat5 Pat 6 Pat 7 Pat 8 Position of the Spay Nozzle The following table lists positions of a spay nozzle fo oil-ai, oil mist, and oil jet lubicating systems. NXXMR NXXR Nominal 79 Seies 70 Seies 72 Seies Boe Numbes (Standad seies) (ROBUST seies) Beaing Boe A ( 1 ) B A ( 1 ) B A ( 1 ) B A B A B 00 0 014.5 0.4 016.1 0.5 018.1 0.5 01 012 016.5 0.4 018.3 0.5 019.6 0.5 02 015 020.0 0.5 021.3 0.5 022.6 0.7 03 017 021.8 0.5 023.5 1.0 025.9 0.7 04 020 026.1 0.5 028.2 1.0 030.5 1.0 05 025 031.1 0.5 032.9 1.0 035.5 1.0 06 030 036.1 0.5 039.5 1.0 042.4 1.0 039.7 1.2 07 035 042.6 0.5 044.6 1.0 049.2 0.7 045.4 1.5 08 040 047.9 0.5 050.0 1.0 055.5 0.7 050.6 1.5 09 045 053.4 0.5 055.6 1.0 060.2 0.7 056.5 2.0 060.0 0.6 050 057.9 0.5 060.6 1.0 065.2 1.0 061.5 2.0 064.5 1.3 11 055 064.0 0.5 067.3 1.0 072.0 1.0 069.2 2.5 071.0 1.2 12 060 069.0 0.5 072.5 1.0 079.0 0.7 074.3 2.5 076.5 1.2 13 065 074.0 0.5 077.5 1.0 086.2 0.7 079.2 2.5 081.5 1.2 14 070 080.9 0.7 083.7 1.0 090.9 0.7 086.6 3.0 089.0 1.5 15 075 085.5 0.7 089.4 1.0 095.9 0.7 090.0 2.5 094.5 1.5 16 080 090.5 0.7 096.5 1.0 2.8 0.7 098.5 3.0 1.0 2.0 17 085 098.8 0.7 1.5 1.0 9.8 1.0 3.5 3.0 6.0 2.0 18 090 2.8 0.7 8.6 1.0 116.7 1.0 9.0 3.0 19 095 7.7 0.7 113.3 1.0 123.6 1.0 115.5 2.5 20 0 116.0 0.7 118.6 1.0 130.6 1.0 119.0 2.5 21 5 119.5 0.7 125.1 0.7 137.4 1.0 125.5 3.0 22 1 124.5 0.7 131.9 0.7 144.4 1.0 134.0 3.0 24 120 136.3 0.7 142.3 0.7 156.3 1.0 142.0 3.0 26 130 149.3 0.7 156.2 1.0 168.9 1.0 156.0 4.5 28 140 158.1 0.7 165.7 2.5 182.6 1.0 168.0 4.5 30 150 171.8 0.7 178.1 2.5 196.5 1.0 32 160 181.8 0.7 190.4 2.5 34 170 191.8 0.7 203.4 2.5 36 180 205.6 0.7 217.1 2.5 38 190 215.4 0.7 227.1 2.5 40 200 229.0 0.7 240.9 2.5 ( 1 ) In compliance with DIN Standad 628-6. Unit: mm BNR19 BNR BAR Nominal BGR19 BGR BGR02 BER19 BER BTR Beaing Boe A B A B A B A B A B A B 006 09.0 0.4 007.5 0.4 008 12.0 0.5 0 13.5 0.4 14.5 0.5 17.0 1.0 012 15.5 0.4 16.5 0.5 18.0 0.5 015 18.5 0.5 20.0 1.0 21.0 1.0 017 20.5 0.5 22.5 1.5 24.0 0.5 020 25.0 0.8 26.5 0.8 28.3 0.5 025 031.0 0.5 30.0 0.8 31.5 0.8 33.2 1.0 030 035.5 0.5 039.0 1.0 035 042.0 0.5 044.5 1.2 040 048.0 0.5 050.0 1.5 045 053.0 0.5 055.5 1.7 050 057.5 0.5 060.5 1.7 00.60.5 0.9 055 063.5 0.5 067.5 1.5 00.67.5 0.7 060 068.5 0.5 073.0 1.5 00.73.5 0.7 065 073.5 0.5 077.5 1.5 00.77.5 0.7 070 080.5 0.7 084.0 1.7 00.84.0 0.7 075 085.0 0.7 089.0 1.7 00.89.0 0.7 080 090.5 0.7 096.0 1.7 00.96.0 0.9 085 098.5 0.7 2.0 1.7 0.2.0 0.9 090 2.0 0.7 9.0 1.7 0.8.5 1.2 095 7.0 0.7 112.0 1.7 0.112.5 1.2 0 113.5 0.7 118.5 2.5 0.118.5 1.7 5 119.0 0.7 125.0 1.7 0.126.0 1.4 1 124.0 0.7 132.5 1.7 0.132.5 1.2 120 136.0 0.7 143.0 1.7 0.142.5 1.2 130 149.0 0.7 156.5 1.7 0.155.5 1.7 140 157.5 0.7 166.0 1.7 167 1.7 150 171.5 0.7 178.5 1.7 0.179.5 1.9 160 190 2.0 170 205 1.7 180 218 2.0 190 228 2.0 200 242 2.2 Unit: mm Fig. 9.2 Position and Diection of Spay Nozzle Attention Fo beaings opeating unde nomal opeating speed, pope lubication can be achieved by positioning the nozzle boe along the side of the beaing and aiming diectly into the beaing inteio at the level of the inne ing. Fo constant high speed opeations, it is advantageous to position the nozzle boe so that the lubicant is diected into the beaing inteio at an angle of about 15 o 20. Please contact NSK fo futhe details. An appopiate means of daining oil sump is necessay to pevent sevee oil shea fiction, which can esult in beaing damage at the sliding section. Recommend using a maximum 5 micon filte to povide filtation of oil enteing the lubicating system. Fig. 9.1 Angle of nozzle B IN A B IN A Spaces 192 193

BEARING HANDLING Pat6 Mounting Beaing Handling 1. Mounting P196-209 1. Cleaning the Beaings and Related Pats 2. Checking Dimensions of Related Pats 3. Mounting Pocedues 4. Inspection afte Mounting 2. Opeating Inspection P2-211 3. Initial Running-in Pocedues P212-213 Opeating Inspection Initial Running-in Pocedues Beaing Hand ling 194 195

1. MOUNTING Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat6 Pat 7 Pat 8 Intoduction Mounting Pocedue The method of mounting olling beaings stongly affects thei accuacy, life, and pefomance. It is ecommended that the handling pocedues fo beaings be fully analyzed by designes and enginees and that standads be established with espect to following items: Handle beaings caefully Avoid any heavy shocks duing handling. Shock loads can scatch o othewise damage a beaing, possibly esulting in failue. An excessively stong impact may cause binelling, beakage, o cacks. 1. Cleaning the Beaings and Related Pats Deliveed beaings ae coated with an anti-coosion agent fo dustpoofing and ust pevention duing tanspotation. Afte opening the package, beaings need to be cleaned in ode to emove the anti-coosion agent. Some beaings, such as sealed o pegeased beaings, can eached a constant and stable tempeatue. Using a micomete o cylinde gauge, take measuements at seveal diffeent points to confim thee ae no significant diffeences in measuement values. Recommended measuements fo accuacy of the shafts and housing boes ae listed on Page 185. Mounting 1. Cleaning the beaings and elated pats 2. Checking the dimensions of elated pats 3. Mounting pocedues 4. Inspection afte mounting Use pope tools Always use the pope equipment when handling beaing. Do not use geneal pupose tools. Pevent coosion Handling beaings with bae hands can coode the beaing be used without cleaning. Cleaning method 1. Use keosene o light oil to clean the beaings. 2. Use sepaate tanks fo ough cleaning and final Inspection of spaces Fo main spindle, a space paallelism of less than 0.003 mm is ecommended. Space paallelism exceeding this ecommendation will tilt the beaings, thus causing inaccuacies and beaing noise. Beaings should not be unpacked until immediately befoe mounting. Howeve, beaings fo instuments o fo high speed opeations must fist be cleaned with clean filteed oil in ode to emove the anti-coosion agent. Afte the beaings ae cleaned with filteed oil, they should be potected to pevent coosion. Pelubicated beaings must be used without cleaning. Beaing mounting pocedues vay accoding to the type of beaing and type of fit. sufaces because of the acidic moistue o othe contaminations on the hands. Keep you hands clean when handling beaings, and wea dust fee gloves wheneve possible. Take measues to pevent usting of beaings caused by moistue and coosive gasses. Stoage method Although beaings ae coated with an anti-coosion agent, and then wapped and packed, it is impossible to cleaning. Each tank should be equipped with a wie ack to pevent diect contact of the beaing with any contamination that may have settled at the bottom. 3. In the ough cleaning tank, avoid otating the beaings. Afte cleaning the outside sufaces with a bush, move the beaings to the final cleaning tank. 4. In the final cleaning tank otate the beaing by hand. 3. Mounting Pocedues Gease lubicated beaings and oil-ai (oil mist) lubicated beaings which ae cleaned ae mounted on the shaft and housing boe. Pocedues fo mounting vay accoding to the fit equiements of the inne and oute ings. Pimaily, it is the inne ing of a machine tool beaing that otates, thus beaings with cylindical boes ae usually mounted by heating them to expand the inne ing (shink fit). Since pecision beaings ae widely used fo otating shafts, thei inne ings equie a tight fit. Beaings with cylindical boes ae usually mounted by fitting with a pess (pess fit), o by heating them to expand thei inne ing (shink fit). The oute ing is usually inseted into the housing with a loose fit. In case whee the oute ing has an completely avoid exposue to the ai suounding the beaings. Stoe the beaings in a dy location and avoid exposue to moistue and humidity. Beaings should be stoed in a clean, dy, and wellventilated location that also povides potection fom diect sunlight. Stoe the beaings in a locke o on shelves that ae Make sue that the cleaning fluid in the final cleaning tank is kept clean. 5. Remove excess cleaning fluid fom the beaings afte cleaning. Beaings using odinay gease lubication need to be Beaing with tapeed boes can be mounted diectly onto a tapeed shaft. Fo high speed opeations, GN gauges ae ecommended fo attaining accuate adial cleaance when mounting. Page 202 povides details on how to use GN gauges. intefeence fit, a pess may be used. Pecautions fo Pope Handling of Beaings Since olling beaings ae high pecision machine pats, they at least 30 cm fom the floo. When beaings ae unpacked fo acceptance inspection, take measues to pevent usting and contamination. Afte inspection, follow the guidelines given above to ensue packed with gease. Oil lubicated beaings should be mounted on the machine tool spindle while taking cae not to otate the beaing. Pio to mounting, slightly coat the beaing inne and oute suface aeas with a Oute ings ae mounted with some cleaance; so mounting tool ae not usually equied. The housing can be heated to make mounting much easie. must be handled accodingly. pope stoage. thin film of lubication oil. Even if high quality beaings ae used, thei expected pefomance cannot be achieved if they ae not handled 2. Checking Dimension of Related Pats popely. The main pecautions to be obseved ae as follows: Inspection of shaft and housing Mating housing and shaft sufaces should be cleaned and Keep beaings and suounding aea clean checked fo flows o bus. Foeign paticles, even if invisible to the naked eye, have The dimensions of the shafts and housing boes should be hamful effects on beaings. Take cae to pevent the enty of checked to confim a matching fit with the beaing boe and dit and debis into the beaing by maintaining a clean woking oute diamete. Recommended fits fo shafts and housing envionment. boes ae listed on Page 184. Take measuements and mount the beaings in a themostatic chambe. Pats should be left until they have 196 197

1. MOUNTING Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat6 Pat 7 Pat 8 3.1. Mounting of Beaings with Cylindical Boes (1) Pess fit (2) Shink fit Since pess fitting lage beaings equies a geat deal of 3.2. Pecautions fo Mounting Angula Contact Ball Beaings Fig. 1.3 Diection of Load fo Angula Contact Ball Beaings Fitting with a pess is widely used fo small beaings. Fist, foce, the shink fitting method is widely used. The Due to design estiction, an angula contact ball beaing can apply a thin coat of oil to the mating shaft suface befoe mounting to help educe the amount of foce equied fo pess fitting. beaings ae fist heated to expand the inne ing befoe mounting onto the shaft. This method pevents excessive foce fom being imposed on the beaings and enables sustain loads in only one diection. Theefoe, when mounting angula contact ball beaings onto the shaft o into the housing, it is impotant not to apply any load in the wong Mounting Next, place a mounting tool against the inne ings as shown in Fig. 1.1. Apply steady pessue fom the mounting tool to dive the beaing fimly against the mounting them in a shot time. The expansion of the inne ing fo vaious tempeatue diffeences and beaing sizes is shown in Fig. 1.2. diection. Pay special attention to the ode of mounting fo combination Damage Load applied in diection x esults in damage to the beaing. shoulde of the shaft. The following pecautions need to be taken when shink beaings. Mounting onto the shaft and into the housing is Avoid pess fitting onto a shaft by applying pessue to fitting. diffeent fo Back-to-back and Face-to-face aangements. the oute ings as this may damage the beaing. 1. Do not heat beaings to moe than 120 C. Also, avoid using a hamme when mounting pecision beaings. Fo sepaable beaings, such as cylindical olle beaings, the inne and oute ings can be mounted onto the shaft and into the housing as sepaate units. When assembling the two units, take exta cae to align the inne and oute ings coectly. Caeless o foced assembly may cause 2. Heat the beaings to a tempeatue 20 C to 30 C highe than the lowest tempeatue equied fo mounting without intefeence since the inne ing will cool a little duing mounting. 3. Afte mounting, the beaings will shink in the axial diection as well as the adial diection while cooling. Theefoe, dive the beaing fimly up against the shaft Back-to-back aangement: ➀ Pess the beaing onto the shaft. ➁ Tighten the beaing locknut fo peloading. ➂ Inset the beaing and the shaft into the housing, and attach the etaining cove. Fig. 1.4 Mounting of Back-to-back Aangement scatches on the olling contact sufaces. shoulde using locating methods to eliminate any cleaance between the beaing and shoulde. Fig. 1.1 Pess Fitting Inne Ring Fig. 1.2 Tempeatue and Themal Expansion of Inne Ring 240 Boe expansion, µ m 220 200 180 160 140 120 0 80 60 Tempeatue diffeence T=80 C 70 C 60 C 50 C 40 C 30 C 20 C 5 p6 n6 m5 k5 j5 Face-to-face aangement: ➀ Pess the beaing into the housing. ➁ Secue the etaining cove fo peloading. ➂ Inset the shaft into the inne ing and tighten the beaing locknut. Fig. 1.5 Mounting of Face-to-face Aangement 40 20 80 120 180 250 315 Boe diamete, mm 400 500 Revese the ode of each step fo dismounting. 198 199

1. MOUNTING Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat6 Pat 7 Pat 8 3.3. Secuing the beaing (1) Secuing the inne ing The inne ing is usually secued onto the shaft by tightening the beaing locknut, which explains why pependiculaity of the theads and end face ae vey impotant. Even if accuacy as a single component is good, the gap between the shaft and locknut can esult in unout of the locknut, causing the shaft and beaing to bend (see Fig. 1.21, Page 207). Theefoe, making adjustments ae necessay to ensue constant unning accuacy. It is also impotant that the locknut be completely tightened so as to eliminate any possibility of it becoming loose. Seating toque infomation fo beaing locknuts is shown in Table 1.1. Thee is a isk of unbalance due to face and unout of the locknut o a mino inaccuacy of the mating pats. Hee, sleeves ae widely used in high speed, high pecision machine tool spindles to secue the beaing to the shaft by a lage intefeence fit between the shaft and sleeve boe. Howeve, the sleeve tends to become loose afte continuous opeation, so it must be checked peiodically. When a wide space is used between combined angula contact ball beaings, and the seating toque of the locknut is excessive, the inne ing space may become defomed and alte the peload to a level highe than expected. It is necessay to conside this defomation when the peload is set. (2) Secuing the oute ing A etaining cove held by bolts is geneally used to secue the beaing oute ing axially. If a bolt is tightened excessively o a combination of bolts is tightened unevenly, the beaing oute ing may become defomed. Fo example, Fig. 1.6 shows possible defomation of the oute diamete of the oute ing caused by uneven tightening of the etaining cove, when the oute ing end face is pessed as a pilot ing. Fig. 1.7 shows an example of poo etaining cove tightening fo a fixed end beaing esulting in oute ing defomation. Fig. 1.8 shows defomation of an oute ing aceway suface caused by tightening of a double ow cylindical olle beaing. The amount of defomation depends on the cleaance of the mating pats. It is ecommended that the cleaance between the etaining cove and housing end face be adjusted to about 0.01 to 0.05 mm befoe the bolts ae completely tightened. Fig. 1.6 Raceway Suface Defomation Caused by Excessive Tightening Befoe tightening 1 µ m 1 µ m Fig. 1.7 Raceway Suface Defomation Caused by Excessive Tightening Fig. 1.8 Defomation of the Oute Ring of a Double Row Cylindical Rolle Beaing Caused Excessive Tightening Bolts δ (8 places) Adjusted amount Retaining cove A B Change in boe diamete of oute ing, δm 2 4 6 8 Afte tightening 1 µ m 1 µ m NN3020 Oute ing Applied toque, N cm Retaining cove 0 1 000 2 000 3 000 4 000 (B side) (A side) Bolts (4 places) Oute ing Evaluated aea Adjusted Bolts amount (6 places) Evaluated aea (Oute ing) Tightening adjusted by µ m Tightening adjusted by 50 µ m Table 1.1 Beaing Locknut Tightening Toque and Cleaance between Retaining Cove and Housing Nominal beaing boe Locknut tightening Locknut tightening Cleaance between etaining (mm) foce (N) toque Refeence (N m) cove and housing (mm) 6 2 8 1 500 2 3 12 7 15 3 000 8 17 9 20 17 25 4 900 21 30 25 35 57 40 9 800 64 45 72 50 80 55 132 60 142 65 14 700 153 70 166 75 176 80 251 85 267 90 281 95 296 0 19 600 311 5 327 1 343 120 371 130 403 140 649 150 695 160 745 170 29 400 796 180 841 190 886 200 932 220 240 260 39 200 280 300 0.01 0.03 0.03 0.05 When intefeence fit of the shaft inceases unde high speed opeations, the amount of tightening toque applied to the locknut must also be inceased. The tightening foce of angula contact thust ball beaing fo ball scew suppot should be 2.5 3.0 times of the peload. Convesion equation of locknut tightening toque T=0.5F d p tan (p +β )+d w µ w [N mm] The values of locknut tightening toque in the table ae calculated by fiction coefficient of 0.15. T F d p p :Locknut tightening toque [N mm] :Locknut tightening foce [N] :Effective diamete of locknut [mm] :Fiction angle of locknut suface p =tan 1 µ S µ S :Fiction coefficient of locknut suface d w :Fictional toque equivalent diamete at locknut suface [mm] µ w :Fiction coefficient of locknut suface β :Lead angle of nut β=tan 1 (pitch/(3.142 dp)) Equation of push up foce µ :Fiction coefficient at fitting suface [=0.12] p m d B E d :Suface pessue [MPa] :Shaft diamete [mm] :Beaing width [mm] :Effective intefeence [mm] :Young s modulus of steel [MPa] k :Wall thickness atio (k=d/d i ) D i k 0 d 0 :Raceway diamete of inne ing [mm] :Wall thickness atio of hollow shaft (k 0 =d 0 /d) :Boe diamete of hollow shaft [mm] Mounting 200 201

1. MOUNTING Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat6 Pat 7 Pat 8 3.4. Mounting of Cylindical Rolle Beaings Fig. 1.9 GN Gauge ➄ Mounting of inne ing Fig. 1.12 Insetion of Inne Ring (1) Measuing adial cleaance of cylindical olle beaings A GN gauge is an instument fo matching the tapeed section of a shaft to the tapeed boe of a beaing when mounting a cylindical olle beaing with a tapeed boe onto a machine Dial gauge Main body fixtue GN30XX Gauge body Handle Mount the inne ing onto the shaft and tighten the locknut lightly. At this time, the beaings should be cleaned, but not yet coated with gease. ➅ Setting of GN gauge Adjust the setscew on the GN gauge (0.2 mm to 0.3 mm on the dial Mounting tool spindle. Afte mounting, the GN gauge is used fo pecise face) to spead open the dial on the GN gauge. The GN gauge is placed contol of the beaing s adial intenal cleaance. This in the cente of inne ing and the setscew is loosened. instument is especially effective when a cylindical olle beaing is used with adial peload. Fig. 1.9 descibes the GN gauge components. Pointe contol Setscew NIPPON SEIKO ➆ Reading of the scale Read the scale on the dial gauge of the GN gauge at this time. Example 1: A half-shift of the dial fom zeo in a clockwise diection Fig. 1.13 Setting of GN Gauge indicates positive cleaance. Example 2: A half-shift of the dial fom zeo in a counte-clockwise How to use a GN gauge ➀ Inset oute ing into housing Fig. 1. Zeo Setting of Cylinde Gauge diection indicates negative cleaance. The ecommended fit between oute ing and housing is: 0 5 0 5 Cleaance 2 µm - Intefeence 2 µm ➁ Zeo setting of cylinde gauge Confim that the tempeatues ae the same fo the oute ing (inseted into the housing), the inne ing, and the shaft. Then, measue the boe diamete of the oute ing at about fou diffeent locations. Detemine the aveage fo the measuements and the cylinde gauge to zeo (see Fig. 1.). ➂ Adjust the inscibed diamete of GN gauge Loosen the bolt of the main body fixtue on the GN gauge. Apply the cylinde gauge to the inscibed diamete suface of the GN gauge and adjust the setscew to the setting of the dial on the cylinde gauge to zeo (see step ➁). (Use the GN gauge in an upight position to avoid inaccuacies due to its own weight.) Example 1: Pointing to 4 in a Example 2: Pointing to 2 in a clockwise diection indicates a counte-clockwise diection adial cleaance of +0.002 mm indicates a adial cleaance of 0.001 mm ➇ Adjustment In addition to pocedues given in step ➅, use the scew to spead the dial of the GN gauge. Remove the gauge fom inne ing and tighten the locknut. Repeat steps ➅ though ➇ until the scale of the dial gauge eaches the taget cleaance value. Fig. 1.14 Reading of the Scale Fig. 1.15 Measuement of Space Width ➃ Coection of GN gauge Using the esults fom step ➂, use the pointe contol on the dial gauge to adjust the pointe on the GN gauge to the ed mak fo gauge coection. Confim that the shot needle is nea 2 on the dial. (Gauge coection coects fo elastic defomation of the olle due to measuing pessue on the gauge. The amount of coection fo each gauge is detemined upon shipment a gauge.) Fig. 1.11 Adjust the Inscibed Diamete of the GN Gauge ➈ Adjustment of space Measue the cleaance between the shaft shoulde and the end face on the lage diamete side of NN30XXKR by using block gauge. Measue moe than thee places on cicumfeence to both an aveage and the finish width of space fo that aveage. 202 203

1. MOUNTING Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat6 Pat 7 Pat 8 (2) Measuing adial cleaance of cylindical olle beaings (GN gauge is not used) When the GN gauge is not used, it is necessay to adjust the space width by consideing the following two items: Shinkage of oute ing aceway diamete due to fitting in housing ( e ) Expansion of the inne ing aceway diamete due to fitting, which includes a hollow shaft atio ( i ) Calculation of The finish dimension (La) of the space, which is used fo setting the post-mounting adial cleaance of, can be calculated as follows: Measuing of adial cleaance of m ➀ Mount the inne ing onto the tapeed section of the shaft. (At this point, degease the tapeed section of the shaft and intenal suface of the inne ing with oganic solvent.) ➁ Place the oute ing on the cicumscibing pat of the olles and apply the dial gauge to oute diamete of the oute ing. Fig. 1.16 Insetion of Oute Ring Block gauge L Dial gauge Mounting by lightly tapping the space Mounting L a = L K ( m + e ) ➂ Tighten the space and the locknut now to expand the inne ing (see Fig. 1.16). Fig. 1.17 Measuing Oute Ring Movement Table 1.2 Hollow Shaft Ratio and Coefficient K Hollow shaft Ratio k 0 Coefficient K 45 55% 14 55 65% 15 65 75% 16 Calculation of e e =(D h D) h when e 0 assume e =0 L a D h D h : Finish dimension of space fo setting post mounting adial cleaance L : Width of block gauge (Measued esult fom step ➄ on Page 205.) m : Movement of the oute ing in adial diection (Measued esult fom step ➃ on Page 205.) : Radial cleaance afte mounting e : Shinkage of oute ing aceway diamete due to fitting K : Coefficient (Conveted value which includes shinkage of a hollow shaft with a 1/12 tapeed hole) k 0 : A/B 0 A: Shaft boe diamete B: Shaft oute diamete : Housing boe diamete : Oute diamete of oute ing (Refe to beaing inspection sheet) : Shinkage ate of the oute ing aceway diamete (0.62 fo NN30 and N seies) (0.7 fo NN39 and NN49 seies) ➃ Push the oute ing in up and down and measue the adial movement of the oute ing with dial gauge ( 1 ). Repeat steps ➂ and ➃ until play of the oute ing ( m ) becomes about 0.005 mm ( 2 ) (Fig. 1.17). ➄ When m is set at about 0.005 mm, measue the distance fom shaft shoulde to the inne ing end face (Dimension L) with block gauge and the thickness gauge ( 3 ) (see Fig. 1.18). Remaks ( 1) If the measuement takes too long, the tempeatue of the oute ing may have isen to body tempeatue esulting in an eoneous measuement. Weaing gloves is ecommended to fo making a quick measuement. ( 2) If thee is an excessive amount of play, the oute ing may have defomed into an ellipse when pessed by hand. This would esult in an eoneous measuement. Theefoe, 0.005 mm of play is acceptable. (0.005 mm is the taget value, but 0.001 mm to 0.002 mm is also acceptable.) ( 3) Fo the measuement of dimension L, the value obtained is poduced by inseting the block gauge in the left half of the zone shown in Fig. 1.18 (This is due to tilting that occus between the shaft shoulde and inne ing end face.) Inne ing Acceptable ange fo inseting block gauge Dial gauge m Rolle Oute ing Fig. 1.18 Measuing Width Dimension with Block Gauge Unacceptable ange fo inseting block gauge (Example of calculation) Setting adial cleaance to = 0.002 mm fo NN3020MBKR afte mounting. Shinkage of oute ing aceway diamete due to fitting: e = 0.004 (Intefeence) (When e 0 assume e = 0) Movement of oute ing (Measued value in step ➃): m = 0.007 mm Block gauge width (Measued value in step ➄): L = 20.55 mm Finish space width dimension: L a = 20.55 15 (0.007 ( 0.002) 0.004) =20.55 0.075 = 20.475 Note the code! 204 205

1. MOUNTING Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat6 Pat 7 Pat 8 3.5. Gease Packing Pocedue fo packing gease afte cleaning beaings A apid ise in tempeatue may occu duing initial unning-in due to impope packing of gease. This can esult in a long unning-in peiod, o lead to seizue and beaing failue. Following pope pocedues fo packing gease and using the coect amount of gease deseves caeful attention. Recommended pocedues ae as follows: Packing method fo cylindical olle beaings (1) Coat about 80% of the gease amount evenly on olle olling suface. Avoid putting too much gease on the cage boe. Gease on the cage boe is difficult to dispese duing the unning-in peiod, which can esult in a apid ise in tempeatue o a long unning-in peiod. (2) Coat olle sufaces with a thin film of gease, including the olle end faces, olle cage contact points, and along the face edges of each cage pocket. (3) Using the emaining 20% of gease, apply a thin film of 4. Inspection afte Mounting 4.1. Runout accuacy Accuate mounting and elated pats ae indispensable to ensue pecision and accuacy of the machine tool spindle. 1: Assembled beaing oute ing face unout with aceway fo angula contact ball beaings. Adjust to 0.002 mm o less by tapping on the oute ing end face. 3: Concenticity of ea side housing 0.0 mm o less. If these accuacies cannot be met, disassemble the beaings and check the accuacy of pats again. Fig. 1.21 Tilting the Shaft Locknut Mounting (1) Pe-inspection Check to ensue thee is no foeign matte in the beaing inteio. Beaings fo high speed spindle shafts should be cleaned, degeased, and packed with gease. Fo othe applications, emove any anti- gease to the aceway suface of the oute ing. 2: Vaiation of beaing outside suface geneatix inclination with oute ing efeence face fo angula contact ball beaings. Adjust to 0.005 mm o less tilting the locknut (see Fig. 1.21). Tap the nut hee. coosion agent adheing to inteio sufaces of the beaings. (2) Gease dispenses Use a gease dispense, such as a plastic syinge fo Fig. 1.19 Gease Packed Angula Contact Ball Beaing Fig. 1.22 Runout Accuacy of Machine Tool Spindle pecision gease dispensing. If possible, use a Rotate shaft dispense that comes with a gauge fo packing accuate amounts of gease. (3) Amount of gease Recommended amounts of gease packing fo pecision beaings: Angula contact ball beaings fo high speed machine tool spindles: 15% ± 2% of intenal space Cylindical olle beaings fo high speed machine tool spindle: % ± 2% of intenal space Fig. 1.20 Gease Packed Cylindical Rolle Beaing Ball beaings fo motos: 20% to 30% of intenal space Recommendation of gease amount fo vaious beaing types and numbes is shown on Page 175. Rotate beaing oute ing Packing method fo ball beaings (1) Pack gease evenly between the balls. If an oute ing guided cage is used, such as a phenolic esin cage, apply a light coating of gease on the guided suface. (2) Rotate the beaing by hand to spead gease evenly on the sufaces of the aceway, ball, and cage. Assembled beaing oute ing face unout with aceway fo angula contact ball beaings Retaining cove Base Vaiation of beaing outside suface geneatix inclination with oute ing efeence face fo angula contact ball beaings Concenticity of ea side housing 206 207

1. MOUNTING Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat6 Pat 7 Pat 8 4.2. Contol of Peload afte Mounting of Beaings If the peload of olling beaing is set lage, the igidity of beaing is inceased, but heat geneation is also inceased, and in exteme cases, seizue may occu. Theefoe, it is necessay to contol optimum peload caefully in esponse to opeating condition. Measuing method of peload fo angula contact ball beaing is intoduced below. Fo the peload of cylindical olle beaing, it is ecommended to contol by using a GN gauge in mounting pocess (see Page 202). Measuing of peload fo angula contact ball beaings Thee ae thee methods fo checking peload of beaings afte mounting onto the main shaft: stating toque method, thust static igidity method, and natual fequency method. Featues of these methods ae summaized in Table 1.3. Table 1.3 Advantage Disadvantage (1) Stating toque method [Chaacteistic] Stating toque method Thust static igidity method Natual fequency method Used fo heavy peload, If stating toque is high, measuement eo is small. Not good fo light peload. If stating toque is small, vaiation of measuement is lage. Used fo light peload Not good fo heavy peload. High speed main shaft spindle beaings ae often used with light peload so that stating toque is low and measuement eo is lage. Loading equipment is too lage scale. Affected easily by defomation of contact pat othe than beaing. Fig. 1.23 Stating Toque Method Measuement of stating toque Measuement accuacy is high. Good epeatability. Influence of spindle fixing condition should not be ignoed. Rotay toque mete Housing Block (2) Thust static igidity method [Chaacteistic] When axial igidity of the beaing is high, axial foce necessay fo measuement becomes vey high and loading equipment is necessay (Example: If axial igidity is 200N/µm, 2 000N load is needed to geneate µm displacement). When measuement load is lage, besides elastic defomation of beaing inteio, effect of suface defomation and elastic defomation of othe elated pats ae added. Measued igidity tends to be lowe than theoetical value and eo often occus. [Method] Thust load is applied to shaft and its axial displacement is measued fo obtaining peload (see Figs. 1.25 and 1.26). (3) Natual fequency method [Chaacteistic] Measuing sensitivity is the highest and epeatability is good, but tend to be affected by spindle fixing condition. [Method] Shaft is vibated in an axial diection and esonance fequency of shaft is measued at the same time. Peload can be obtained by the esonance fequency (see Figs. 1.27 and 1.28). Fig. 1.25 Thust Static Rigidity Method Thust load F a Fig. 1.26 Relation between Axial Displacement and Peload Axial displacement, mm Dial gauge 0.025 0.02 0.015 0.01 0.005 0 Shaft DB aangement of 65BNRSTYN Peload afte mounted 250 400 N 550 N 0 500 1 000 1 500 2 000 Axial load, N Fig. 1.27 Natual Fequency Method Vibate in thust diection Acceleation pickup senso FFT analyze Shaft Housing Block Housing Block Fig. 1.28 Relation between Resonance Fequency of Main Shaft and Sping Constant Mounting [Method] Stating toque is obtained mainly by measuing tangential foce (see Fig. 1.23). Peload is obtained fom the elationship between measued stating toque and peload (see Fig. 1.24). When oil film fomation in olling contact aea is unstable duing measuement, sticking occus (Rotation does not stat even unde tangential foce and otation stats suddenly when tangential foce is inceased gadually). The toque at such occasion tends to be highe than pedicted calculated toque so that the excessive measuement esult needs to be excluded. Shaft Fig. 1.24 Relation between Stating Toque and Peload Stating toque, N mm 30 25 20 15 5 DB aangement of 65BNRSTYN 0 0 200 300 400 500 600 700 Peload afte mounted, N Measuement of esonance fequency (Fz) fo main shaft in axial diection d Axial sping constant of main shaft d Convet Convet Peload afte mounted K a : Axial sping constant of beaing (N/µm) F z : Resonance fequency (Hz) : Mass of otating body (kg) m K F z= 1 π m a 1 000 2 Resonance fequency of main shaft, Hz Peload afte mounted, N Axial sping constant, N/ µ m Peload Axial sping constant, N/ µ m 208 209

2. OPERATING INSPECTION Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat6 Pat 7 Pat 8 Opeating Inspection Table 2.1 Cause and Countemeasues fo Opeating Iegulaities Afte mounting has been completed, a test un should be conducted to detemine if the beaing has been mounted coectly. Small equipment may be manually opeated to assue that they otate smoothly. Items to be checked include sticking due to foeign matte, visible flaws, uneven toque caused by impope mounting, o an impope mounting suface. Othe items include excessive toque caused by an inadequate cleaance, mounting eos, o seal fiction. If thee ae no abnomalities, then a poweed test un can be stated. Fo high-speed equipment, pefom unning-in pocedues befoe a poweed test un (Pages 212-213). A poweed test un should be stated slowly without load. Make close obsevations to detemine whethe o not abnomalities exist. If eveything seems satisfactoy, then gadually incease the speed, load, etc., until nomal opeating conditions ae eached. Duing a test un opeation, check fo abnomal noise, excessive ise of beaing tempeatue, leakage and contamination of lubicants, etc. If any abnomality is found, stop the test un immediately and inspect the machiney. If bette to diectly measue the tempeatue of the oute ing using oil holes fo access. The beaing tempeatue should ise gadually to a steady level within one o two hous afte opeation stats. If the beaing expeiences touble, o if an eo was made in mounting, the beaing tempeatue may incease apidly and become abnomally high. The cause of this abnomal tempeatue may be an excessive amount of lubicant, insufficient beaing cleaance, incoect mounting, o excessive fiction of the seals. In the case of high speed opeations, an incoect selection of beaing type o lubicating method may also cause an abnomal tempeatue ise. Beaing noise can be checked with an acoustic o othe instuments. Abnomal conditions ae indicated by a loud metallic sound, o othe iegula noise. Possible causes include incoect lubication, poo alignment of the shaft and housing, o the enty of foeign matte into the beaing. Possible causes and countemeasues fo iegulaities ae listed in Table 2.1. Noise Iegulaities Possible cause Countemeasues Abnomal load Impove the fit, intenal cleaance, peload position of housing shoulde, etc. Loud metallic Incoect mounting Impove the machining accuacy and alignment of shaft and housing, accuacy of mounting method. sound ( 1 ) Insufficient o impope lubicant Replenish the lubicant o select anothe lubicant. Contact of otating pats Modify the labyinth seal, etc. Dents geneated by foeign matte, Replace o clean the beaing, impove the seals, and coosion, flaws, o scatches on aceways use clean lubicant. Loud egula sound Binelling Replace the beaing, and use cae when handling beaings. Iegula sound Flaking on aceway Excessive cleaance Penetation of foeign paticles Flaws o flaking on balls Excessive amount of lubicant Insufficient o impope lubicant Replace the beaing. Impove the fit, cleaance, and peload. Replace o clean the beaing, impove the seals, and use clean lubicant. Replace the beaing. Reduce amount of lubicant, o select stiffe gease. Replenish lubicant o select a bette one. Opeating Inspection necessay, the beaing should be dismounted fo examination as well. Although the tempeatue of the outside suface of the housing can geneally help detemine beaing tempeatue, it is Abnomal tempeatue ise Abnomal load Incoect mounting Impove the fit, intenal cleaance, peload, o position of housing shoulde. Impove the machining accuacy and alignment of the shaft and housing, accuacy of mounting, o mounting method. Ceep on fitted suface, excessive seal fiction Coect the seals, eplace the beaing, o coect the fitting o mounting. Vibation (Radial unout of shaft) Binelling Flaking Incoect mounting Penetation of foeign paticles Replace the beaing and use cae when handling beaing. Replace the beaing. Coect the squaeness between the shaft and housing shoulde o side of space. Replace o clean the beaing, impove the seals. Leakage o discoloation Too much lubicant. Penetation by Reduce the amount of lubicant, select a stiffe gease. Replace of lubicant foeign matte o abasion chips the beaing o lubicant. Clean the housing and adjacent pats. Note ( 1 ) Squeaking may aise fom gease lubicated ball beaings o cylindical olle beaings (medium to lage sized). This is especially tue duing winte when tempeatues ae low. In geneal, even though squeaking may occu, the beaing tempeatue will not ise, leaving fatigue o gease life unaffected. Consequently, such a beaing can continue to be used. If you concens egading squeaking noise, please contact NSK. 2 211

3. INITIAL RUNNING-IN PROCEDURES Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat6 Pat 7 Pat 8 Pepaations The following unning-in pocedues ae necessay afte popely mounting beaings. Balance of Shaft and Assembly Any unbalance of otating components will cause epeated stess o excessive vibations due to centifugal foce. This is especially tue fo spindles, which ae opeated at a d m n value of 1 000 000 o highe. Theefoe, it is impeative that both the shaft assembly ae well balanced. Spindle Assembly Spindle assemblies with a V-belt dive should have misalignment of the spindle pulley cente and moto pully cente coected to a taget of 0.1 mm o less. Coupling joints should have misalignment of the spindle shaft cente and moto shaft cente coected to a taget of 0.01 mm o less. Initial Running in Methods If opeating speed is suddenly inceased afte the beaings ae mounted, the opeating tempeatue will ise abuptly and beaing failue may occu. Gease lubicated beaings, especially, equie that you follow pope unning-in pocedues. Incease opeating speed gadually to completely oient the initially filled gease on each contact suface aceway. Running in should be conducted unde ambient tempeatue conditions (15 C to 25 C) while monitoing beaing tempeatue. Maximum opeating tempeatue of the spindle housing exteio should be tageted at about 50 C. Do not to exceed 55 C. If a apid tempeatue incease occus, tempoaily stop the unning-in pocess o deceleate to lowe the tempeatue. Some spindle assemblies incopoate both cylindical olle beaings and angula contact ball beaings. Since cylindical olle beaings tend to expeience a moe apid tempeatue incease in compaison with ball beaings, timing of speed inceases must be set to coespond with the olle beaings. [Caution] Spindle assemblies opeating unde oil mist and oil-ai lubicating conditions isk a sudden tempeatue ise at initial opeation, o afte the spindle assembly has not been opeated fo a long time. Excess oil that has collected in the oil lines of the lubication system may suddenly flood the beaing inteio, causing a tempeatue spike. Pefoming unning-in pocedues fo beaings with these lubicating systems equie much less time than gease-based systems, and ae highly ecommended. (1) Continuous unning-in pocedue [Featue] Continuous unning-in woks by gadually inceasing opeating speed fom the low speed zone. Although somewhat time consuming, this pocedue helps machine opeatos to detect potential poblems elated to the main shaft, thus Fig. 3.1 Tempeatue Change of Constant Speed Running-in Opeation avoiding costly damege to the beaings. [Method] Maximum opeating speed of the application is achieved by epeating seveal steps in a cycle. Step 1. Begin at a easonably low opeating speed. Step 2. Monito fo tempeatue ise. Step 3. Stable tempeatue is eached. Step 4. Continue incemental inceases of opeating speed. Continue epeating the above cycle until an equilibium tempeatue is eached at the maximum opeating speed and divide it into ten stages to detemine the taget speed fo each stage. Then, epeat the above cycle fo one o two hous until the taget speed is eached fo that stage. Move up to the next stage and epeat the above cycle until you each the next taget speed. Tempeatue, C 90 80 70 60 50 40 30 20 0 Side A beaing Side B beaing Base, C Room, C Beaing: 65BNRHTYNDB Maximum opeating speed: 16 000 min 1 18h Time, h Fig. 3.2 Incease of Opeating Speed Continuous Running in Beaing tempeatue (2) Intemittent Running-in pocedue [Featue] Intemittent Running in woks by stopping opeation and stabilizing tempeatues befoe thee is a apid tempeatue ise, which is caused by a sudden supply of gease to the beaing inteio duing initial opeation. This pocedue allows us to shoten the amount of time equied fo unning in. Pocedues fo intemittent unning in vay fom machine to machine and beaing aangements. Be sue to confim the beaing aangement fo each spindle application. [Method] Tempeatue dops Incease opeating speed Time Fist, take the maximum opeating speed and divide it into eight o ten stages to detemine the maximum taget speed fo each stage. Each stage is divided into cycles that ae appoximately one minute long. Duing each cycle, apidly acceleate the spindle assembly to the taget speed fo the cuent stage deceleate back to zeo. Repeat this cycle about times. Move up to the next stage and epeat the above cycle times fo the taget speed of that stage. Fig. 2.3 shows tempeatue ise data fo a beaing with a maximum opeating speed of 16 000 min 1. The maximum speed was divided into 8 stages with cycles each of apid acceleation and deceleation. Fig. 2.4 shows an example of 1 cycle. And it is desiable to make it otate slowly by about 500 min 1 fo 15 minutes, and to familiaize gease and befoe opeating stat. As fo afte an opeation end, it is desiable to pefom fixed opeation about 1 hou at maximum speed. Beaing tempeatue Stable tempeatue Incease opeating speed Time Tempeatue, C 90 80 70 60 50 40 30 20 0 Beaing: 65BNRHTYNDB Maximum opeating speed: 16 000 min 1 2h Time, h Side A beaing Side B beaing Base, C Room, C 1 cycle fo taget speed 2 000 min 1 ( cycles pe stage; 8 stages pe unning in) n Beaing tempeatue Tempeatue still ising 0 2.5 S 15 S 2.5 S 40 S 1 minute of 1 cycle Do not incease opeating speed Within acceptable limits Within acceptable limits Stop the unning-in pocess Incease opeating speed when tempeatue ise chaacteistics ae within limits. Time Fig. 3.3 Tempeatue Change of Intemittent Running-in Opeation Fig. 3.4 One Cycle fo Intemittent Running-in Pocedue Initial Running-in Pocedues 212 213

BEARING FAILURE DIAGNOSIS Pat7 Beaing Failue and Countemeasues Beaing Failue Diagnosis 1. Beaing Failue and Countemeasues P216-219 2. Diagnosis with Sound and Vibation P220-223 Diagnosis with Sound and Vibation Beaing Failue 214 Diagnosis 215

1. BEARING FAILURE and COUNTERMEASURES Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat 6 Pat7 Pat 8 Maintenance, Inspection and Coecting Iegulaities Beaing Failue and Countemeasues In ode to maintain the oiginal pefomance of a beaing fo as In geneal, if olling beaings ae used coectly they will suvive long as possible, pope maintenance and inspection should to thei pedicted fatigue life. be pefomed. If pope pocedues ae used, many beaing Howeve, they often fail pematuely due to avoidable poblems can be avoided and the eliability, poductivity, and mistakes. In contast to fatigue life, this pematue failue is opeating costs of the equipment containing the beaings ae caused by impope mounting, handling o lubication, enty of all impoved. It is suggested that peiodic maintenance be foeign matte, o abnomal heat geneation. Fo instance, the done following the pocedue specified. This peiodic causes of ib scoing, as one example, ae the use of impope maintenance encompasses the supevision of opeating lubicant, faulty lubicant system, enty of foeign matte, conditions, the supply o eplacement of lubicants, and beaing mounting eo, excessive deflection of the shaft, o egula peiodic inspection. any combination of these. Thus, it is difficult to detemine the Items that should be egulaly checked duing opeation eal cause of some pematue failues. If all the conditions at include beaing noise, vibation, tempeatue, and lubication. If that time of failue and pevious to the time of failue ae an iegulaity is found duing opeation, the cause should be known, including the application, the opeating conditions, and detemined and the pope coective actions should be taken envionment; then by studying the natue of the failue and its afte efeing to Table 2.1. pobable causes, the possibility of simila futue failues can be If necessay, the beaing should be dismounted and examined educed. The most fequent types of beaing failue, along with in detail. thei causes and coective actions, ae listed in Table 1.1. Table 1.1 Causes and Countemeasues fo Beaing Failues Type of Failue Iegulaities Photo Pobable Causes Countemeasues Type of Failue Iegulaities Photo Pobable Causes Countemeasues Scoing Cacks Indentations Scoing o smeaing between the end face of the olles and guide ib. Cack in oute o inne ing. Cack in olling element o boken ib. Factue of cage. Indentation on aceway with the same spacing as olling element (Binelling). Indentations on aceway and olling elements. Inadequate lubication, incoect mounting and lage axial load. Excessive shock load, excessive intefeence in fitting, poo shaft cylindicity, impope sleeve tape, lage fillet adius, development of themal cacks and inceased flaking. Inceased flaking, shock applied to ib duing mounting o dopped duing handling. Abnomal loading on the cage due to incoect mounting. Impope lubication Shock load duing mounting o excessive load when not otating. Enty of foeign matte such as metallic paticle and git. Select pope lubicant and modify the mounting. Examine the loading conditions, modify the fit of beaing and sleeve, impove accuacy in machining shaft and sleeve, collect fillet adius (the fillet adius must be smalle than the beaing chambe). Use cae in mounting and handling a beaing. Coect mounting and examine the lubication method and lubicant. Use cae in handling the beaing. Clean the housing, impove the seals and use clean lubicant. Beaing Failue and Countemeasues Flaking Flaking on one side of the aceway of adial beaing. Flaking patten inclined elative to the aceway in adial ball beaings Flaking nea the edge of the aceway and olling suface in olle beaing. Flaking of aceway with same spacing as olling element. Abnomal axial load (sliding failue of fee-side beaing). Impope mounting, bending of shaft, inadequate centeing, inadequate toleances fo shaft and housing. Lage shock load duing mounting, usting while beaing is out of opeation fo polonged peiod, mounting flaws of cylindical olle beaings. When mounting the oute ing of fee-side beaings, it should be fitted loosely, to allow axial expansion of the shaft. Use cae in mounting and centeing, select a beaing with a lage cleaance, and coect the squaeness of shaft and housing shoulde. Use cae in mounting and apply a ust peventative when machine opeation is suspended fo a long time. Abnomal wea False binelling (phenomenon simila to binelling). Fetting, Localized wea with eddish-bown wea dust at fitting suface. Weaing on aceway, olling elements, ib and cage. Vibation of the beaing without otation when out of opeation, such as duing tanspot, o ocking motion of vibation. Sliding wea at a minute gap in the fitting suface. Enty of foeign matte, incoect lubication and ust. Secue the shaft and housing, use oil as a lubicant and educe vibation by applying peload. Incease intefeence and apply oil. Impove sealing capabilities, clean the housing and use a clean lubicant. Pematue flaking of aceway and olling element. Insufficient cleaance, excessive load, impope lubication, ust, etc. Select pope fit, beaing cleaance, and lubicant. Ceep, scoing wea at fitting suface. Insufficient intefeence, insufficiently secued sleeve. Modify the fitting and tighten the sleeve popely. Pematue flaking of combined beaings. Excessive peload. Adjust the peload. Seizue Discoloation and melting of aceway, olling elements and ibs. Insufficient cleaance, incoect lubication, o impope mounting. Examine the fitting and intenal cleaance of a beaing, supply an adequate amount of pope lubicant and examine the mounting method and quality of elated pats. Scoing Scoing o smeaing between aceway and olling suface. Inadequate initial lubication, excessively had gease, high acceleation when stating opeation. Use a softe gease and avoid apid acceleation. Coosion and Rust Coosion and ust at beaing inteio o fitting suface. Condensation of wate fom the ai, o fetting, enty of coosive substance (especially vanish gas). Stoe caefully when in a moist o hot climate, take ust pevention measues befoe emoving fom opeations fo a long time, and select pope vanish and gease. 216 217

1. BEARING FAILURE and COUNTERMEASURES Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat 6 Pat7 Pat 8 Running Taces and Applied Loads Table 1.2 Appendix Beaing Diagnostic Chat (a) (b) (c) (d) Damage name Location (Phenomenon) Handling Stock, Shipping Mounting Beaing suounding Shaft, Housing Sealing device, wate, debis Tempeatue Typical Cause Lowbowcation Lubicant Lubication method Excessive load Load Moment load Too small load High speed, high accelaation Speed Oscillating, vibation, stationay Beaing selection Remaks Beaing Failue and Countemeasues Inne ing otation Radial load Oute ing otation Radial load Inne ing o oute ing otation Axial load in one diection Inne ing otation Radial and axial load 1. Flaking Raceway, Rolling suface (e) (f) (g) (h) 2. Peeling Raceway, Rolling contact suface Beaings oute diamete sufaces Mating olling pat 3. Scoing Rolle end suface, Rib suface Cage guide suface, Pocket suface 4. Smeaing Raceway, Rolling suface 5. Factue Raceway colla, Rolles Raceway ings, Rolling elements 6. Cacks Rib suface, Rolle end face, Cage guide suface (Themal cack) Inne ing otation Axial load and misalignment Inne ing otation Moment load (Misalignment) Inne ing otation Housing boe is oval Inne ing otation No adial intenal cleaance (Negative cleaance duing opeation) 7. Cage damage (Defomation), (Factue) (Wea) Fig. 1.1 Typical Running Taces of Deep Goove Ball Beaings (i) (j) (k) (l) (m) 8. Denting 9. Pitting. Wea 11. Fetting Raceway, Rolling suface, (Innumeable small dents) Raceway (Debis on the olling element pitch) Raceway, Rolling suface Raceway, Rolling suface, Rib suface, Rolle end face Raceway, Rolling suface Beaing outside and boe, side suface (Contact with housing and shaft) 12. False binelling Raceway, Rolling suface 13. Ceep Raceway, Rolling suface Loose fit Inne ing otation Radial load Inne ing otation Moment load (Misalignment) Inne ing otation Radial load Inne ing otation Axial load Inne ing otation Axial load and Moment load (Misalignment) 14. Seizue 15. Electical coosion Fitting suface Raceway, Rolling suface Electicity passing though the olling element Fig. 1.2 Typical Running Taces of Rolle Beaings 16. Rust and coosion 17. Mounting flaws 18. Discoloation Raceway ing, Rolling element, Cage Raceway, Rolling suface Raceway ing, Rolling element, Cage Remak: This table is not compehensive. It lists only the moe commonly occuing damages, causes, and locations. 218 219

2. DIAGNOSIS with SOUND and VIBRATION Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat 6 Pat7 Pat 8 Classification of sounds and vibations Sound and vibation accompany the otation of olling beaings. The tone and amplitude of such sound and vibation vay depending on the type of beaing, mounting conditions, opeational conditions, etc. The sound and vibation of a olling beaing can be classified unde the following fou chief categoies and each categoy can be futhe classified into seveal sub-categoies, as descibed in Table 2.1 below. Boundaies between goups ae, howeve, not definite. Even if some types of sounds o vibations ae inheent in the beaings, the volume might be elated to the manufactuing pocess, while some types of sounds o vibations, even if they aise due to manufactuing, Table 2.1 Classification of sounds and vibations in a olling beaing cannot be eliminated even in nomal conditions. By ecoding sounds and vibations of a otating machine and analyzing them, it is possible to infe the cause. As can be seen fom figues on the next page, a mechanically nomal beaing shows a stable wavefom. Howeve, a beaing with a scatch, fo example, shows a wavefom with wide swings indicating lage-amplitude sounds at egula intevals. NSK poduces Beaing Monito NB-4, a vibation measuing monito that can diagnose iegulaities in a otating machine, and the causes of the iegulaities can be infeed using the NB-4 and ecoding equipment, such as a pesonal compute. Sound wavefom of a nomal beaing Sound wavefom of a scatched beaing Geneated fequency (fequency analysis) sound Vibation Featues FFT of oiginal wave FFT afte Souce envelope Radial (angula) diection Axial diection (basic No.) Vibation Measuing Equipment, Beaing Monito NB-4 (See Page 128) Countemeasues Diagnosis with Sound and Vibation Race noise Fee vibation of aceway ing Continuous noise, basic unavoidable noise which all beaings geneate f RiN, f Ml f AiN, f AM Selective esonance of waviness (olling fiction) Impove igidity aound the beaings, appopiate adial cleaance, high-viscosity lubicant, high-quality beaings Click noise Fee vibation of aceway ing, fee vibation of cage Regula noise at a cetain inteval, lage beaings and hoizontal shaft, adial load and low pm f RiN, f Ml f AiN, f AM Natual fequency of cage Zf c Collision of olling elements with inne ing o cage Reduce adial cleaance, apply peload, high-viscosity oil Stuctual Squeal noise Fee vibation of aceway ing Intemittent o continuous, mostly lage cylindical olle beaings, adial load, gease lubication, at paticula speed CK noise Fee vibation of cage Regula noise at a cetain inteval, all beaing types geneate it ( f R2N, f R3N ) Natual fequency of cage? f c Self-induced vibation caused by sliding fiction at olling suface Collision of cage with olling elements o ings Reduce adial cleaance, apply peload, change the gease, eplace with countemeasued beaings Apply peload, high-viscosity lubicant, educe mounting eo Cage noise CG noise Vibation of cage Intemittent o continuous, lubication with paticula gease Natual fequency of cage? Self-induced vibation caused by fiction at cage guide suface Change of gease band, eplace with countemeasued cage Tapping noise Fee vibation of cage Cetain inteval, but a little iegula unde adial load and duing initial stage Natual fequency of cage Zf c Collision of cage and olling element caused by gease esistance Reduce adial cleaance, apply peload, low-viscosity lubicant Rolling element passage vibation Continuous, all beaing types unde adial load Zf c Displacement of inne ing due to olling element passage Reduce adial cleaance, apply peload Manufactuing Waviness noise Vibation due to waviness Inne ing Oute ing Continuous noise Continuous noise nzf i ± f (nz ± 1 peaks) nzf c (nz ± 1 peaks) nzf i (nz peaks) nzf c (nz peaks) Inne ing aceway waviness, iegulaity of shaft exteio Oute ing aceway waviness, iegula boe of housing High-quality beaings, impove shaft accuacy High-quality beaings, impove housing boe accuacy Rolling element Continuous with olles, occasional with balls 2nf b ± f c (2n peaks) 2nf b (2n peaks) Rolling element waviness High-quality beaings Handling Flaw noise Vibation due to flaw Inne ing Oute ing Rolling element Regula noise at a cetain inteval f RiN, f Ml f AiN, f AM Zf i Zf c 2f b Nicks, dents, ust, flaking on inne ing aceway Nicks, dents, ust, flaking on inne ing aceway Nicks, dents, ust, flaking on olling elements Replacement and caeful beaing handling Replacement and caeful beaing handling Replacement and caeful beaing handling Contamination noise Vibation due to contamination Iegula f RiN, f Ml f AiN, f AM Iegula Enty of dit and debis Washing, impove sealing Seal noise Fee vibation of a seal Contact seal Natual fequency of seal ( f ) Self-induced vibation due to fiction at seal contact aea Change the seal, change the gease Lubicant noise Iegula?? Iegula Lubicant o lubicant bubbles cushed between olling elements and aceways Change the gease Othes f Continuous f Iegula inne ing coss-section High-quality beaings Runout f c f 2f c Continuous Continuous f c f 2f c Ball vaiation in beaing, olling elements non-equidistant Non-linea vibation due to igid vaiation by ball vaiation High-quality beaings High-quality beaings n: Positive intege (1, 2, 3...) Z: Numbe of olling elements f RIN : Ring natual fequency in adial bending mode, Hz f Ml : Natual fequency in the mode of angula vibation in inetia of oute ing-sping system, Hz f c : Obital evolution fequency of olling elements, Hz f AiN : Ring natual fequency in axial bending mode, Hz f AM :Natual fequency in the mode of axial vibation in mass of oute ing-sping system, Hz f i : f i = f f c, Hz f 220 : Rotation fequency of inne ing, Hz f b : Rotation fequency of olling element aound its cente, Hz 221

2. DIAGNOSIS with SOUND and VIBRATION Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat 6 Pat7 Pat 8 How to ecod sound and vibation wavefoms Though fequency analyses of sound o vibation of a otating machine, it is possible to infe the cause of abnomal vibation. We will descibe hee how to ecod vibations using Beaing Monito NB-4 (see Page 128) and how to ecod sounds using a micophone. Sounds and vibations should be ecoded unde both nomal and abnomal conditions, to detemine the cause of iegulaities. How to ecod vibations when ecoding the wavefom diectly by a compute Requied equipment: Beaing Monito NB-4 Pesonal compute (with line-input teminal and wavefom ecoding softwae) Monophonic cable fo wavefom date ecoding (3.5 pin jack at one end) Fig. 2.1 Configuation fo ecoding sound and vibation wavefoms Stat ecoding vibation wavefom data using audio ecoding softwae. Adjust ecoding level of the pesonal compute to Micophone NB-4 Rotating machine Pick-up cable (NB-4 accessoy) Pick-up cable Connect the pick-up cable to Beaing Monito NB-4 and then attach the pick-up teminal to the machine to be measued. To measue vibation, it is best to attach the pick-up teminal to a spot nea a beaing in the machine. maintain input signals within a given ange. Recoding fo at least 20 seconds is ecommended. Save ecoded vibation wavefom data. (Be awae that some vibation data may be lost depending on the file fomat.) Analyze ecoded vibation wavefom data to check fo Diagnosis with Sound and Vibation AC-OUT monophonic cable Analysis via data ecode iegula vibation. 3.5 pin jack Pesonal compute AC-OUT 2 Envelope analysis Diect analysis via compute Line input Damage in the aceway suface o olling element may poduce impact vibation at egula intevals. In this case, FFT analysis of vibation wavefoms cannot detect the fequency Pesonal compute components geneated by the damage. Unde these cicumstances, envelope analysis, which gives envelope delay Input by micophone BNC, etc. FFT analyze Connect NB-4 (AC-OUT) and ecoding equipment (in the left pictue, the micophone input of a pesonal compute 1 ) using a monophonic cable (3.5 pin-jack at NB-4 side). 1 A micophone input teminal can be used as a substitute, although depending on the magnitude of vibation, it may not distotion to oiginal wavefoms to analyze fequencies, can detect these fequency components.fo envelope analysis, equipment needs to have an envelope pocessing function. (a) T (b) T Data ecode be able to handle input that falls outside of a given ange. Time Time Line input Fequency analysis (t) Envelope delay distotion Fequency analysis (t) Cautions fo ecoding sound and vibation wavefoms Analyzing data afte ecoding is easy povided the following pecautions ae taken. Fequency 1/T 2/T Fequency 1) Stop opeation of neaby machines to cut off ambient noise and vibation. 2) Collect sound and vibation data unde both nomal and abnomal conditions. 3) Listen to a playback of ecoded sounds to check fo iegulaities. Recoding of otating vibations (NORMAL) Recoding of vibations caused by a scatch inside a beaing (ENVELOPE) Set NB-4 to ACC-NORMAL when measuing otation vibations Fequency spectum of (a) (t) Fequency spectum of (b) (t) 4) Collect sound and vibation data while changing the numbe of otations of the machine (fo example, 0 min 1, 800 min 1, and of a machine. Set NB-4 to ACC-ENVELOPE (envelope analysis 2 ) 2,000 min 1 ). when measuing vibations due to a scatch inside a beaing. 222 223

2. DIAGNOSIS with SOUND and VIBRATION Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat 6 Pat7 Pat 8 How to ecod sounds when ecoding diectly by a compute Requied equipment: Micophone fo measuing sound Pesonal compute (equipped with a micophone input teminal and audio ecoding softwae) Sounds ecoded in this way and saved as a WAV file can be fequency-analyzed by using commecially available FFT softwae. Vibation o sound fequencies associated with damage such as scatching o waviness on the beaing aceway suface can be obtained as seen in Fig 2.4. When these fequency components ae found as a esult of fequency analysis conducted with FFT softwae, the beaing suface may be damaged. Upon equest, NSK will be able to analyze sounds stoed as a WAV file. When such a equest is made, NSK will need ecoded sounds unde both nomal and abnomal conditions. Note that fequency analysis of sounds and vibation wavefoms of a otating machine may not be possible (Note that fequency analysis of sounds and vibation wavefoms of a otating machine may not be possible) when the ecoding conditions ae not sufficiently fulfilled. Connect a micophone to ecoding equipment. We ecommend a micophone with fequency chaacteistics 3 that effectively ecod the sounds of a machine. A micophone fo measuing sound should be used because a micophone built into a pesonal compute is suitable fo ecoding human voices but is often not appopiate fo ecoding the sounds of a machine. Keep the micophone at an appopiate distance fom the otating machine being inspected. (If too close, sounds of entangled ai will be ecoded, and if too distant, sound level will be too low.) It is ecommended to stop opeation of neaby machines to cut off the ambient noise, which makes it difficult to analyze ecoded noise. Use a unidiectional micophone, if available, to cut off ambient noises. Fig. 2.4 Examples of Results of Sound and Vibation Fequency Analysis Conducted with FFT Softwae 3 2.5 2 1.5 1 0.5 When thee is damage on an oute-ing aceway suface Boe diamete: 160 mm Recoding and analysis method: FFT analysis esult of ACC-ENVELOPE output of Beaing Monito NB-4 Numbe of otations: 4 000 min 1 Fequency components of damage on oute ing (zfc) Diagnosis with Sound and Vibation 3 Micophone fequency chaacteistics Fequency chaacteistics vay by type of micophone. Fo example, at 60Hz o less, the micophone (see Fig. 2.2) exhibits low sensitivity while the othe micophone (see Fig. 2.3) exhibits stable chaacteistics fo maintaining good sensitivity acoss a wide ange of fequency bands. Theefoe, the micophone Fig. 2.3 is suitable fo measuing sounds of a machine due to its stable chaacteistics acoss a wide ange of fequency bands. Fig. 2.2 Stat ecoding with ecoding equipment. Adjust ecoding level of the pesonal compute to maintain input signals within a given ange. Save ecoded sound data. (Be awae that some vibation data may be lost depending on the file fomat.) 0 0 0.1 0.08 0.06 0.04 0.02 200 400 Hz When thee is damage on an inne-ing aceway suface Boe diamete: 0 mm Recoding and analysis method: Envelope analysis esult of sounds of a test machine ecoded by a micophone Numbe of otations: 50 min 1 Fequency components of damage on inne ing (zfi) 600 800 1 000 Sensitivity Fig. 2.3 50 0 200 500 1K Fequency 2K 5K K 20K Listen to a playback of ecoded sounds to check fo iegula noise. 0 0 15 50 0 Hz When thee is a significant imbalance in the main shaft Boe diamete: 65 mm Recoding and analysis method: FFT analysis esult of sounds of a test machine ecoded by a micophone Numbe of otations: 20 000 min 1 150 An integal multiple of fequency components of main-shaft otations (f n) 200 Sensitivity 5 50 0 200 500 1K Fequency 2K 5K K 20K 0 0 2 000 4 000 6 000 8 000 Hz 000 224 225