Measurement and Analysis of the Operation of a Single-Phase Induction Motor

Similar documents
Lab 6: Wind Turbine Generators

Installation and Maintenance Instructions. World Leader in Modular Torque Limiters. PTM-4 Load Monitor

ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 5: DC MOTORS WARNING:

CSDA Best Practice. Hi-Cycle Concrete Cutting Equipment. Effective Date: Oct 1, 2010 Revised Date:

G213V STEP MOTOR DRIVE REV 7: March 25, 2011

2014 ELECTRICAL TECHNOLOGY

Synchronous Generators I. EE 340 Spring 2011

Biasing the Vintage Series (Nomad, BelAir, VT50, Vintage 33)

Synchronous Generators I. Spring 2013

Application Information

G203V / G213V MANUAL STEP MOTOR DRIVE

Unit 8 ~ Learning Guide Name:

UNIT 2. INTRODUCTION TO DC GENERATOR (Part 1) OBJECTIVES. General Objective

Iowa State University Electrical and Computer Engineering. E E 452. Electric Machines and Power Electronic Drives

ROTATING MAGNETIC FIELD

Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field

Lab 1: DC Motors Tuesday, Feb 8 / Wednesday, Feb 9

CATEGORY 2 GENERATOR INTERCONNECTION APPLICATION

CHAPTER 6 DESIGN AND DEVELOPMENT OF DOUBLE WINDING INDUCTION GENERATOR

GENERATOR INTERCONNECTION APPLICATION

Electric Utility Contact Information Indiana Michigan Power

Union College Winter 2016 Name Partner s Name

Welcome to the SEI presentation on the basics of electricity

Z TECHNICAL INSTRUCTIONS

Electric Motor Controls BOMA Pre-Quiz

TESCO THE EASTERN SPECIALTY COMPANY Date: 05/04/15 Canal Street and Jefferson Avenue Bristol, PA 19007

Figure 4.1.1: Cartoon View of a DC motor

Single Phase Induction Motor. Dr. Sanjay Jain Department Of EE/EX

AC MOTOR TYPES. DESCRIBE how torque is produced in a single-phase AC motor. EXPLAIN why an AC synchronous motor does not have starting torque.

Horizontal Circuit Switchers

MODEL 422 Submersible Pump Controller

ECSE-2100 Fields and Waves I Spring Project 1 Beakman s Motor

Horizontal Circuit Switchers

MOTORS. Part 2: The Stepping Motor July 8, 2015 ELEC This lab must be handed in at the end of the lab period

The Wound-Rotor Induction Motor Part II

C.E. Niehoff & Co. C653/C653A and C625 Alternators Troubleshooting Guide NOTICE. Hazard Definitions. Battery Charge Volt and Amp Values

To discover the factors affecting the direction of rotation and speed of three-phase motors.

Figure 1. Type CWP-1 Ground Relay (Front View) Figure 2. Type CWP-1 Ground Relay (Rear View) E

N1240/N1243 Series Troubleshooting Guide for N1240-3/N Alternators

Driven Damped Harmonic Oscillations

EXPERIMENT CALIBRATION OF 1PHASE ENERGY METER

DHANALAKSHMI COLLEGE OF ENGINEERING MANIMANGALAM. TAMBARAM, CHENNAI B.E. ELECTRICAL AND ELECTRONICS ENGINEERING

EXPERIMENT 19. Starting and Synchronizing Synchronous Machines PURPOSE: BRIEFING: To discover the method of starting synchronous motors.

BASIC ELECTRICAL MEASUREMENTS By David Navone

Overcurrent protection

Chapter 7: DC Motors and Transmissions. 7.1: Basic Definitions and Concepts

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

INDEX Section Page Number Remarks

Fachpraktikum Elektrische Maschinen. Experiments with a 400/ 690 V Squirrel Cage Induction Machine

Application Engineering

SALDET SALES & SERVICE, INC. CLINTON TOWNSHIP, MICHIGAN

Figure 1: Relative Directions as Defined for Faraday s Law

DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1

CUSTOMER / ACCOUNT INFORMATION Electric Utility Customer Information (As shown on utility bill)

DC motor theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

ELEN 236 DC Motors 1 DC Motors

PSNH INTERCONNECTION REQUEST

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS

Update. This week A. B. Kaye, Ph.D. Associate Professor of Physics. Michael Faraday

Reducing. with Current. arc flash note 2. points of interest. Why Use Current Limiting Fuses. By mike lang, Principal field engineer

Battery Power Inverters

SHORT-STOP. Electronic Motor Brake Type G. Instructions and Setup Manual

Faraday's Law of Induction

Electrical Systems. Introduction

Electrical Machines II. Week 5-6: Induction Motor Construction, theory of operation, rotating magnetic field and equivalent circuit

What you need to know about Electric Locos

XP600/1100/2000 INSTALLATION AND OPERATION MANUAL

ATD WATT INVERTER

SE450 Static Exciter Module

BLACKBIRD OWNER S MANUAL

SL Series Application Notes. SL Series - Application Notes. General Application Notes. Wire Gage & Distance to Load

SCR Power Controllers

TECH XP600/1100 INSTALLATION AND OPERATION MANUAL. Manufacturer of UL Listed Products.

Chapter 7. Magnetic Fields. 7.1 Purpose. 7.2 Introduction

Tri-Spark - Classic Triple Trident & R3 Installation Instructions

Lesson 16: Asynchronous Generators/Induction Generators

Asynchronous Restriking CDI 2 channel

Single Phase Induction Motors

ATD WATT INVERTER

TECH XP600/1100 INSTALLATION AND OPERATION MANUAL

BLHV, BLHV-1. High Voltage Step Motor Driver. User s Guide. (714) fax: (714) website:

BLD75-1. Bilevel Step Motor Driver. User s Guide. 910 East Orangefair Lane, Anaheim, CA

DC CIRCUITS ELECTROMAGNETISM

Physics Work with your neighbor. Ask me for help if you re stuck. Don t hesistate to compare notes with nearby groups.

Introduction: Electromagnetism:

3.0 CHARACTERISTICS E Type CO-4 Step-Time Overcurrent Relay

ELECTRIC MACHINES EUROLAB 0.3 kw

SERVICE SHOP NOTES. Use ohmmeter to check the resistance between the leads.

Electromagnetic Induction Chapter Questions. 1. What is the Electromagnetic Force (EMF)? What are the units of EMF?

EXPERIMENT 2 THREE PHASE INDUCTION MOTOR, PART 1

The purpose of this lab is to explore the timing and termination of a phase for the cross street approach of an isolated intersection.

Dev Bhoomi Institute Of Technology LABORATORY Department of Electrical And Electronics Engg. Electro-mechanical Energy Conversion II

VoltPro VP4 Automatic Voltage Regulator

Pretest Module 21 Units 1-3 AC Generators & Three-Phase Motors

User Manual. T6 Tachometer. Online: Telephone: P.O. Box St. Petersburg, Florida 33736

Linear Shaft Motors in Parallel Applications

Application Engineering

ELECTRIC MACHINES EUROLAB 0.3 kw

Maintenance Manual 13 AMPERE POWER SUPPLY 19A704647P1-P3. Mobile Communications LBI-31801C

INTRODUCTION Principle

Transcription:

Measurement and Analysis of the Operation of a Single-Phase Induction Motor In class I have shown you the carcass of a four-pole, single phase, ¼ HP motor in varying stages of disassembly. In this lab, I am asking you to measure the properties of an intact copy of that motor to determine its efficiency, power factor and slip frequency as a function of the mechanical load. In doing so, you will reconstruct the electrical equivalent circuit of the motor components including the rotor L/R ratio. Wear safety glasses whenever applying power to the motor setup! Whenever the motor overheats and stops running, unplug it or shut it off and leave it alone for a few minutes for the thermal cutout to reset. If you have any questions about the setup or about how to make it do what you want, please ask I am glad to help but hope to encourage independence. The Appendix has a series of photographs showing the setup in operation. For color, see the pdf on the class website. Measure: Find the DC resistances of the two stator windings. Use the Kelvin-connection technique. Measure the apparent 60 Hz impedance (real and imaginary parts) of the run winding under low AC excitation with locked rotor. Use the variac to set a low current, say 3.0 Amp RMS as a compromise between overheating and getting a good reading. There is a switch on the side of the motor that disconnects the start winding. Make sure this is open (down position) before trying to do this measurement. Be careful not to move the rotor while applying AC current as that may start the motor to running. Similarly measure the locked rotor impedance of the start winding. You can make a connection to the start winding on the switch that disconnects it from the run winding. (I put a short wire on the switched end of the start winding.) Keep current in this winding below 1.0 ampere as this winding has finer gauge wire and is not designed for continuous excitation. Measure the rotor speed frequency and the phase and magnitude of the line voltage and current as functions of the load on the motor. The torque on the motor is provided by an aluminum plate over which you move a magnet. The current induced in the plate by the magnet reacts with the static magnetic field to generate a force on the scale under the magnet assembly. The reaction to that force on the plate applies the braking torque. The aluminum plate is 8 in diameter and I estimate the approximate point of load to be 3/16 in along the radius, that is, R 3.83inches. You should calculate in advance what force on the scale would be full load for the motor. Make measurements in 100 gram increments up to the maximum rated load. Continue measuring slip (by measuring RPM) and phase above rated load in 200 gram increments up to 1600 gram-force load. DO NOT EXCEED 2 KG. If you exceed the peak motor torque, the speed will drop abruptly even though the torque drops too. These measurements, especially once the speed collapses, are very hard on the motor causing it to overheat. Please work

quickly and do not let the motor run at low speed (under 1650 RPM) for any longer than absolutely necessary. Pull the magnet assembly back all the way immediately and allow the motor to pick up speed again. Give the motor a chance to cool and then raise the load rapidly until the motor speed collapses, noting the maximum force and the RPM of that maximum. Try to capture the peak torque and slip just as the motor torque collapses. Don t try this measurement too often! Remove the magnet as quickly as possible after the speed collapses! The reaction force on the magnet assembly has a significant lateral component. I don t think that contributes very much to the load on the motor because the force is nearly perpendicular to the motion of the plate. Nevertheless, measure that force at the maximum rated motor load to compare with the downward force at that load. The magnet assembly tilts on the scale when it starts to engage the motor plate. I have put a small bubble level and a spring scale (in wooden box) next to the system and I used those for my estimate. When you are done measuring, turn off the scale, remove the magnet assembly and relock the scale with the red button on the bottom of the scale. Size Data: I have measured the sizes of the most critical parts of the motor. Here is a table of what I measured and another table of useful constants: Dimension/Property Value Units Rotor outside diameter 3.289 +/- In..002 Stator inside diameter 3.3072 +/- In..001 Rotor and Stator 1.28 In. length Width of winding 0.091 In. slots in stator face Number of stator 32 winding slots Number of rotor 36 loops (wires/2) Run winding wire # 20 AWG. gauge Run winding wire colors Blue + Yellow Rotor bar cross section: 0.340X0.082 In. Length of an average run winding turn (approx.) 9.0 In. Quantity Value 1 H.P. 746 watts ω = 2π f 377 rad./sec g 9.81 m/sec 2 Resistivity of aluminum cm. 2.8 10 6 ohm At 20 deg. C Temp. coefficient of.00393 pp deg. C. resistance 2

Calculations: Tabulate the real and reactive electrical power and mechanical power as functions of the rotor speed. Similarly, plot power factor and efficiency against the mechanical power. Mark the point of rated operation. You are really only interested in the range of slip from 0 to 130 % of rated load. Plot the data for torque versus RPM. Fit a simple model to this data and derive the rotor L/R ratio or time constant. Compare the L/R ratio (time constant) as derived from the torque data to its value from the locked rotor impedance of the run winding. If you measured the locked rotor with the motor cold, try to include the change in resistance from the rotor temperature in operation. The motor is expected to have the rotor temperature rise by 65 C at rated load but it rises higher than that at higher loading. This may not be a very close match. I have made a crude estimate of the length of an average turn by measuring the length of a typical section of the middle one of the three coils that form the run winding of a single pole. That value in in the table above. Find the total number of turns in the run winding. As a challenge to the bored, use the structure of the motor, the estimate of turns, and the magnetizing current to estimate the peak air gap stator field. Questions: 1. How did you derive the electrical model parameters from your data? I don t want a big discussion, just a short recap of your procedure. 2. When you fit your power and torque data to the slip formulae, what did you get for the rotor time constant L/R? 3. Did your two time constants agree? (They may not!) 4. Starting a motor of this type depends on there being a phase difference between the currents in the start and run windings. What is the phase difference at locked rotor condition for this motor? (The phase of current to voltage can be found from the ratio of real and imaginary parts. The two windings have different ratios.) 5. The motor would have better starting torque if the phase difference were 90 degrees. Suppose, as would be the case if you were designing and building a capacitor run motor, the two windings were the same as the run winding on this motor. What size capacitor would be needed in series with the start winding of this motor to get 90 degrees difference? Calculate this without keeping the magnitude of the impedance constant. What is the ratio of the magnitude of the impedance with and without the start capacitor? How much would such a capacitor cost at wholesale single quantity? (Use www.grainger.com for a price and include the stock number of the capacitor.) 5. The radial air gap on this motor is about ¼ mm while the optimal air gap on your generator designs was several cm. Why the difference? 6. Did you notice anything odd about the nameplate ratings of the motor? (Think VA versus HP.) 3

Hints and Exhortations: Never plug the motor (black cable) into the Variac directly! You will trip the building circuit breaker and can damage the instruments. Listen for a rattle as the motor runs! The setscrews holding the disk on the shaft may loosen up. There are allen wrenches in one of the drawers under the counter. Tighten the screws when you hear a buzz or rattle. Plug the gray isolation transformer into the Variac for locked rotor measurements and into a wall outlet for run operations It is safest to turn the start winding switch on (up) before plugging in the motor so it will selfstart in the correct direction. You are welcome to experiment with starting the motor by hand but work quickly if you do. Appendix: The Lab Setup and Measurement Techniques The first picture below shows the general setup for the lab including the box with the spring scale for lateral force measurement. Notice the orientation of the digital scale that is used to measure the downward force on the magnet assembly. The scale sits on an aluminum plate and you slide that plate left and right to bring the magnet assembly over the wheel to load the motor. Do NOT turn the scale by 90 degrees to make reading it easier as the way the pan is attached leads to incorrect data in that orientation. The digital scale has a two-position red button on the bottom with locked and unlocked positions. Please leave it in the locked position when it is not in use and turn it to unlocked when you go to use the scale. Turn on the scale by pressing the Zero button on the front of the scale. Put the magnet assembly on the scale once the scale is running. You can push the Zero button again to offset the tare weight of the magnets. To keep the magnet assembly from slipping on the scale, you may need two counterweights on it as seen in detail in the second photograph. The larger weight is not attached to the assembly don t drop it on your toe. Use the isolation transformer between the motor and the line power so that scope measurements are safe. You only use the Variac on the primary side of the transformer when doing locked-rotor measurements at low voltage and current. Keep the Variac turned all the way down when turning it on and off to avoid blowing fuses. The inrush current of the motor starting up will blow the Variac fuse if you leave the Variac connected when trying to run the motor. 4

To measure the speed of rotation with adequate accuracy, I put an optical-interrupter around the edge of the wheel and drilled holes in the wheel. The interrupter generates a digital pulse every time a hole passes it. The interrupter runs on 5 VDC from a wall wart. The output of the interrupter goes to a digital counter. Since the signal is a 5 volt unipolar pulse, the counter has to be set for DC input and the trigger level set with the dot on the knob pointing up. There should be no filter turned on in the counter. Adjust the counter measurement time (two buttons with left/right arrows) to get a stable 5 digit reading frequent enough that you don t have to wait long for a good measurement. (Frequent readings are most important when trying to measure peak torque. Readjust reading time if necessary.) In interpreting the counter result, keep in mind that this is a 4-pole motor and there are 8 holes in the wheel. There are two multimeters with the setup for measuring the line voltage and current easily and simultaneously. The scope is only needed for the phase difference and I suggest measuring that by setting the cursors to give the time difference between zeros crossings of the two waveforms. Synchronize the triggering from the line source in the scope. The DC power supply is only for the DC resistance measurements. As in the transformer lab, you will need to use the 8 ohm power resistor to limit the current in the motor windings to what the power supply can deliver. The last picture shows my attempt at the lateral force measurement. I noted the inclination of the bubble level with the motor off. Then I tried to find a position of the scale where the scale read the rated motor load while I held level at its original inclination by pressure from the spring scale on the back of the magnets. Experiment and see what you can get. 5

I suggest taking all the running data in one session as line voltage changes a little from day to day. The thermal state of the motor has a significant effect on data results. Between these two factors it can be difficult to merge different data sets. 6