Welcome to Vibrationdata

Similar documents
USA FALCON 1. Fax: (310) Telephone: (310) Fax: (310) Telephone: (310) Fax: (310)

Fly Me To The Moon On An SLS Block II

Ares V: Supporting Space Exploration from LEO to Beyond

SpaceLoft XL Sub-Orbital Launch Vehicle

ENERGIA 1. IDENTIFICATION. 1.1 Name. 1.2 Classification Family : K Series : K-1/SL-17 Version : 4 strap-ons

SOYUZ-IKAR-FREGAT 1. IDENTIFICATION. 1.1 Name. 1.2 Classification Family : SOYUZ Series : SOYUZ Version : SOYUZ-IKAR SOYUZ-FREGAT

CONTENTS Duct Jet Propulsion / Rocket Propulsion / Applications of Rocket Propulsion / 15 References / 25

How Does a Rocket Engine Work?

CHAPTER 2 GENERAL DESCRIPTION TO LM-2E

6. The Launch Vehicle

CHAPTER 2 GENERAL DESCRIPTION TO LM-3C

FACT SHEET SPACE SHUTTLE EXTERNAL TANK. Space Shuttle External Tank

THE FALCON I LAUNCH VEHICLE Making Access to Space More Affordable, Reliable and Pleasant

Pre-Launch Procedures

Copyright 2016 Boeing. All rights reserved.

CHAPTER 6 ENVIRONMENTAL CONDITIONS

Antares Rocket Launch recorded on 44 1 Beyond HD DDR recorders Controlled by 61 1 Beyond Systems total

Welcome to Vibrationdata

apply to all. space because it is an air-breather. Although from the atmosphere to burn its fuel. This limits

Rocketry and Spaceflight Teleclass Webinar!

USA ATHENA 1 (LLV 1)

Reentry Demonstration Plan of Flare-type Membrane Aeroshell for Atmospheric Entry Vehicle using a Sounding Rocket

Contents. BAE SYSTEMS PROPRIETARY Internal UNCLASSIFIED Use Only Unpublished Work Copyright 2013 BAE Systems. All rights reserved.

OMOTENASHI. (Outstanding MOon exploration TEchnologies demonstrated by NAno Semi-Hard Impactor)

Atlas V Launches the Orbital Test Vehicle-1 Mission Overview. Atlas V 501 Cape Canaveral Air Force Station, FL Space Launch Complex 41

IST Sounding Rocket Momo User Guide

Welcome to Aerospace Engineering

USA DELTA DELTA Mc DONNELL DOUGLAS SPACE SYSTEMS

Precision Paper Space Models

Prof. João Melo de Sousa Instituto Superior Técnico Aerospace & Applied Mechanics. Part B Acoustic Emissions 4 Airplane Noise Sources

Atlas V MSL. Mission Overview Cape Canaveral Air Force Station, FL

Y. Lemmens, T. Benoit, J. de Boer, T. Olbrechts LMS, A Siemens Business. Real-time Mechanism and System Simulation To Support Flight Simulators

The Apollo 13 Mission Compiled by Daniel R. Adamo

MARS-OZ: A Design for a Simulated Mars Base in the Arkaroola Region

AN OPTIMIZED PROPULSION SYSTEM FOR Soyuz/ST

Ares I Overview. Phil Sumrall Advanced Planning Manager Ares Projects NASA MSFC. Masters Forum May 14, 2009

AERONAUTICAL ENGINEERING

Ares I-X Launch Vehicle Modal Test Overview

Performance Evaluation of a Side Mounted Shuttle Derived Heavy Lift Launch Vehicle for Lunar Exploration

RDT&E BUDGET ITEM JUSTIFICATION SHEET (R-2 Exhibit) June 2001

Design Reliability Comparison for SpaceX Falcon Vehicles

MISSION OVERVIEW SLC-41

Adaptation of Existing Fuze Technology to Increase the Capability of the Navy s 2.75-Inch Rocket System

TOWARDS A HEAVY LAUNCHER - PROPULSION SOLUTIONS - A. Souchier - C. Rothmund Snecma Moteurs, Direction Grosse Propulsion à Liquides

APS 400 ELECTRO-SEIS. Long Stroke Shaker Page 1 of 5. Applications. Features

Paper Entered: March 3, 2015 UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE PATENT TRIAL AND APPEAL BOARD

To determine which number of fins will enable the Viking Model Rocket to reach the highest altitude with the largest thrust (or fastest speed.

Martin J. L. Turner. Expedition Mars. Published in association with. Chichester, UK

CONCEPT STUDY OF AN ARES HYBRID-OS LAUNCH SYSTEM

INDEX. Preflight Inspection Pages 2-4. Start Up.. Page 5. Take Off. Page 6. Approach to Landing. Pages 7-8. Emergency Procedures..

Eliminating the Need for Payload-specific Coupled Loads Analysis

Strap-on Booster Pods

Development of a Reusable, Low-Shock Clamp Band Separation System for Small Spacecraft Release Applications

Blue Origin Achievements and plans for the future

SSC Swedish Space Corporation

ARCHIVED REPORT. For data and forecasts on current programs please visit or call

DUCHESS BE-76 AND COMMERCIAL MULTI ADD-ON ORAL REVIEW FOR CHECKRIDE

EL DORADO COUNTY REGIONAL FIRE PROTECTION STANDARD

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Aeronautics and Astronautics

JODEL D.112 INFORMATION MANUAL C-FVOF

Ares V Overview. presented at. Ares V Astronomy Workshop 26 April 2008

A SOLAR POWERED UAV. 1 Introduction. 2 Requirements specification

NASA USLI PRELIMINARY DESIGN REVIEW. University of California, Davis SpaceED Rockets Team

Welcome to Vibrationdata

NASA s Choice to Resupply the Space Station

Critical Design Review

MK 66 ROCKET MOTOR/HELICOPTER COMPATIBILITY PROGRAM

Falcon 1 Launch Vehicle Payload User s Guide. R e v 7

Case Study: ParaShield

Mass Estimating Relations

MISSION OVERVIEW SLC-41

Elmendorf Aero Club Aircraft Test

CHAPTER 11 FLIGHT CONTROLS

Preparing a Basic Rocket for Launch

Advanced Propulsion Concepts for the HYDRA-70 Rocket System

Cable Dragging Horizontal Takeoff Spacecraft Air Launch System

Next Steps in Human Exploration: Cislunar Systems and Architectures

MISSION OVERVIEW SLC-41 CCAFS, FL

Deployment and Flight Test of Inflatable Membrane Aeroshell using Large Scientific Balloon

Mass Estimating Relations

DO NOT WRITE ON THIS TEST FEB 2013 Elmendorf Aero Club Aircraft Test. Cessna - 182

SPACE LAUNCH SYSTEM. Steve Creech Manager Spacecraft/Payload Integration & Evolution August 29, 2017 A NEW CAPABILITY FOR DISCOVERY

Prototype Development of a Solid Propellant Rocket Motor and an Electronic Safing and Arming Device for Nanosatellite (NANOSAT) Missions

Rocket 101. IPSL Space Policy & Law Course. Andrew Ratcliffe. Head of Launch Systems Chief Engineers Team

Auburn University Student Launch. PDR Presentation November 16, 2015

Boeing B-47 Stratojet USER MANUAL. Virtavia B-47E Stratojet DTG Steam Edition Manual Version 2

TAURUS. 2.2 Development period : ; (commercial version)

N55 ROCKET SYSTEM. Manual for. Introduction:

Jay Gundlach AIAA EDUCATION SERIES. Manassas, Virginia. Joseph A. Schetz, Editor-in-Chief. Blacksburg, Virginia. Aurora Flight Sciences

Evaluation of Separation Mechanism Design for the Orion/Ares Launch Vehicle

Reference Information

AVOIDING THE BENDS! Why Super-Roc Models Buckle and How to Design for a Successful Flight. by Chris Flanigan (NAR L1)

PA-28R 201 Piper Arrow

Normal Takeoff Procedure. Aborted Takeoff Procedure Engine Failure on Takeoff

Abstract. Traditional airships have always been designed for robust operations with the ability to survive in

Modeling, Structural & CFD Analysis and Optimization of UAV

CHANGING ENTRY, DESCENT, AND LANDING PARADIGMS FOR HUMAN MARS LANDER

SDO YUZHNOYE S CAPABILITIES IN SPACE DOMAIN

Super Squadron technical paper for. International Aerial Robotics Competition Team Reconnaissance. C. Aasish (M.

Suitability of reusability for a Lunar re-supply system

Transcription:

Welcome to Vibrationdata Acoustics Shock Vibration Signal Processing September 2010 Newsletter Cue the Sun Feature Articles This month s newsletter continues with the space exploration theme. The Orion spacecraft is being designed to carry four to six astronauts. The Launch Abort System is mounted atop the Orion. This system underwent an unmanned test flight last May at White Sands, New Mexico. The plume from the four abort motor nozzles impinged on the adapter cone, driving the sound pressure levels up to 170 db in this zone. A number of other interesting vibroacoustic effects occurred including a prolong abort motor tail-off pressure oscillation with a frequency of 685 Hz. These effects are given in the first article. Note that the Orion spacecraft is being designed for the Ares I launch vehicle. The U.S. Senate, House, and the presidential administration are still debating the future of the Ares I vehicle, the Orion spacecraft and the manned space program. Orion Launch Abort System PA-1 Test page 1 The second article presents the Space Shuttle Twang oscillation which occurs at liftoff. Enjoy. Sincerely, Tom Irvine Email: tomirvine@aol.com Space Shuttle Twang page 12 1

Orion Launch Abort System PA-1 Test by Tom Irvine Figure 1. Pad Abort Test 1, Unmanned Introduction The purpose of the Launch Abort System (LAS) is to pull the Orion Crew Module and its astronauts safely away from the launch vehicle in the event of an emergency on the launch pad or during ascent. An unmanned test of this system was performed at White Sands Missile Range, New Mexico, on May 6, 2010, as shown in Figure 1. The image in the right column, third from the top, shows the elongated exhaust plumes from the four abort motor nozzles, as well as the small plumes from the eight nozzles of the Attitude Control Motor (ACM). 2

Figure 2. Ground Static Fire Test of the Attitude Control Motor Microphones and accelerometers were mounted in the LAS for the pad abort test. The purpose of this article is to present the some flight data from these sensors and to provide interpretation. Note that the test vehicle may have had a different Outer Mode Line (OML) than that which would be used for an actual flight vehicle. Nevertheless, the test flight data provides a useful reference. Animations and Actual Video Footage The following videos provide an excellent visual reference of the test flight. http://www.youtube.com/watch?v=cd--3kgouzo&nr=1 http://www.youtube.com/watch?v=c2glarzgyjq&feature=related http://www.youtube.com/watch?v=5lk9kkmp5ye&feature=related 3

Pad Abort 1 Test Configuration Attitude Control Motor (ACM) Boilerplate Crew Module Abort Motor F Forward Interstage F Jettison Motor F Nose Cone F Aft Interstage Raceway Adapter Cone Aero Closeout Figure 3. Launch Abort System and Crew Module Triaxial Accel at S&A location 2X Lo Freq Interstage Tangential Accels 3X Lo Freq Nose Cone Tangential Accels 669.0 385.0 2X Triaxial Accel at ACM Controller 262.0 211.1 Figure 4. Accelerometer Locations 4

Figure 5. Microphone Locations 5

ACCEL (G) ORION LAS PA-1 LS046V Vibration at S&A location 300 250 Cubic Spline 200 150 100 50 0-50 -100-150 -200-250 -300 0 2 4 6 8 10 12 14 16 18 20 Figure 6. TIME (SEC) The time history in Figure 6 shows that the instantaneous time history could have reached nearly 190 G. 6

ACCEL (G) LS052V Fwd LAS (Nose cone) tangential axis # 3 4 to 16 Hz BP Filtered 1.5 1.0 0.5 0-0.5-1.0-1.5-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Figure 7. TIME (SEC) The acceleration data is bandpass filtered to focus on the fundamental body-bending mode. The mode was driven by an offset of the abort motor thrust vector from the centerline and by the ACM thrust vectoring and maneuvers. 7

Waterfall FFT LS051V Fwd LAS (Nose cone) Lo Freq Accelerometer, Tangential axis # 2 Time (sec) Frequency (Hz) Figure 8. The fundamental body-bending frequency begins near 8 Hz and gradually increases over time due to the decrease in propellant mass. 8

Waterfall FFT Vibration at S&A Location LS045V Time (sec) Figure 9. Frequency (Hz) The abort motor had an oscillation which swept downward in frequency from 685 to 670 Hz during the tail-off. considered to be a phenomenon of the low pressure end of burn gas dynamics of the reverse flow motor. This resonance is 9

PRESSURE (PSI) SOUND PRESSURE TIME HISTORY LS001V Ascent OML # 24 8 6 4 2 0-2 -4-6 -8 0 2 4 6 8 10 12 14 16 18 20 Figure 10. TIME (SEC) The adapter cone connects the aft end of the launch abort system to the crew module. The time histories are somewhat uniform. The peak acoustic excitation for these locations usually occurred during the first one-second interval due to combined liftoff acoustics and plume impingement effects. The levels remained high during the 3-second abort motor burn, driven by plume impingement. There was some lingering excitation during the tail-off from 3 to 10 seconds. Thereafter, the levels were relatively benign. 10

SPL (db) 170 165 160 155 ONE-THIRD OCTAVE SOUND PRESSURE LEVEL LS001V Ascent OML # 24 0 to 3 sec OASPL = 170.0 db Reference = 20 micro Pa 150 145 140 135 130 125 120 10 100 1000 4000 Figure 11. CENTER FREQUENCY (Hz) The sound pressure levels for the adapter cone microphones ranged from 169.4 to 171.4 db. The levels were taken over a duration of zero to 3 seconds, which corresponds to the abort motor burn. The peak excitation occurred over the domain from 1000 to 2000 Hz. Note that the overall levels would have been higher if the instrumentation had been set to measure up to 20 KHz. 11

Space Shuttle Twang by Tom Irvine Figure 1. Space Shuttle Liftoff The Space Shuttle propulsion system generates about 188 db on the launch platform. A water suppression system is used to attenuate the resulting acoustic environment, creating billowing clouds of steam. Introduction The Space Shuttle has three main engines (SSMEs) which are started at T minus 6.6 seconds. The main engines ignite at 120 milliseconds intervals per a programmed sequence. The Shuttle s flight computers require that the engines reach 90% of their rated performance to complete the final gimbal of the main engine nozzles to liftoff configuration. Note that the Shuttle has multiple computers for redundancy. All three SSMEs must reach the required 100% thrust within three seconds to prevent an abort. Otherwise, the engines are shutdown. If the thrust criterion is met, then the eight pyrotechnic nuts holding the vehicle to the pad are detonated. There are two interfaces between the vehicle and the pad, located at the aft end of each solid rocket booster (SRB). Each interface has four hold-down posts. 12

Hold Down Post, 1 of 8 Figure 2. Space Shuttle Atlantis (STS-79) Atop the Mobile Launcher Platform (MLP) and Crawler-Transporter 1996. 13

Then the two solid rocket boosters are ignited. The boosters go to full power in two-tenths of a second. The Shuttle lifts off from the pad. Note that the solid boosters cannot be shut down after ignition. Thus, the vehicle is committed to launch once the boosters are ignited. Twang Event The Space Shuttle stack consists of the boosters, external tank and the orbiter. The orbiter s SSMEs are offset from the vehicle stack s center of gravity. The offset thrust from the Shuttle's three main engines causes the entire launch stack to pitch down about 2 meters at cockpit level, after the main engines start, but while the solid rocket boosters are still clamped to the pad. This motion is called the "twang. The boosters then flex back into their original shape due to internal stiffness forces. The launch stack pitches slowly back upright. This back-and-forth motion takes approximately six seconds. At the point when the vehicle stack is perfectly vertical again, the hold-down post pyrotechnic nuts are ignited, the boosters ignite and the vehicle lifts off the pad. The twang is shown in the following video: http://www.youtube.com/watch?v=xmlegbij6kw Ascent The Shuttle clears the tower and begins a combined roll, pitch and yaw maneuver that positions the orbiter head down, with wings level and aligned with the launch pad. The Shuttle flies upside down during the ascent phase. This orientation allows an angle of attack that is favorable for aerodynamic loads during the region of high dynamic pressure. This maneuver results in a net positive load factor, as well as providing the flight crew with use of the ground as a visual reference. The vehicle climbs in a progressively flattening arc, accelerating as the weight of the SRBs and main tank decrease. More horizontal than vertical acceleration is required to achieve low orbit. This is not visually obvious, since the vehicle rises vertically and is out of sight for most of the horizontal acceleration.. 14

Figure 3. Space Shuttle Flight Profile, courtesy of Wikipedia The vehicle then reaches its maximum dynamic pressure condition, or Max Q, where the aerodynamic forces are at their maximum. The SSMEs are temporarily throttled back to 65% to avoid overspeeding, which would overstress the engines and vulnerable structures such as the wings. At T+70 seconds, the main engines throttle up to their maximum cruise thrust of 104% rated thrust. The SRBs are released at T+126 seconds after launch, via explosive bolts. parachute back to the ocean to be reused. The SRBs The main engines are throttled down at T+7.7 minutes to keep the acceleration below 3 G so that the vehicle is not overstressed. The SSMEs are shut down at T+8.5 minutes, at which point the Space Shuttle achieves initial orbit. The external tank is jettisoned at T+9 minutes. It burns up upon re-entry into the atmosphere. 15

The Shuttle s Orbital Maneuvering System (OMS) engines are fired for the final orbital insertion. The orbital altitude above the Earth is between 200 and 385 miles, depending on mission requirements. The orbital speed is about 17,500 miles per hour. 16