Style Q Plug-in Relays

Similar documents
6R MATRIX. Modular Relays. rms. Auxiliary, Trip & Supervision Relays

UNION SERVICE SPECIFICATION NUMBER SU A

THE BEST ELECTRICAL CONTROLS BUSINESS ON THE PLANET! Unmatched Service Superior Product Quality Advantage Pricing

Installation and Construction Notes for EVSE4

3TM Vacuum Contactors

Quality Products, Prompt Service, Trustful Relationships.

RM 10 Core and Accessories

POLARISED, MONOSTABLE SAFETY RELAY with (mechanical linked) forced contacts operation

FLAT/VERTICAL TYPE HIGH POWER BIFURCATED CONTACT

Unified requirements for systems with voltages above 1 kv up to 15 kv

Distributed by SPECIALISED RUBBER PRODUCTS. Donut Springs Spring Covers Rubber Bumpers Tensions Bands

4 A CAPACITY, THE VARIETY OF CONTACT ARRANGEMENTS

3.0 CHARACTERISTICS E Type CO-4 Step-Time Overcurrent Relay

A - Add New Information C - Change Existing Information D - Delete Information. Page 7. Delete the fourth paragraph beginning CAUTION

Figure 1. Type CWP-1 Ground Relay (Front View) Figure 2. Type CWP-1 Ground Relay (Rear View) E

INDUCTION MOTOR. There is no physical electrical connection to the secondary winding, its current is induced

Auxiliary Relay (7PJ11) and Trip Relay (7PJ12)

1 THE WOLVERTON SYSTEM OF TRAIN LIGHTING.

MANUFACTURED IN THE UK

SERVICE SHOP NOTES. Use ohmmeter to check the resistance between the leads.

BENEFITS 782 STANDARD PART NUMBERS FEATURES 782 XDX M4L- 120A ORDERING CODE DPDT 10 AMP & 4PDT 3 & 5 AMP MINIATURE POWER RELAY FLAG INDICATOR:

RM 6 Core and Accessories

RM 5 Core and Accessories

CI-TI Contactors and Motor Starters Type CI 6-50

WIRING THE HEATER POWER SUPPLY

S4562C 1085 COMBI BOARD APPLICATION. Contents PRODUCT HANDBOOK. General

Functions provided by measuring relays in railway equipment

MODEL AND 10914S PANEL COMPONENTS MODEL AND 10909S PANEL COMPONENTS

SPECIFICATIONS NB SKILLS TRADE 19 AUTOMATION AND CONTROL

MANUFACTURED IN THE UK

CONTINUITY TESTER FOR METALLIC & REMOTELY BONDED STRUCTURES

Operating Instructions

Directory chapter 08. InduCom Robust and EMI protected D-Sub interfaces

SERVICE MANUAL

SDM72 Start on Demand Modules

SUSPENSION 04 CLAMPS

CR193 Vacuum Limitamp* Contactors

CSP Circuit Breaker Three Phase

Furness Railway Wagon Co.

Multi-Pak Group Control

Electromagnetic clutches and brakes INTORQ and INTORQ

Basics of Control Components

STRAIGHT CONVEYOR UNITS AND RIGHT-ANGLE TRANSFER

FN-27 FLASHER RELAY SERVICE MANUAL 4519 * * * * * * * * * * * * * * * *

Doc Ref: WD024/2/11/12 Fern-Howard Ltd. 2 Newman Lane, Alton, Hampshire, GU34 2QR. Reg. No

JANDS DD-8. Technical Manual. Version 1.0

The construction features of EdM transformers

MODEL JH JACKSHAFT INDUSTRIAL DOOR OPERATOR INSTALLATION MANUAL. OPERATOR SPECIALTY COMPANY, INC. P.O. Box 128 Casnovia, MI 49318

PowerLink JC Series Torque Transducer User Manual

INTER PLANT STANDARD STEEL INDUSTRY

Air-insulated switchgear UniGear type ZS1

Introducing Our Stud Contactor Series

P. Sub 4 184A404. Sub 3 876A220

2.0 CONSTRUCTION AND OPERATION 3.0 CHARACTERISTICS K. CO (HI-LO) Overcurrent Relay

2. AC SERVICE AND MOTOR REQUIRED 1. ENCLOSURE REQUIRED

PT-150 PLUG-IN THERMAL RELAY WITH SNAP-ACTION BACK CONTACT *****************

Series A Construction

Installation, Operating and Maintenance Instructions Retractable Door / Art.-Nr.:

FITTING THE RELAY SWITCH BOARD FITTING THE INPUT SELECTOR SWITCH

On_Disc. 2 o/c1 BS 7671 applies to a lift installations b highway equipment c equipment on board ships d electrical equipment of machines.

Silvertel. Ag Features. 2. Description. Power-Over-Ethernet Module. IEEE802.3af compliant. Small SIL and SMT package available

Davies Craig THERMACTIC FANS 1

SPECIALISED RUBBER PRODUCTS. Donut Springs Spring Covers Rubber Bumpers Tensions Bands

Product Guide. enclosed NEMA STARTERS

505 Size 5 Series A Construction

MULTIVOLT 2605 SERIES POWER CONDITIONER 50 Hz

AIR COOLED RECTIFIER SPECIFICATION S-50-A

SECTION ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PAPER SHREDDER S16 PAPER SHREDDER S16 ILLUSTRATED PARTS LIST AND SERVICE INSTRUCTIONS

HM WIRE INTERNATIONAL, INC. Phone: (330) Fax: (330)

INDUSTRIAL SPRING REELS

3. Operating instructions: Minor 200

INSTALL GUIDE AMBIENT BLINDS WINDSOR WIRE GUIDED SEMI RESTRAINED

icebreaker icebreaker A C G GE Lighting 2D lamps are fitted as standard. I44

End suction back pull-out pumps for general industry, mining, rural and building services

Electromagnetically actuated clutches and brakes. clutch / brake combined units, tooth clutches and spring-applied brakes

Over-moldable Ruggedized Connectors for higher Amperage

Programmable Logic Controller. Mat Nor Mohamad

Hoists Polipastos Hebezeuge Palans

Industrial Control Transformers

2: Stylebox Stylebox 15 Overview B 2_ Complete Stylebox 15 Kits B 2_ Stylebox 15 Standard Kit B 2_8

Shelbourne header monitor kit Up to 2004

4.0 OPERATION Type ITH-T Relay

AR12 & AR20 Wiring diagram (multifunction display)

EWP 110 INSTALLATION INSTRUCTIONS

FD 120 Card Cutter MAINTENANCE MANUAL. MyBinding.com 5500 NE Moore Court Hillsboro, OR Toll Free: Local: /2011

Install a module ME or MT

DAKE / JOHNSON VERTICAL BAND SAW

Installation and Maintenance Instructions. World Leader in Modular Torque Limiters. PTM-4 Load Monitor

Ledex Rotary Solenoids

R-MAG Vacuum Circuit Breaker with Magnetic Actuator Mechanism 15.5 kv - 27 kv; 1200 A A

C. Figure 1. CA-16 Front View Figure 2. CA-16 Rear View

Control Relays Overview

PATIO AWNINGS HAROL VZ520 TECHNICAL INFORMATION

R-MAG. Vacuum Circuit Breaker with Magnetic Actuator Mechanism

ABB. Type CRQ Directional Negative Sequence Relay for Ground Protection B 1.0 APPLICATION 2.0 CONSTRUCTION AND OPERATION CAUTION

Doc Ref: WD030/2/11/12 Fern-Howard Ltd. 2 Newman Lane, Alton, Hampshire, GU34 2QR. Reg. No

2D products are warranted for one year, the expected life of the ballast and/or Emergency module is 5 years

Example Maintenance Schedule 1. The attached document is an example of an acceptable maintenance schedule.

Fiber Splice Panel Rack Mount User Manual

Transcription:

www.siemens.com.au/rail-components Style Q Plug-in Relays General Information The Style Q range of plug-in relays were developed to meet the British Rail 930 Series of Specifications, and have been proven in use in many countries for more than twenty years. The wide range available covers almost every railway signal relay need. This section details the range of Style Q relays at present manufactured in Australia. The range is constantly increasing and enquiries for types not listed are welcomed. Typical Q relay BR930 Series Specifications These Specifications were originated in the late 1950s/early 1960s by an IRSE Miniaturisation Committee, and were subsequently adopted by British Rail and issued as BR Specifications. The objective was to create a range of relays smaller and lower in cost than(the then) standard plug-in relays and to ensure interchangeability between manufacturers, while maintaining maximum design freedom. The result has been wide standardisation and major cost saving in railway signalling. The BR 930 Specifications lay down the major mechanical details affecting interchangeability for relay and plugboard. They also lay down relevant operating characteristics for relays and the method of coding which ensures that non-compatible relays may not be plugged in. To fully realise the interchangeability advantages offered by application of this system, care must be taken in circuit design to see that only the specified characteristics of relays are relied on for correct circuit functioning for example, nonspecified timings are not measured in production and may vary from one manufacturer to another, and may also vary with the same manufacturer s relays, as the result of design revisions. Coil resistance of line relays is another parameter which may vary only maximum power consumption is specified and actual resistance may be selected by the manufacturer within that limit. Pin codes An important part of the Style Q relay concept is the allocation of pin codes to relays. Five basic contact combinations are available, covered by two interlocking pin codes: Contacts 12F 4B Code 8F 8B 2 8F 4B 6F 6B 2 4F 4B 2 Datasheet 3A

Contact Layouts 1 2 A B C D F F F F 1 2 F F F F F F F F F F F F 3 4 5 6 7 8 R1 R3 F F F F B F F B B F F B 3 4 5 6 7 8 R2 R4 F F F F B B B B B B B B F F F B F B B F B F F F B B B B B B F B B F B B 12F 4B 8F 8B 8F 4B 6F 6B 4F 4B This pattern was adopted because: 1. 12F 4B and 8F 8B combinations have some contact positions in which contacts in the same position are changed from front to back contacts; therefore, safety considerations require a different pin code. 2. An 8F 4B relay has all contacts in the same positions as a 12F 4B but one vertical stack of contacts is omitted, so no danger can result by substitution of one for the other. Similarly, a 6F 6B relay is an 8F 8B with one vertical stack of contacts omitted, and a 4F 4B is an 8F 8B with two vertical stacks omitted. 3. It allows the use of a variety of contact combinations in new signalling installations to minimise initial cost but only two, 12F 4B and 8F 8B, are required as spares for subsequent servicing. General Specifications The specifications below apply to all Style Q Relays unless varied by the detailed specifications included in the data sheets for individual relays. Maximum number of contacts Contact material moving fixed Contact pressure Contact lift Change-over gap Contact resistance Contact rating carrying switching (dc) resistive switching (dc) lnductive These ratings may be doubled for ac. 16 (8 each on twin relays) Silver Silver impregnated graphite 28-50 g 0.5 mm (min) 0.4 mm (min) 0.2 Ω (max) 3 A (max) 25 VA-125 V (max) 9 VA-125 V (max) Note: Contact ratings may be exceeded at the cost of reduced contact life. Coil resistance As specified ±10% at 20 C Relay life AC immunity (where applicable) 10 6 operations at rated loading of contacts 1000 Vrms Packaging Packs of 10 Glossary of Terms Operate condition the condition of the relay when all front contacts are just made. Full Operate condition the condition of the relay when the armature has completed its maximum travel. Release condition the condition of the relay when all front contacts have opened. Full Release condition the condition the relay assumes when de-energised. Front Contact a contact which is made when the relay is energised. Back Contact a contact which is made when the relay is de-energised. Percentage Release the release value as a percentage of the operate value ie Percentage Release = Release Value / Operate Value * 100 Page 2 Datasheet 3A issue 2.0

Relay Groups The range of Q relays can be divided into the following broad groups: Single Relays contain one relay only in each enclosure and are the most simple group. Twin Relays contain two independent relays within one enclosure, each driving half the contacts. Relay Units incorporate a diverse selection of electronic timers, flashers, etc, each mounted in the same standard enclosure. Guide to Style Q Relay Types and Related Specifications Single Twin Standard AC Immune Standard AC Immune Type of Relay Style BR Spec Style BR Spec Style BR Spec Style BR Spec Neutral QN1 930 QNA1 931 QNN1 960 QNNA1 966-F6 Neutral double wound QND2 930 QNND1 960 Neutral special for long lines QS2 Neutral slow operate QSPA1 933 QNNSl 963 Neutral slow release QSRA1 QSRA4 934 QNNSl 963 Biased QBA1 932 QBBA1 961 Biased contactor QBCA1 943 966-F4 Magnetic latched QLl 935 Track QT1 938 QTA1 939 966- F2 Timers slow operate slow operate slow release QCJ1 QTD5 QTD4 949 QTD1 Transformer/Rectifier Units QXR1 Flashers Others QDF1 QDF2 QDF3 QR5 QR9 DC AC Normal Release Slow Release Normal Release Slow Release Type of Relay Style BR Spec Style BR Spec Style BR Spec Style BR Spec Lamp proving QN3 QEC1 QSR3 940 QECX7 QECX8 QUCX1 942 QECX5 Style Q Plug-in Relays Page 3

Single Relays General The Style Q relay is built on a robust thermoset base moulding into which up to four vertical contact stacks may be fitted. Contact springs are separated by glass-filled polycarbonate spacer blocks and are insulated from the contact stack securing screw by a nylon tube. Each vertical contact stack can carry up to four independent contacts, which may be front or back according to how they are assembled. Each outside stack also carries two coil connectors. The magnet assembly is mounted on the base moulding below the contacts and consists in its simplest form of an L shaped heel-piece, a core with retaining nut to hold the heel-piece onto the base moulding, and an armature. The armature pivots on the front face of the heel-piece and is located by a phosphor bronze pivot plate. Reliable and consistent release is assured by a fixed phosphor bronze residual pin rivetted into the armature face. The coil is wound on a separate bobbin which is subsequently fitted over the core. A label fitted to the coil indicates the number of turns and nominal resistance. Actual resistance is within ±10% of nominal value. Wire of not less than 0.1 mm diameter is used for coils. Contact springs are phosphor bronze and the rear ends form the plug contacts which engage with the plugboard on which the relay mounts. The front ends carry the contact tips which are silver impregnated graphite (SIG) for the fixed contacts and silver for the moving contacts. The silver contacts are rivetted and soldered to their springs. SIG contacts are attached by clips and the rear face soldered to the spring. The moving springs are driven from the armature by operating arms blanked from synthetic resin bonded fabric (SRBF) sheet. The fixed springs are supported in their correct locations by adjustment cards blanked from SRBF sheet which are supported at the lower end by a bracket which is rivetted, with the pivot plate, to the heel-piece. At the upper end the cards are retained by support springs which also provide an Typical single Q Relay (Style QBA1) upper bearing for the operating arms to slide in. Low rate contact springs are used so that the pressure of the fixed contact against the adjustment card is nearly the same as the final contact pressure, ensuring very little change in contact pressure with wear over the life of the relay. Armature release torque is provided by a combination of a low-stressed helical spring, gravity, and front contact pressure. The transparent polycarbonate cover is retained by two nuts which also retain the handle. These are attached to a stainless steel strap which conveys the tension of retaining the cover to the relay base preventing stress in the working parts of the relay. Plastic seals are fitted into the handle to prevent unauthorised access. A clip-on label is provided on the front face of the cover for circuit function or similar information. On the rear face of the relay below the contacts, five coding pins are provided to prevent the relay being fitted to an incorrect plugboard. These pins are retained by a plate which is also sealed. All parts which are insulated from other parts are tested to 1000 Vrms. This also includes tests between windings on double-wound coils. Page 4 Datasheet 3A issue 2.0

Twin Relays Typical Twin Q Relays General Style Q Twin relays provide two completely independent relays within a single Q relay enclosure. Each relay provides a maximum of 8 independent contacts. They offer considerable savings of both cost and space when contact requirements can be kept within these limits. They offer special advantages in building geographical sets. Construction The construction of twin Q relays closely follow what is already described for single relays. Base, contacts, cover, handle, etc, are identical and the only differences are in the magnet assembly. The simplest twin relay magnet assembly consists of the usual L shaped heel piece which is fitted with two separate cores and two independent armatures, each of which drives two of the four stacks of contacts. Each coil is wound on a separate bobbin which is subsequently assembled to its core. Relay Units Style QNN1 Style QBBA1 Typical Q Relay Units General A wide variety of equipment can be conveniently housed in Style Q relay enclosures, including timers, flashers, transformers, rectifier feed units, capacitor slugging units, etc. Construction It is not possible to give a general description as construction methods used vary widely according to the particular components to be housed. Electronic components are usually mounted on printed circuit cards and wired to tags assembled to the relay base in positions normally occupied by relay contacts. The usual coding pins are provided on the rear of the unit to ensure only the correct unit is plugged in. Style QTDS Special Units Special units can be designed to meet specific requirements if justified by demand. Style QCJ1 Style Q Plug-in Relays Page 5

Style Q Relay Plugboards Style Q Relay Plugboards are onepiece thermoset mouldings, fitted with removable crimp type connectors. These connectors provide for both wire and insulation support for one or two wires each. Connectors are suitable for soldering if desired. Recommended cable is size 9/0.3 mm, with a maximum OD of 3 mm. The relay is retained on the plugboard by a wire clip which engages in a groove in the top of the relay handle. A paper label fixed to the plugboard gives details of its associated relay. Each plugboard is mounted on racks or chassis by two screws of 5 mm diameter. Plugboards are supplied in packs of 5 or bulk packs of 100. The following tools are available: Part Description 4790/0 Crimping tool for connectors J4489M/1 AM227-20/1 Removal tool for connectors Retaining clip tool Crimped Connections It is recommended that crimping tools should be checked at frequent intervals (approx. 400-1,000 crimps) by making two sample crimps using minimum possible compression of the tool. These should then be subjected to a pull out test by holding the connector in a vice and pulling the wire with a spring balance. The Q relay connector crimp must withstand a pull of 9 kg (20 lb). Front: showing code pin positions Rear: showing terminal numbering No bending or twisting of tool needed Assembly of connectors into Style Q Plugboard Connector with removing tool in position for withdrawal Page 6 Datasheet 3A issue 2.0

Mounting Mountings for Style Q Relay plugboards The diagram shows maximum density mounting centres but the vertical spacing is usually increased to allow space for wiring forms. Style Q Plug-in Relays Page 7

Datasheet 3A issue 2.0 Physical Dimensions 56 mm M5 (2BA) Clearance Hole 28.6 mm 16 mm 180 mm 127 mm 117.5 mm 120 mm Plugboard M5 (2BA) Clearance Hole 21 mm Siemens Rail Automation Pty Ltd ABN 78 800 102 483 Level 7, 380 Docklands Drive, Docklands, Victoria 3008, Australia T +61 3 1300 724 518 E rail-components.au@siemens.com W www.siemens.com.au/rail-components 2014, Siemens Rail Automation Pty Ltd