KAJIAN MENGENAI DAYA AERODINAMIK PADA SAYAP HADAPAN KERETA LUMBA MENGGUNAKAN KAEDAH SIMULASI CFD MIRNI BINTI ABDUL GHANI

Similar documents
KECEKAPAN HABA EKZOS DAN PENGGUNAAN BAHAN API TENTU BREK (BSFC) ENJIN DIESEL DENGAN BAHAN API BIODIESEL

FLUID AND HEAT FLOW PERFORMANCE IN HEAT EXCHANGER NURLIYANA BINTI MOHD NADZRI

MENGANALISA KEROSAKAN PENYERAP SHIMMY (SHIMMY DAMPER) TERHADAP UNIT PENDARATAN PESAWAT RINGAN (MODEL:EAGLE 150B). NORIZAL BIN ARSHAD

HUBUNGAN ANTARA CIRI-CIRIINDIVIDU, REKA BENTUK LATIHAN DAN PERSEKITARAN KERJA DENGAN PEM INDAHAN LATIHAN DI SWM ENVIRONMENT SDN BHD.

ZULHILMI AFIQ BIN ZULKIFLE

INSTRUCTION: This section consists of SIX (6) essay questions. Answer FOUR (4) questions only.

Saya / kami akui bahawa telah membaca karya ini dan pada pandangan saya / kami. Ijazah Sarjana Muda Kejuruteraan Mekanikal (Automotif) Tandatangan

DESIGN OF A LIFT REDUCTION DEVICE FOR PASSENGER CAR

THE STUDY ON THE IMPACT OF CONSTANT POWER LOAD TO A DIRECT CURRENT POWER SYSTEM DRIVEN BY PHOTOVOLTAIC, WIND - THYRISTOR RECTIFIER AND LINEAR SOURCES

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

FINITE ELEMENT (FE) MODEL OF BRAKE INSULATOR IN REDUCING BRAKE SQUEAL NOISE FOR MOTORCYCLES MUNDHER FADHIL ABDULRIDHA UNIVERSITI TEKNOLOGI MALAYSIA

HAZILA BINTI NAYAN. A project report submitted in partial fulfillment of the requirement for the award of the Degree of Master of Manufacturing

OPTIMAL LOCATION OF FACTS FOR ATC ENHANCEMENT BY USING SENSITIVITY ANALYSIS RAIMON OMAR AL SHAIKH SALEM

HASIL PEMBAKARAN EMISI RENDAH DENGAN MENGGUNAKAN BAHAN API BIODIESEL BERBANTUKAN ALIRAN BERPUSAR MOHAMAD SHAIFUL ASHRUL BIN ISHAK

JA606: VEHICLE DYNAMICS. INSTRUCTION: This section consists of SIX (6) structured questions. Answer FOUR (4) questions only.

A FREQUENCY CONTROLLER USING FUZZY IN ISOLATED MICROGRID SYSTEM

SECTION A : 100 MARKS BAHAGIAN A : 100 MARKAH INSTRUCTION: This section consists of SIX (6) essay questions. Answer FOUR (4) questions only.

Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG

CONTROL OF INVERTED PENDULUM-CART SYSTEM BASED ON FUZZY LOGIC APPROACH HASRULNIZAM BIN HASHIM

INSTRUCTION: This section consists of SIX (6) structure questions. Answer FOUR (4) questions only.

OPTIMAL ANTI LOCK BRAKING SYSTEM WITH REGENERATIVE BRAKING IN HYBRID ELECTRIC VEHICLE DANA DEHGHANI UNIVERSITI TEKNOLOGI MALAYSIA

SKR 3102: ROMBAK RAWAT SISTEM KLAC

AN AERODYNAMIC STUDY ON MPV SPOILER RAGUVARAN A/L JAYAHKUDY UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MODELLING OF THROUGH-THE-ROAD HYBRID ELECTRIC VEHICLE OKE PAUL OMEIZA

INSTRUCTION : This section consists of SIX (6) structured questions. Answer any FOUR (4) only.

AERODYNAMICS COOLING OF DISC BRAKE ROTOR MOHD RAUS BIN ZAINUDIN UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CURRENT CARRYING CAPABILTY OF POLYESTER CARBON COATED FOR ELECTRICAL CONDUCTOR MOHD HAIDIR BIN MANAF UNIVERSITI TEKNOLOGI MALAYSIA

INSTRUCTION: This paper consists of SIX (6) structure questions. Answer any FOUR (4) questions.

MEMBANGUNKAN PENJANA ELEKTRIK MUDAH ALIH MENGGUNAKAN CECAIR PETROLEUM GAS MOHD RIDZUAN BIN JAMIL UNIVERSITI TEKNIKAL MALAYSIA MELAKA

NUMERICAL ANALYSIS OF ELASTOHYDRODYNAMIC LUBRICATION WITH BIO-BASED FLUIDS DEDI ROSA PUTRA CUPU UNIVERSITI TEKNOLOGI MALAYSIA

GEAR RATIO INVESTIGATION OF AUTOMOTIVE MANUAL TRANSMISSION MUHAMAD AMIR SHAH ARIF HARUN. A thesis submitted in partial fulfillment of the

DESIGN AND SIMULATION OF PRECHAMBER WITH HIGH PRESSURE CNG INJECTOR SYSTEM FOR SINGLE CYLINDER FOUR STROKE ENGINE MOHD FADZLI BIN MAT LAZIM

INSTRUCTION: This section consists of FOUR (4) structured questions. Answer ALL questions.

INSTRUCTION: This section consists of FOUR (4) questions. Answer ALL questions. ARAHAN: Bahagian ini mengandungi EMPAT (4) soalan. Jawab SEMUA soalan.

COMFORT ANALYSIS IN COMMERCIAL VEHICLE S PASSENGER SEAT TAM WEE KONG

(Kertas soalan ini mengandungi 6 soalan dalam 7 halaman yang dicetak) (This question paper consists of 6 questions on 7 printed pages)

UNIVERSITI MALAYSIA PAHANG BORANG PENGESAHAN STATUS TESIS

SIMULATION OF AUTOMATIC STEERING SYSTEM ZULFADLI BIN KASMANI UNIVERSITI TEKNIKAL MALAYSIA MELAKA

SKR 3102: ROMBAK RAWAT SISTEM KLAC

MEMBANGUNKAN FABRIKASI MESIN PEMBENGKOK PAIP YANG DIGERAKKAN DENGAN KUASA MOTOR MANUAL MOHD RIDZUAN BIN AB KADIR

BAB 4 PENEMUAN KAJIAN. Bahagian ini pengkaji akan melaporkan hasil kajian mengikut persoalan kajian

SENARAI KANDUNGAN BAB TAJUK HALAMAN PENGISTIHARAN PENGHARGAAN ABSTRAK ABSTRACT SENARAI JADUAL SENARAI RAJAH SENARAI LAMPIRAN SENARAI SINGKATAN

MODELLING DAMPING ELEMENT TO REDUCE DISC BRAKE SQUEAL NORAIDE BIN MD YUSOP UNIVERSITI TEKNOLOGI MALAYSIA

COMPARISON OF AUTOMATIC AND CVT TRANSMISSION FOR A CAR UNDER 1 LITER ENGINE

INSTRUCTION: This section consists of SIX (6) essay questions. Answer FOUR (4) questions only.

INSTRUCTION: This paper consists of SIX (6) structured questions. Answer any FOUR (4) questions.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

KAJIAN ULTRA KAPASITOR KE ATAS MOTOR ELEKTRIK ABDUL ALIFF RAHIM BIN ABD RASHID UNIVERSITI TEKNIKAL MALAYSIA MELAKA

STUDIES AND DESIGN OF SUSPENSION SYSTEM FOR A FORMULA SAE RACING CAR AIZAT FUAD BIN AHMAD SHATAR UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS TESIS

MEREKA SISTEM GEAR (BY WIRE)

THE ANALYSIS OF THE FORCES THAT ACT ON THE MOTORCYCLE BRAKE PEDAL DURING EMERGENCY BRAKE

APPLICATION OF DEMAND SIDE MANAGEMENT STRATEGIES TO REDUCE ENERGY CONSUMPTION IN UNIVERSITY BUILDINGS NAJAATUL FARIHAH BINTI HAMIDI

INSTRUCTION: This section consists of SIX (6) structures questions. Answer FOUR (4) questions only.

UNIVERSITI PUTRA MALAYSIA NUMERICAL AND EXPERIMENTAL STUDIES OF HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINE PERFORMANCE MOHAMMAD IZADI NAJAFABADI

TECHNOLOGY AND INNOVATION MANAGEMENT AWARENESS AND PRACTISE A CASE STUDY IN BRITISH AMERICAN TOBACCO GSD (KL) SDN BHD

ENERGY BALANCE STUDY FOR 4 STROKE GASOLINE ENGINE ANALYSES ABDULLAH SHARIFFUDIN MOHAMAD BACHELOR OF MECHANICAL ENGINEERING UNIVERSITI MALAYSIA PAHANG

UNIVERSITI PUTRA MALAYSIA REDUCTION OF TOTAL HARMONIC REDUCTION IN TORQUE CHARACTERISTICS IN TWO-PHASE SIDE BY SIDE BRUSHLESS DC MOTOR NG SENG SHIN

ROBUST ELECTRONIC BRAKE FORCE DISTRIBUTION IN HYBRID ELECTRIC VEHICLES YEOH WEI CHERNG UNIVERSITI TEKNOLOGI MALAYSIA

Item Bil Description of Works Remarks Main Switch Board

ELECTRIC CAR VOLTAGE MONITORING SYSTEM NAJMI AZFAR BIN MOHD ROSLI

SAIDATINA AISHAH BINTI MOHD SHAH B

DEVELOPMENT OF MICROHYDRO GENERATOR SYSTEM AHMAD ZUBAIDI BIN ABDUL MD RANI UNIVERSITI MALAYSIA PAHANG

PEPERIKSAAN JULAI 2010

THE DEVELOPMENT OF A SUSPENSION SPRING IN TERM OF DIMENSION MOHD FADHIRUL AMRAN BIN ALI

SISTEM PENGURUSAN KOLEJ KEDIAMAN

SPRAY SIMULATION OF HYDROGEN FUEL FOR SPARK IGNITION ENGINE USING COMPUTATIONAL FLUID DYNAMIC (CFD)

UNIVERSITI SAINS MALAYSIA EEM 253 REKABENTUK MEKATRONIK I

AN AUTONOMOUS VEHICLE USING WALL FOLLOWING DETECTION MOHD AFFI BIN MOHD ALI

UNIVERSITI MALAYSIA PAHANG BORANG PENGESAHAN STATUS TESIS

DESIGN AND DEVELOPMENT OF HYBRID COMPOSITE CHASSIS FOR FORMULA STUDENT RACE CAR MOHD FIRDAUS BIN ZAMRI UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MODELING AND SIMULATION OF ENGINE MANAGEMENT SYSTEM SHAHRUL HAFEZ BIN MOHD RAZALI

STRESS EFFECT STUDY ON 6 DIFFERENT PATTERN OF TYRES FOR SIZE 175/70 R13 SYAHRIL AZEEM ONG BIN HAJI MALIKI ONG. for the award of the degree of

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRIK FINAL YEAR PROJECT 2 BEKU /2014 FINAL YEAR PROJECT REPORT

(a) Sketch and explain the operation of four stroke petrol engine. Lakar dan terangkan operasi enjin empat lejang. [12 marks] [12 markah]

OPTIMAL LOCATION OF THYRISTOR CONTROLLED SERIES COMPENSATOR USING SENSITIVITY APPROACH NEW HUANG CHIN UNIVERSITI TEKNOLOGI MALAYSIA

STATIC AND DYNAMIC ANALYSIS OF A LADDER FRAME TRUCK CHASSIS

This item is protected by original copyright

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND SIMULATION AUTOMOBILE ACTIVE SUSPENSION SYSTEM MOHD ASQALANI BIN NAHARUDIN UNIVERSITI MALAYSIA PAHANG

FABRICATION OF A PROTOTYPE LOW POWER MOTOR FOR INDOOR VENTILATION SIMON THEOPHYLUS YUSUF

MICRO WIND POWER GENERATOR NORAISAH BINTI ABU

DESIGN AND ANALYSIS BATTERY PACKAGING FOR ELECTRIC VEHICLE (EV) SIBRA MALLISI YUSSOF

Tandatangan :... Nama Penulis : ANAS BIN AZMI Tarikh : 13 Mei 20

DEVELOPMENT OF ELECTRICAL DISCHARGE MACHINING POWER GENERATOR MUHD ABU BAKAR BIN MUHD RADZI

WIRELESS SOLAR CHARGER SITI NOR AZURA BINTI RAHMAN

KANDUNGAN BAB PERKARA MUKA SURAT JUDUL TESIS PENGAKUAN PENGHARGAAN ABSTRAK ABSTRACT SENARAI JADUAL SENARAI RAJAH SENARAI SINGKATAN SENARAI LAMPIRAN

INSTRUCTION: This section consists of SIX (6) essay questions. Answer FOUR (4) questions only.

AUTOMATED GUIDED VEHICLE USING LINE FOLLOWING DETECTION MOHD KHAIRULZAMAN BIN A RAHMAN

DETERMINATION OF AERODYNAMIC DRAG FORCE ACTING ON MOVING HEAVY DUTY TRUCK-TRAILER IN MALAYSIA MOHAMAD HAFIZ BIN MOHAMAD

ALAT PRAPEMPROSESAN DATA UNTUK SISTEM SOKONGAN EKSEKUTIF UNIVERSITI. Muhammad Faiz Bin Abdullah Prof. Madya Dr. Mohd Zakree Ahmad Nazri

SISTEM PENGURUSAN STOK. Nur Rahimah Binti Mohd Razmi Pn. Hazilah Binti Mohd Amin. Fakulti Teknologi & Sains Maklumat, Universiti Kebangsaan Malaysia

BORANG PENGESAHAN STATUS TESIS

BORANG PENGESAHAN STATUS TESIS

MEREKA BENTUK DAPUR SURIA YANG PRAKTIKAL DIGUNAKAN UNTUK MEMASAK ALIA RUZANNA BINTI AZIZ

MODELING OF ELECTRIC DOUBLE LAYER CAPACITOR FATHIN ASILA BINTI MOHD PABLI UNIVERSITI TEKNOLOGI MALAYSIA

DEVELOPMENT OF A 10 NEWTON HYDROGEN PEROXIDE MONOPROPELLANT ROCKET THRUSTER KUBERARAAJ NAMBARAJA

OPTIMIZATION ON FUEL GAS OPERATION FOR COMBINED CYCLE POWER PLANT MOHD IZAMUDDIN BIN MAHMUD

DESIGN AND FABRICATION OF ENGINE MOUNTING FOR UTeM FORMULA SYLE RACE CAR MOHD SABIRIN BIN RAHMAT UNIVERSITI TEKNIKAL MALAYSIA MELAKA

THE DEVELOPMENT OF ADAPTIVE LIGHTING SYSTEM FOR MOTORCYCLES ASYRAF BIN AMIR

Transcription:

KAJIAN MENGENAI DAYA AERODINAMIK PADA SAYAP HADAPAN KERETA LUMBA MENGGUNAKAN KAEDAH SIMULASI CFD MIRNI BINTI ABDUL GHANI UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MIRNI BINTI ABDUL GHANI SARJANA MUDA KEJ.MEKANIKAL(TERMAL-BENDALIR) 2011 UTeM

i Saya akui bahawa telah membaca karya ini dan pada pandangan saya karya ini adalah memadai dari segi skop dan kualiti untuk tujuan penganugerahan Ijazah Sarjana Muda Kejuruteraan Mekanikal (termal-bendalir) Tandatangan Nama Penyelia Tarikh :. : EN. SHAMSUL BAHARI BIN AZRAAI :.

i Saya akui bahawa telah membaca karya ini dan pada pandangan saya karya ini adalah memadai dari segi skop dan kualiti untuk tujuan penganugerahan Ijazah Sarjana Muda Kejuruteraan Mekanikal (termal-bendalir) Tandatangan Nama Penyelia Tarikh :. : EN. SHAMSUL BAHARI BIN AZRAAI :.

ii Saya akui laporan ini adalah hasil kerja saya sendiri kecuali ringkasan dan petikan yang tiap-tiap satunya saya telah jelaskan sumbernya Tandatangan :. Penulis : Tarikh :...

iii Untuk ayah dan bonda tersayang: Abd Ghani bin Hasan dan Jamilah bt Mustafar

iv PENGHARGAAN PENGHARGAAN Jutaan terima kasih dan sekalung penghargaan diucapkan kepada penyelia projek saya, Encik Shamsul Bahari bin Azraai yang telah banyak memberi bimbingan,nasihat dan tunjuk ajar kepada saya bagi menyiapkan projek sarjana muda ini. Pelbagai ilmu yang dapat saya rungkai sepanjang menyiapkan projek ini.ribuan terima kasih buat Dr. Mohd Yusoff bin Sulaiman dan Encik Mohd. Irwan yang telah menjadi panel penilai semasa seminar 1 dan 2 untuk PSM ini kerana banyak memberi idea-idea dan pandangan serta komen yang positif dan membina dimana ia amat berguna ketika dalam proses menyiapkan projek sarjana muda ini.tidak lupa juga kepada seluruh ahli keluarga serta rakan-rakan seperjuangan yang banyak memberi sokongan, dorongan serta pandangan yang secara langsung atau tidak langsung dalam memberikan idea-idea dan cadangan. Segala tunjuk ajar, nasihat dan panduan tidak akan saya lupakan. Semoga kajian yang telah dijalankan ini mendapat keberkatan dari Allah S.W.T.

v ABSTRAK Peranan utama aerodinamik dalam bidang automotif terutamanya bagi kereta lumba ialah untuk memberi lebih kestabilan dengan menghasilkan daya kebawah semaksimum yang boleh bagi membolehkan kereta tersebut mencengkam permukaan trek ketika melalui selekoh tajam dengan kelajuan yang tinggi tanpa sebarang kemalangan, meningkatkan prestasi kereta dan untuk keselamatan pemandu. Kajian ini ini adalah berkaitan dengan kajian mengenai sayap kereta lumba menggunakan kaedah dinamik bendalir berkomputer untuk simulasi. Kajian ini dijalankan bagi mengenal pasti sudut serang yang sesuai digunakan ketika perlumbaan, iaitu sudut serang yang dapat menghasilkan daya kebawah yang maksimum serta dapat mengurangkan daya seretan pada kereta yang menjadi halangan untuk memecut dengan kelajuan yang tinggi pada sudut serangan yang berbeza. Hasil simulasi tersebut akan dibandingkan dengan keputusan ujikaji terowong angin. Kajian ditumpukan kepada penyebaran tekanan pada permukaan aerofoil serta penyebaran halaju pada permukaan aerofoil. Simulasi ini adalah untuk melihat taburan halaju, taburan tekanan disekeliling aerofoil sayap kereta lumba, pekali daya seretan dan pekali daya kebawah yang dapat dihasil kan oleh sayap tersebut pada kelajuan dan sudut serang yang berbeza. Hasil simulasi jelas menunjukkan bahawa semakin besar sudut serangan, semakin tinggi daya ke bawah yang terhasil sekaligus meningkatkan daya seretan terhadap sayap kereta. Sudut serang 12º merupakan sudut serang yang paling sesuai digunakan ketika berlumba pada litar-litar yang banyak mempunyai banyak selekoh kerana ia menghasilkan daya kebawah yang paling tinggi. Kajian ini jelas menunjukkan bahawa kaedah simulasi CFD telah berjaya menentukan prestasi daya aerodinamik pada kereta lumba berdasarkan hasil simulasi yang telah berjaya diperoleh.

vi ABSTRACT The purpose of aerodynamic in automotive field especially for racing car is for vehicle performance, safety and stability by creating the downforce as much as possible in order to make the car more grip at the track surface during the cornering even the car is at high speed. The study was conducted to identify angles of attack that can generate a maximum downward force and to reduce the drag on the car that became barriers to accelerate the speed using the computational fluid dynamic method and FLUENT software was used in this study. The simulation results will be compared with results of wind tunnel experiments. The focus of the study is to determine the pressure and velocity profiles at the front wing. This simulation is to observe the velocity distribution, pressure distribution around the racing car s front wing, drag coefficient and the downward force coefficient, which can be produced by the wing at the different speed and angle of attack. The simulation results clearly show that, the greater the angle of attack, the higher the resulting downward force and increase the drag force of the wing. However, the increased of the drag is very small, and can be overcome by the downforce that is produced, which allows the car accelerates without any restrictions. The angle of attack of 12 is the most suitable angle when racing on circuits that has a lot of cornering as it produces the most downforce that able to grip the car on the surface of the circuit so the car can accelerate at high speed with stability and secure. The CFD method has successfully to simulate the airflow around the racing car s front wing.

vii KANDUNGAN BAB PERKARA MUKA SURAT PENGESAHAN PENYELIA PENGESAHAN PELAJAR DEDIKASI PENGHARGAAN ABSTRAK ABSTRACT KANDUNGAN SENARAI RAJAH SENARAI JADUAL SENARAI SIMBOL SENARAI RINGKASAN PERKATAAN SENARAI LAMPIRAN i ii iii iv v vi vii xi xiv xv xvi xvii BAB I PENGENALAN 1.1 Pengenalan 1 1.2 Penyataan masalah 6 1.3 Objektif kajian 6 1.4 Skop kajian 7

viii BAB PERKARA MUKA SURAT BAB 2 KAJIAN ILMIAH 2.1 Pengenalan 8 2.2 Kajian terdahulu 8 2.3 Teori aerodinamik 10 2.4 Daya seretan 11 2.5 Pekali seretan C D dan pekali angkatan C L 13 2.6 Daya angkatan dan daya kebawah 14 2.7 Aliran lapisan sempadan 16 2.8 Prinsip Bernoulli 19 2.9 Nombor Reynolds 20 2.10 Kelikatan 22 2.11 Persamaan momentum 23 2.12 Persamaan Navier Stokes 23 2.13 Taburan tekanan sekeliling kereta 24 2.14 Aliran udara dan tekanan keatas aerofoil 24 2.14.1Pengenalan kepada garis perentas dan Sudut serang 25 2.15 Dinamik bendalir berkomputer (CFD) 25 2.15.1 Kaedah berdiskrit 26 2.15.2 Model lamina 27 2.16 Terowong Angin 28 2.17 Solidworks. 28

ix BAB PERKARA MUKA SURAT BAB 3 KAEDAH KAJIAN 3.1 Kaedah kajian 30 3.2 Proses simulasi sayap kereta lumba 31 3.2.1 Menghasilkan geometri 2-D sayap kereta lumba 31 3.2.2 Import aerofoil 2-D kedalam Gambit 32 3.2.3 Menghasilkan domain aliran 33 3.2.4 Jejaring (meshing) 34 3.2.5 Simulasi aerofoil 34 3.2.6 Analisis data simulasi 35 BAB 4 KEPUTUSAN DAN PERBINCANGAN 4.1 Keputusan Simulasi CFD-Fluent 36 4.1.1 Keputusan daya seretan dan daya ke bawah 39 4.1.2 Profil halaju dan tekanan 41 4.2 Perbandingan hasil simulasi CFD dengan hasil eksperimen terowong angin 45 4.2.1 Perbandingan pekali seretan 45 4.2.2 Perbandingan pekali angkatan (daya ke bawah) 46

x BAB 5 KESIMPULAN Kesimpulan dan cadangan 48 RUJUKAN 50 LAMPIRAN 54

xi SENARAI RAJAH BAB PERKARA MUKA SURAT BIL. TAJUK 1.1 Litar F1 di Albert Park, Australia (Sumber: www.trackpedia.com) 2 1.2 Litar F1 di Monza,Itali (Sumber: www. sandeepkram.blogspot.com) 3 1.3 Kereta lumba Ferrari model F60 dan F2008 (sumber:www.sprinterdellacasa.blogspot.com) 3 1.4 Daya ke bawah prinsip Bernoulli (Sumber: www. racecarengineering.com) 4 1.5 Contoh sayap hadapan kereta lumba (Sumber : www.gtplanet.net) 5 1.6 Contoh sayap belakang kereta lumba (Sumber : www.serpent.com) 6 2.1 Perubahan C D dan C l sayap hadapan Pada sudut serang yang berbeza 9

xii BAB PERKARA MUKA SURAT 2.2 Jenis cengkaman 11 2.3 Tekanan hadapan pada kereta (Sumber : www.gmecca.com/byorc/dtipsaerodynamics) 12 2.4 Vakum belakang pada kereta (Sumber : www.gmecca.com/byorc/dtipsaerodynamics) 13 2.5 Daya-daya pada badan kereta (Sumber: www.mne.psu.edu) 15 2.6 Daya kebawah (Sumber : www.gmecca.com) 16 2.7 Aliran sempadan pada plat rata (Sumber :www.engineeringskills.wikidot.com ) 17 2.8 Lapisan sempadan pada kereta (Sumber: www. clubsmartcar.com) 18 2.9 Jenis Aliran (Sumber : www. engineeringskills.wikidot.com) 18 2.10 Prinsip Bernoulli ( Rapid Racer 2009) 20 2.11 Aliran sempadan pada kereta berskala penuh dan model kereta (Sumber: Mohamed adib, A) 21 2.12 Aliran lamina dan bergelora (Sumber : www.blog.nialbarker.com) 22 2.13 Gambaran kelikatan bendalir (Sumber:www. answers.com) 22 3.1 Proses simulasi kajian 30 3.2 Geometri 2-D aerofoil (Sumber: www.mathworks.com) 31

xiii BAB PERKARA MUKA SURAT 3.3 Geometri 2-D sayap kereta lumba 32 3.4 Aliran domain (sumber : www.fluent.com) 33 3.5 Aliran domain CFD (Sumber: www.fluent.com) 33 3.6 Jejaring pada aerofoil (Sumber: www.fluent.com) 34 3.7 Contoh simulasi aerofoil (Sumber : www.elsevier.com/locate/mcm) 35 3.8 Contoh hasil simulasi (Sumber : www.elsevier.com/locate/mcm) 35 4.1 Menunjukkan pada lelaran 327, penyelesaian telah mencapai had terima kriteria yang telah ditetapkan 37 4.2 Plot lelaran 38 4.3 Pekali geseran melawan sudut serang 39 4.4 Pekali aerodinamik melawan sudut serang ( ) bagi halaju 30 m/s 40 4.5 Daya ke bawah melawan sudut serang ( ) 40 4.6 Kontur tekanan pada αα = 16, halaju 30 m/s 42 4.7 Vektor halaju pada αα = 16, halaju 30 m/s 43 4.8 Aliran udara pada bahagian muncung aerofoil αα = 12 43 4.9 Vorteks yang terhasil pada bahagian pinggir mengekor aerofoil pada αα = 12 44 4.10 Pekali seretan melawan sudut tindakan pada halaju 10 m/s 45 4.11 Pekali angkatan (daya ke bawah) pada halaju 10 m/s 47

xiv SENARAI JADUAL BAB PERKARA MUKA SURAT BIL. TAJUK 2.1 Perbandingan antara aerofoil tanpa kesan bumi dan aerofoil dengan kesan bumi 9 2.2 Parameter keserupaan 20 2.3 Nilai pekali tekanan C P 24

xv SENARAI SIMBOL A = Luas Permukaan, m 2 B = Pemalar Kepada Kawasan Luas C D = Pekali Seretan C L = Pekali Tekanan F = Daya Pada Titik Tertentu F d = Daya Seretan H = Entalpi L = Panjang sesuatu kawasan P = Kuasa Q = Kadar Aliran ττ = Tekanan Pada Kawasan Tertentu xx = Jarak Sesuatu Kawasan µ = Kelikatan Dinamik, kg/ms ρ = Ketumpatan, kg/m 3 υ = Kelajuan, m/s = Lapisan Nipis Boundari P = Tekanan statik jejuras bebas V = Halaju jejurus bebas

xvi SENARAI RINGKASAN PERKATAAN CFD = Dinamik bendalir berkomputer F1 = Formula satu Re = Nombor Reynolds 2D = 2-dimensi

xvii SENARAI LAMPIRAN BAB PERKARA MUKA SURAT BIL. TAJUK A Data simulasi 54 B Hasil simulasi 56

1 BAB 1 PENGENALAN 1.1 Aerodinamik Aerodinamik ialah salah satu bidang dinamik bendalir yang lebih menekankan kajian tentang daya serta aliran udara. Penyelesaian kepada masalah aerodinamik biasanya melibatkan pengiraan beberapa ciri-ciri seperti halaju, tekanan, ketumpatan dan suhu sebagai fungsi ruang dan masa. Apabila memahami pola sesuatu aliran, ia akan dapat membantu untuk menentukan daya dan momen dalam aliran yang bertindak pada sesuatu jasad. Tujuan utama aerodinamik pada kereta lumba adalah dari segi kestabilan, keselamatan dan yang paling utama adalah untuk meningkatkan prestasi sesebuah kereta lumba tersebut. Aspek ini biasanya dipengaruhi oleh daya seretan yang dikenakan pada kereta dimana daya seretan ini dipengaruhi oleh pekali seretan, halaju serta luas permukaan hadapan sesebuah kereta lumba. Automotif aerodinamik pula ialah kajian tentang aliran udara pada jasad sesebuah kereta lumba yang sedang bergerak serta bagaimana aliran udara tersebut mempengaruhi pergerakan kereta tersebut. Salah satu aspek yang mempengaruhi aerodinamik sesebuah kereta lumba ialah daya kebawah. Daya kebawah berlaku di kawasan yang bertekanan rendah pada jasad kereta, iaitu dikawasan yang mengalami halaju yang tinggi.

2 Fokus utama aerodinamik pada kereta lumba adalah untuk menghasilkan daya kebawah semaksimum yang boleh serta mencegah daya angkatan yang tidak diperlukan pada kelajuan tinggi dimana ia boleh mengakibatkan kereta terbalik atau terbang. Akan tetapi daya kebawah yang maksimum hanya diperlukan ketika beraksi di litar-litar yang mempunyai banyak selekoh-selekoh tajam contohnya di litar Albert Park, Australia. Manakala ketika berlumba di litar-litar yang mempunyai banyak jalan yang lurus hanya memerlukan daya kebawah yang minimum. Rajah 1.1 dan rajah 1.2, masing-masing menunjukkan litar di Albert Park dan di Monza Itali. Rajah 1.1: Litar F1 di Albert Park, Australia (Sumber: www.trackpedia.com)

3 Rajah 1.2: Litar F1di Monza Itali (Sumber: www. sandeepkram.blogspot.com) Sesebuah kereta lumba boleh mencapai kelajuan maksimum 360 kilometer sejam. Pemandu kereta lumba boleh mengambil selekoh pada kelajuan 160 kilometer sejam. Kelajuan ini mampu untuk membolehkan sebuah pesawat berlepas. Untuk membolehkan sebuah kereta lumba yang berjisim 800 kilogram terus mencengkam di permukaan trek pada kelajuan yang tinggi, ia memerlukan kestabilan. Rajah 1.3: Kereta lumba Ferrari model F60 dan F2008 (sumber:www.sprinterdellacasa.blogspot.com)

4 Untuk memastikan kereta ini stabil pada kelajuan tersebut ia memerlukan sistem aerodinamik yang cukup sempurna supaya aliran udara yang melalui badan dan sayap pada kelajuan tinggi tidak akan menjejaskan pergerakan. Fungsi aerodinamik yang dihasilkan melalui sayap dihadapan dan belakang kereta memastikan kereta itu sentiasa ditekan kebawah apabila melanggar angin dan seterusnya memastikan kestabilan kereta. Prinsip bernoulli mengatakan bahawa jika terdapat aliran udara di sekeliling objek pada kelajuan berbeza, udara yang bergerak perlahan akan mempunyai tekanan yang lebih tinggi berbanding udara yang bergerak pantas. Oleh itu udara yang maksimum perlu melalui bahagian bawah kereta bagi menghasilkan daya kebawah yang maksimum. Semakin laju kereta dipandu, semakin banyak daya kebawah dapat dihasilkan dan menjadikan kereta bertambah stabil seterusnya semakin kuat cengkaman dapat diberikan pada permukaan trek semasa kereta sedang melalui selekoh-selekoh tajam pada kelajuan tinggi. Salah satu cara untuk melihat bagaimana aliran udara mempengaruhi pergerakan kereta ialah dengan melihat taburan tekanan yang berlaku disekeliling kereta tersebut. Kawasan yang mengalami tekanan tinggi ataupun rendah pada jasad kereta akan menunjukkan samada ia mengalami aliran bergelora, aliran laminar ataupun mengalami pemisahan. Ia juga dapat menunjukkan kawasan yang mengalami seretan dan daya kebawah pada jasad kereta. Pemerhatian taburan tekanan boleh dikaitkan dengan pemerhatian kelakuan aliran udara pada sekeliling kereta. Terdapat beberapa kaedah yang diguna pakai untuk melihat kelakuan udara antaranya menggunakan kaedah terowong angin dan dinamik bendalir berkomputer (CFD). Rajah 1.4 : Daya kebawah, prinsip Bernoulli (Sumber: www. racecarengineering.com)