Steam Turbine Generator Packages for Advanced Nuclear Power Plants. Dietmar Struken Olaf Bernstrauch Dr. Reinhard Kloster

Similar documents
SGT5-2000E Latest Service Improvements for Optimized Operations, Maintenance and LNG Fuel Conversion Upgrade Grit Hennig

Siemens Hybrid Power Solutions. Technical and Financial Simulation Tools for High Penetration Hybrid Power Systems, Bangkok June 2015

Extended requirements on turbogenerators

17-IAGT-104 Siemens introduces the SGT-A45 mobile unit: superior performance with trusted technology

STEAM TURBINE MODERNIZATION SOLUTIONS PROVIDE A WIDE SPECTRUM OF OPTIONS TO IMPROVE PERFORMANCE

Pressurized Air Cooled Generators

Power Generation Services Solutions for challenging Markets

Siemens A&D: Energy-efficient Automation for Environmentally Compatible Production Siemens Media Summit

Security of supply A remaining challenge in the energy transition to a greener power generation

Latest Developments in Siemens Large Gas Turbine Portfolio. Matthias Fränkle 8000H Product Manager

ALSTOM WORLD WIDE EXPERIENCE OF STEAM TURBINE RETROFITS ON NUCLEAR POWER PLANTS. May 2015

The Enhanced Platform

Instant performance at the push of a button Boost the opportunities of your plant with SIESTART hybrid solutions.

Ignition Reliability in SGT-750 for Gas Blends at Arctic Conditions. Magnus Persson Combustion Expert / Distributed Generation / Sweden

Charlotte Energy Hub. Restricted Siemens Energy Inc.

Latest Developments in Siemens Large Gas Turbine Portfolio

TURBO GENERATORS BEST QUALITY FOR THERMAL POWER PLANTS

Turbogenerators. With Top Performance for Steam and Gas Applications. Specifically tailored 4-pole Synchronous Turbogenerators

SIGENTICS HV Series S-modyn

The SGT5-8000H proven in commercial operation

Mature technology for 400 MW class CCPP

Power and Distribution Transformers

Valvoline Fourth-Quarter Fiscal 2016 Earnings Conference Call. November 9, 2016

Emerging Trends in Distributed Generation. Elton Hooper Global Marketing Manager Siemens PG DG

KONGSBERG MARITIME. Egil Haugsdal, President

ME High Pressure Stage Casing Pump

SGT-2000E gas turbine series

Screw Compressors. Engineered for the process industry

Energy Independence. tcbiomass 2013 The Path to Commercialization of Drop-in Cellulosic Transportation Fuels. Rural America Revitalization

Beyond 60% - Pioneering H-class Efficiency with World Class Flexibility

Deutsche Bank Auto Industry Conference. January 17, 2018

Managing the Challenge of Cost Effective Lubrication & Prolonging Engine Lifetime

2 Pole 1222MVA Turbo-Generator & 4 Pole 1690MVA Turbo-Generator

Peaking plant Bayonne (NJ/USA) A flexible solution to support a volatile grid based on aero-derivative turbines

Wind is our Element. siemens.com/loher-windgenerators. Answers for industry.

Industrial RB211 Gzero Gas Turbines

CONFERENCE CALL RESULTS Q1 2017

MARIM Steam Turbines. Engineering the Future - since MAN Diesel & Turbo

SGT-2000E gas turbine series

Dr. Chris Dudfield. Chief Technology Officer Intelligent Energy. Sponsors

Wind is our Element. siemens.com/loher-windgenerators. Answers for industry.

Siemens G2 platform 2.3-MW geared wind turbines. Exceptional performance, proven reliability. Answers for energy.

High Speed Gears - New Developments

Variable speed control of compressors. ABB drives control the compressors of the world s longest gas export pipeline

SGT5-8000H/SCC5-8000H 1S. First experience of Commercial Operation at Irsching 4. Russia Power Moscow, March

BMW GROUP TECHNOLOGY WORKSHOPS AUTOMATED DRIVING-DIGITALIZATION MOBILITY SERVICES. December 2016

Hydrogen Co-Firing in Siemens Low NO X Industrial Gas Turbines Adj Professor Jenny Larfeldt Senior Combustor Expert

2.2 Deep-dive E-Mobility

NEWS RELEASE. Continental Aerospace Technologies announces partnership with Piper Aircraft to launch the Pilot 100 training aircraft

Electrovaya Provides Business Update

SUMMARY OF REPORT TO ENERGIAVIRASTO SEPTEMBER Study on the amount of peak load capacity for

Exceeding the standards with MNS

Siemens G2 platform 2.3-MW geared wind turbines. Exceptional performance, proven reliability. Answers for energy.

Industrial Steam Turbines. The comprehensive product range from 2 to 250 megawatts. Answers for energy.

New dimensions. Siemens Wind Turbine SWT Answers for energy.

The Future of Automotive and Industrial Lubricants

MA-III & MA-IIIU MECHANICAL ATOMIZING DESUPERHEATER

Brochure. Wind turbine generators Reliable technology for all turbine applications

MD High Pressure Stage Casing Pump

Bright outlook for improved profitability. Direct drive wind turbine SWT Answers for energy.

Design specifications

Product presentation CPT tech Jason Evershed, ABB Transformer Components, May 21st Dry-type transformers Innovative Technology

Enabling the power of wind. Competence and expertise for wind power customers

Marine generators Proven generators for reliable power on board

Compact, flexible, highest availability. H-compact PLUS

Innovations for the future Energy System. European Utility Week, Amsterdam, 5. October 2017 Michael Weinhold, CTO Siemens Energy Management

GRAND RENEWABLE ENERGY PARK PROJECT DESCRIPTION REPORT. Attachment C. Turbine Specifications

Investor Presentation. November 2018

SUCCESSFUL GAS TO POWER PLANT DEVELOPMENT CTRG, MOZAMBIQUE

The Smart Grid by Siemens.

Enabling Utility Scale PV: Challenges for Glass Makers

Your Partner for the Fossil-Fuel Fired Power Industry

Fluid Catalytic Cracking (FCC) Main Air Blowers and Wet Gas Compressor Trains

Mercedes-Benz: Best Sales Result for the Month of June in Company History Up 13 Percent

Generators for the age of variable power generation

Reliable, economical and safe siemens.com/rail-electrification

MSD Axially Split Multistage Pump

Brochure. Synchronous generators for diesel and gas engines Proven generators reliable power

Lower Operating Costs Higher Availability.

Investor Presentation. January 2019

Kepler Cheuvreux Field Trip. Ingolstadt, November 20, 2018

FAG Active Magnetic Bearing

Brochure. Synchronous generators for steam and gas turbines Proven generators reliable power

Cutting-edge technologies backed by a century of experience

Steam Turbine performance improvement solutions for Indian fleets

2 and 4 poles synchronous generators for orc turbines

Operational risks of old nuclear power plants in Switzerland

SEC --- A KEY EQUIPMENTS SUPPLIER IN CHINA FOR NUCLRAE POWER INDUSTRY

Climate change drivers for a single and smart EU grid

ELECTRICAL PART OF EPR DESIGN, APPLIED STANDARDS AND POSSIBILITY OF COOPERATION WITH POLISH INDUSTRY SUPPLIERS

2003 fourth quarter and full-year results

Annual Press Conference 2011 Results

Mercedes-Benz posts new sales record in November

PROCUREMENT POLICY AND CRITICAL EQUIPMENT SUPPLY. July /

characteristics, including the ability to turn through 180 degrees for an increase in backing thrust.

MNSD-V & MNSD-U. Multiple Nozzle Spray Desuperheater

RIKT 71 Isothermal Turbocompressor

Play it safe Connectors Switches Contactors. New Energy. Special Switchgear Solutions

Power Station Fans. Heavy Duty Axial and Centrifugal Fans. a company of

Siemens D3 platform 3.2-MW direct drive wind turbines. Reduced complexity, increased profitability. Answers for energy.

Transcription:

Steam Turbine Generator Packages for Advanced Nuclear Power Plants Dietmar Struken Olaf Bernstrauch Dr. Reinhard Kloster Siemens AG, Energy Sector Germany POWER-GEN Asia 2010 Singapore November 2-4, 2010 Copyright Siemens AG 2009. All rights reserved. 1 Copyright Siemens AG 2009. All rights reserved.

Steam Turbine Generator Packages for advanced Nuclear Power Plants Despite the current economic crisis and the increasing share of renewable energy, the long term perspective predicts an increasing global demand for nuclear and fossil fired power generation applications. [1] In response to the growing demand of new nuclear power plants, Siemens is implementing and further developing a modular platform of half speed steam turbines and generators covering the most relevant power range from 1000 MWe up to 1900 MWe. The following product will be described in this paper: Siemens Steam Turbine Generator Packages: SST-9000 series for nuclear power plants; 1000 1900 MW Copyright Siemens AG 2009. All rights reserved. 2

Steam Turbine Packages for Advanced Nuclear Power Plants (NPP) The idea of the modular steam turbine platform for nuclear power plants is to keep the steam turbine modules identical for arrangements with vertical and horizontal Moisture Separator / Reheaters (MSR). The SST-9000 series platform concept supports Conventional Island (CI) applications as well as the component business. Due to a combination of H and L turbine modules of different sizes, all relevant site conditions and nuclear island concepts with pressurized water reactors (PWR) and boiling water reactors (BWR) in 50 or 60 Hz application will be covered (see figure 1). The design of these steam turbo sets for new nuclear power plants is based on excellent operational experiences with Siemens KONVOI saturated steam turbo sets together with service and retrofit experience as well as on experience gained during the project execution of the world largest steam turbo set in Olkiluoto 3. Significant design features, e.g. blading for highest performance and shafts in shrunk on disk design are applied and continuously demonstrate excellent operational behavior and resistance against stress corrosion cracking. The latest Siemens 4-pole, 1500 rpm turbo generator fleet offers application ranges from 1100 MVA to 2222 MVA. Besides being designed to have this high capability, the generator is also designed to be very efficient and to exhibit very low mechanical vibration levels. Figure 1: Siemens new SST-9000 steam turbine series (1000 MW 1900 MW) Copyright Siemens AG 2009. All rights reserved. 3

SST-9000 Series Performance The modular steam turbine platform design provides the flexibility to cover various reactor types and sizes from 1000 MWe up to 1900 MWe (2900 to 4600 MWth) as well as different site and cooling water conditions. The turbo set is designed for main steam conditions of up to 80 bar and more than 300 C Siemens Steam turbines have exceeded guaranteed efficiency values in various major service projects. High efficiencies will be achieved by state of the art blade profiles, blade path and turbine design inheriting especially the experience in blade and blade path design. Siemens has delivered the world largest L turbine to Olkiluoto in Finland taking advantage of the extreme cold cooling water conditions at this site. This turbo set has been equipped with a 2200 MVA turbo generator which is probably the largest one. SST-9000 Series Reliability /Availability Siemens steam turbo sets for nuclear power plants have been proven for decades and millions of accumulated operating hours [2]. Siemens steam turbo sets for nuclear power plants have proofed highest reliabilities and availabilities (according to Areva Electricity Production World Championship 1980-2006 see figure 2). With our modular platform concept we will maintain and even improve the reliability and availability of steam turbines for nuclear power plants. The standardized modules are based on proven design features such as shrunk-on-disc-rotors (in the L section) against stress corrosion cracking. The new modular platform design even considers measures against a wide range of hazardous incidents e.g. a high pressure shock on the main steam piping and turbine as a result of a malfunction (late shut off) of one control valve. Copyright Siemens AG 2009. All rights reserved. 4

Figure2: Siemens turbo sets in nuclear power plants and ranking in world electricity generation (source Areva NP) =1. rank respectively highest electricity production per year SST-9000 Series Construction / Service / Maintenance Short installation- and outage times are being achieved due to modularity, automation and optimized processes. The turbo set and its parts are designed to be service friendly. Copyright Siemens AG 2009. All rights reserved. 5

Machine house concepts Siemens has a good long time experience with a vertical MSR (Moisture Separator Reheater) arrangement (see figure 3). We recognize that - more and more - this arrangement concept will be considered for new nuclear power plants. Nevertheless the SST-9000 series even support a horizontal MSR arrangement. (i.e. for Yang Jiang CPR projects in China) In case of a horizontal MSR arrangement the crossover pipe routing will vary. Figure 3: SST-9000 turbo set with vertical MSR arrangement concept The overall length of the turbine including the generator for the shown setup is about 68 m. Copyright Siemens AG 2009. All rights reserved. 6

SST-9000 Design Features The modular platform focus is on half speed design to cover the main market > 1000 MW. Remark: the full speed design reaches its economical limit at about 1100 MW. The half speed design is characterized by double bearing arrangement and well proven shrunk-on-disk rotor with high resistance against stress corrosion cracking (see figure 4). Figure 4: SST-9000 Design features: double shell and double flow design; double bearing concept; shrunk-on-disk rotor The turbo set consists of a double shell, double flow H turbine for main steam conditions of up to 80 bar and more than 300 C. After the moisture separation and reheating (MSR) the steam enters two or three double shell, double flow L turbine cylinders. The half speed design with lower centrifugal forces compared to full speed allows the use of highly alloyed chromium steel for the blades. Siemens introduced a completely 3D-shaped blading for the overall expansion path. The blade design relies on the 3DS (3D Secondary losses reduced) and 3DV (3D Variable reaction) principle. In addition, the L turbines are designed with an optimized blade path and diffuser setup taking into account flow interaction to minimize the exhaust losses. Measurements against corrosion and erosion are applied by advanced high chromium materials, surface coatings and removal of water by suction slots in blades and drains in all extraction lines. In order to fulfill customer requests regarding seismic requirements, a very robust turbo set arrangement with turbine table mounted hot reheat pipes has been designed. Copyright Siemens AG 2009. All rights reserved. 7

SST-9000 High Pressure Turbine (H) The H turbine is of double-flow, double shell design with horizontally split outer and inner casings (see figure 5). High efficiency of the H turbine is assured by an optimum number of turbine stages and small radial clearances between stationary and rotating blades. No remarkable thrust changes during operation are the result of the double flow design with symmetrically arranged stages and nozzles. High flexibility during transient operation and short start-up times are the result of small flanges due to the relatively low pressure in the outer casing. Operational advantages of the rigid mono block H rotor in comparison to flexible rotors are relatively small clearances, no instabilities due to resonance zones during start-up, no power limitation on account of steam whirls and no self-exited oil film vibration can occur. Three modules of H turbines cover the entire range of present nuclear reactor designs with a power output from 2900 to 4600 MWth. Figure 5: SST-9000 H turbine Copyright Siemens AG 2009. All rights reserved. 8

SST-9000 Low Pressure Turbine (L) The L turbine casings are welded structures of horizontally split double flow and double shell design. The L rotor is a shrunk-on disk design especially suited for high power output and big rotor sizes. It has a high safety level against stress corrosion cracking gained by design features, material, quality, stress limitation and control of steam purity (see figure 6). Millions of disk service hours have been accumulated without indication of stress corrosion cracking. [3] The Siemens L shrunk-on disk rotor design is the only design which copes the decisive three factors to avoid stress corrosion cracking: - Steam/condensate impurities (electrical conductivity) - Material susceptibility to stress corrosion cracking (high yield strength) - High tensile stresses at the surface of the disks (stress concentration) In addition to these design measures, special heat and surface treatment processes further increase the resistance of disks to stress corrosion cracking: - Shot peening of certain areas of the disks - Rolling of shaft radii, L blade root radii, etc. - Water spraying after heat treatment - and others Figure 6: SST-9000 Longitudinal section of L turbine Copyright Siemens AG 2009. All rights reserved. 9

The total last stage exhaust area can reach a maximum value of 180 m². This will be achieved by a last stage blade with 1830 mm profile length (see figure 7). Figure 7: SST-9000 Shrunk-on disk L rotor Copyright Siemens AG 2009. All rights reserved. 10

Generator Siemens is one of the leading suppliers of power generators for power plant applications and can provide generators with outputs of up to app. 2200 MVA. The SGen-4000W 2200 MVA turbo generator 4-pole design is fundamentally based on the 1500-1700 MVA Siemens Konvoi turbo generators that have operated with high reliability and availability for decades in nuclear power plants. To meet requirements specified for the generator application in NPP with EPR reactors, well proven features from other 4-pole and 2-pole Siemens generators have been incorporated (see figure 8). The generator is equipped with an all water cooled stator winding while the rotor winding is directly hydrogen-cooled. The stator winding features a 27 kv insulation system. The lead box holds water cooled main leads. The generator will be equipped with a brushless exciter (to be attached to the exciter end). Results from the type test of this turbo generator in August 2008 showed excellent agreement between design and tested values of the generator parameters. All results met or exceeded requirements set by Siemens and by IEC standards. Figure 8: SGen5-4000W (Type 2 Generators for Nuclear Applications) Copyright Siemens AG 2009. All rights reserved. 11

Customer benefits - Highest reliability and availability of steam turbine packages proven by top places in worldwide ranking lists for many years - Certified manufacturing quality and experienced project management - Low life cycle costs due to state-of- the art efficiency - Service friendliness coupled with many years of experience as product- and solution provider - Short installation- and outage times due to modularity, automation and optimized processes References of Siemens half speed steam turbines for nuclear power plants: NPP Stade NPP Biblis A, B NPP Brunsbüttel NPP Philippsburg NPP Unterweser NPP Isar 1, 2 NPP Krümmel NPP Grand Gulf I, II NPP Comanche Peak I, II NPP Grafenrheinfeld NPP Grohnde NPP Gundremmingen B, C NPP Brockdorf NPP Emsland NPP Neckarwestheim II NPP Angra 2, 3 NPP Atucha II NPP Olkiluoto 3 (under construction) NPP Yang Jiang 1-6 (under construction) Copyright Siemens AG 2009. All rights reserved. 12

References: 1. Source: Siemens Energy Sector, GS4 base case 2. Zörner, W.: Sattdampfturbosätze im Konvoi für Kernkraftwerke mit Druckwasserreaktoren. Siemens-Energietechnik 4, Heft 3, 1982 3. Wichtmann, A.: World largest 1715 MW Steam Turbine for Finland s Olkiluoto 3 Nuclear Power Plant Proceedings of the PowerGen 2004 conference, Barcelona 2004 4. Wichtmann, A., Ulbrich A., Ulm, W., Schindler, N.: Advanced nuclear steam turbines for best efficiency and highest power output Siemens AG, 2007 Copyright Siemens AG 2009. All rights reserved. 13

Permission for use The content of this paper is copyrighted by Siemens and is licensed to PennWell for publication and distribution only. Any inquiries regarding permission to use the content of this paper, in whole or in part, for any purpose must be addressed to Siemens directly. Disclaimer These documents contain forward-looking statements and information that is, statements related to future, not past, events. These statements may be identified either orally or in writing by words as expects, anticipates, intends, plans, believes, seeks, estimates, will or words of similar meaning. Such statements are based on our current expectations and certain assumptions, and are, therefore, subject to certain risks and uncertainties. A variety of factors, many of which are beyond Siemens control, affect its operations, performance, business strategy and results and could cause the actual results, performance or achievements of Siemens worldwide to be materially different from any future results, performance or achievements that may be expressed or implied by such forward-looking statements. For us, particular uncertainties arise, among others, from changes in general economic and business conditions, changes in currency exchange rates and interest rates, introduction of competing products or technologies by other companies, lack of acceptance of new products or services by customers targeted by Siemens worldwide, changes in business strategy and various other factors. More detailed information about certain of these factors is contained in Siemens filings with the SEC, which are available on the Siemens website, www.siemens.com and on the SEC s website, www.sec.gov. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those described in the relevant forwardlooking statement as anticipated, believed, estimated, expected, intended, planned or projected. Siemens does not intend or assume any obligation to update or revise these forward-looking statements in light of developments which differ from those anticipated. Trademarks mentioned in these documents are the property of Siemens AG, its affiliates or their respective owners. Copyright Siemens AG 2009. All rights reserved. 14