Spin Rig for NSMS Probe Development and Strain Gage Correlation

Similar documents
MODELING SUSPENSION DAMPER MODULES USING LS-DYNA

ROTATING MACHINERY DYNAMICS

The X-Rotor Offshore Wind Turbine Concept

MGA Research Corporation

Finite Element and Experimental Validation of Stiffness Analysis of Precision Feedback Spring and Flexure Tube of Jet Pipe Electrohydraulic Servovalve

A Test Rig for Evaluation of Thrust Bearings and Face Seals

EXPERIMENTAL INVESTIGATION RESULTS OF A HYBRID CERAMIC AND ACTIVELY COOLED BALL BEARING FOR GAS TURBINES

An MSC.Nastran Primer for Rotordynamics. Chuck Lawrence NASA Glenn Cleveland, Ohio

AXLE HOUSING AND UNITIZE BEARING PACK SET MODAL CHARACTERISATION

DEVELOPMENT AND IMPLEMENTATION OF VFD ACTIVE DAMPING TO SMOOTH TORSIONAL VIBRATIONS ON A GEARED TRAIN

The validation of MBS multi-megawatt gearbox models on a 13.2 MW test rig

RELIABILITY IMPROVEMENT OF ACCESSORY GEARBOX BEVEL DRIVES Kozharinov Egor* *CIAM

STRUCTURAL DESIGN AND ANALYSIS OF ELLIPTIC CYCLOCOPTER ROTOR BLADES

BY: Paul Behnke ITT Industries, Industrial Process. Juan Gamarra Mechanical Solutions, Inc.

ISCORMA-3, Cleveland, Ohio, September 2005

Control of Wind Turbines: A data-driven approach

ON THE DETERMINATION OF BEARING SUPPORT PEDESTAL STIFFNESS USING SHAKER TESTING

A STUDY OF THE CENTRIFUGAL COMPRESSOR DISCHARGE PIPELINE CONSTRAINED OSCILLATION. KIRILL SOLODYANKIN*, JIŘÍ BĚHAL ČKD KOMPRESORY, a.s.

Virtual Durability Simulation for Chassis of Commercial vehicle

CRITICAL SPEED ANALYSIS FOR DUAL ROTOR SYSTEM USING FINITE ELEMENT METHOD

Throwback Thursday :: Bently Nevada Dual Probe Versus Shaft Rider

VALMONT MITIGATOR TR1

Demonstration with optical fibres by Smart Fibres Ltd. Task 15

GT THE USE OF EDDY CURRENT SENSORS FOR THE MEASUREMENT OF ROTOR BLADE TIP TIMING SENSOR DEVELOPMENT AND ENGINE TESTING

Pulley Alignment. Parallel Misalignment

Eddy Current Displacement Transducer Specifications

Experimental Verification of the Implementation of Bend-Twist Coupling in a Wind Turbine Blade

Qualification of an On-Line Bearing and Gear Health Monitoring Technique for In-Service Monitoring of Aircraft Engines and Helicopter Transmissions

Differential Expansion Measurements on Large Steam Turbines

MODEL FREQUENCY ANALYSIS OF AUTOMOTIVE EXHAUST SYSTEM

Failure of a Test Rig Operating with Pressurized Gas Bearings: a Lesson on Humility

Qualifying an On-Line Diagnostic and Prognostic Sensor for Fixed and Rotary Wing Bearings and Gears

OPTIMIZATION STUDIES OF ENGINE FRICTION EUROPEAN GT CONFERENCE FRANKFURT/MAIN, OCTOBER 8TH, 2018

Trouble Shooting in Vertical Fire Hydrant Pump by Vibration Analysis - A Case Study

Bild : Bernhard Mühr German Aerospace Center Flight Operations

IDENTIFICATION OF ABNORMAL ROTOR DYNAMIC STIFFNESS USING MEASURED VIBRATION INFORMATION AND ANALYTICAL MODELING

HELICOPTER TAIL ROTOR ANALYSIS: EXPERIENCE IN AGUSTA WITH ADAMS

Motor Technologies Motor Sizing 101

VIBRATION REDUCTION IN CONVENTIONAL VEHICLES BY INCREASING THE STIFFNESS ON THE CHASSIS FRAME

A dream? Dr. Jürgen Bredenbeck Tire Technology Expo, February 2012 Cologne

Lessons Learned to Improve HCF Demonstration Tests*

Novel Ultra High Temperature Magnetic Bearings for Space Vehicle Systems

Modal analysis of Truck Chassis Frame IJSER

Vibration Fundamentals Training System Hands-On Turnkey System for Teaching Vibration Fundamentals

Transient Speed Vibration Analysis Insights into Machinery Behavior

Eddy Current Displacement Transducer Specifications

Z-Damper Z-Coupled Full System for Attenuation of Vibrations

Investigations into engine transient response due to internal and external dynamic excitations

Clutch Damper High Cycle Fatigue

CHAPTER 6 MECHANICAL SHOCK TESTS ON DIP-PCB ASSEMBLY

THE APPLICATION OF WHOLE ENGINE FINITE ELEMENT MODEL ON CRITICAL SPEED ANALYSIS FOR THE COMMERCIAL AERO-ENGINE ROTOR

Brüel & Kjær and LDS The Perfect Match SHORT FORM CATALOGUE

Proceedings of the 1st Global Power and Propulsion Forum GPPF 2017 Jan 16-18, 2014, Zurich, Switzerland

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114

Propeller Blade Bearings for Aircraft Open Rotor Engine

Abaqus Technology Brief. Prediction of B-Pillar Failure in Automobile Bodies

Machinery Fault Simulator Rotor Dynamics Simulator An invaluable tool for research in rotor dynamics

Design and Analysis of Hydrostatic Bearing Slide Used Linear Motor Direct-drive. Guoan Hou 1, a, Tao Sun 1,b

Global VPI Insulated Indirectly Hydrogen-Cooled Turbine Generator for Single-Shaft Type Combined Cycle Power Generation Facilities

Design and Analysis of Active Electro Hydraulic Thruster Brake for Lifting Machine

PNEUMATIC HIGH SPEED SPINDLE WITH AIR BEARINGS

Chapter 7: Thermal Study of Transmission Gearbox

Design and Test of Transonic Compressor Rotor with Tandem Cascade

Chapter 4. Vehicle Testing

Transient Dynamic Analysis and Optimization of a Piston in an Automobile Engine

Fatigue properties of railway axles: new results of full-scale specimens

Study Of Static And Frequency Responsible Analysis Of Hangers With Exhaust System

Full-Scale 1903 Wright Flyer Wind Tunnel Test Results From the NASA Ames Research Center

MECHANICAL EQUIPMENT. Engineering. Theory & Practice. Vibration & Rubber Engineering Solutions

Load Analysis and Multi Body Dynamics Analysis of Connecting Rod in Single Cylinder 4 Stroke Engine

ACTIVE AXIAL ELECTROMAGNETIC DAMPER

APPLICATION OF A NEW TYPE OF AERODYNAMIC TILTING PAD JOURNAL BEARING IN POWER GYROSCOPE

ONLINE NON-CONTACT TORSION SENSING METHOD USING FIBER BRAGG GRATING SENSORS AND OPTICAL COUPLING METHOD. Yoha Hwang and Jong Min Lee

Virtual Product Development (VPD) deployed on Durability

New Robotic Technologies for Inspecting Two Pole Electric Generators while the Rotor Remains in Place

Contents 1) Vibration situation for CGC Large Steam Turbine 2) Root cause analysis and evaluation method 3) Countermeasure with result

Evaluation of the Fatigue Life of Aluminum Bogie Structures for the Urban Maglev

The Effects of Damage and Uncertainty on the Aeroelastic / Aeroservoelastic Behavior and Safety of Composite Aircraft

Validation of a FAST Model of the Statoil- Hywind Demo Floating Wind Turbine

Vibration Analysis of an All-Terrain Vehicle

Generators for the age of variable power generation

STRUCTURAL BEHAVIOUR OF 5000 kn DAMPER

Digital Copper Corrosion Measurement Vs. Visual Rating _ Incorporating New Technologies To Method Development

Development of Trailing Edge Flap Technology at DTU Wind

Composites in rotorcraft Industry & Damage Tolerance Requirements

The Digital Simulation Of The Vibration Of Compressor And Pipe System

Modeling of Engine Block and Driveline Vibration as Affected by Combustion

Design and Field Test of a Full Scale Performance Augmentation Network (PAN) 2014 GMRC Research Project

DESIGN AND ANALYSIS OF CRANKSHAFT FOUR CYLINDER

GAS TURBINE BLADE AND DISK CRACK DETECTION USING TORSIONAL VIBRATION MONITORING: A FEASIBILITY STUDY

Quasi-Static Finite Element Analysis (FEA) of an Automobile Seat Latch Using LS-DYNA

Mechatronic Design and Control of a Waste Paper Sorting System for Efficient Recycling

Developments in Modern Aero-Engines to minimize the Impact of Bleed Air

Passive Vibration Reduction with Silicone Springs and Dynamic Absorber

ni.com Sensor Measurement Fundamentals Series

Analysis of Spur Gear Box Using Software tool Ansys

Curve Lubrication and Locomotive Adhesion Projects Presenter: Prof. Colin Cole

WP5 - Computational Mechanics B5 - Temporary Vertical Concrete Safety Barrier MAIN REPORT Volume 1 of 1

SOME INTERESTING ESTING FEATURES OF TURBOCHARGER ROTOR DYNAMICS

ENHANCED ROTORDYNAMICS FOR HIGH POWER CRYOGENIC TURBINE GENERATORS

Transcription:

Spin Rig for NSMS Probe Development and Strain Gage Correlation Terry Hayes, Bryan Hayes, Tom Tibbals, Steve Arnold Aerospace Testing Alliance (ATA) Arnold Air Force Base, TN Joel Davenport Univ. Of Tennessee Space Institute Tullahoma, TN 58 th International Instrumentation Symposium 3 rd Tip Timing Workshop San Diego, CA 5-6 June 2012 Air Force Materiel Command Arnold Engineering Development Center Arnold Air Force Base, TN 37389 1

Standards Certification Education & Training Publishing Conferences & Exhibits AEDC Spin Rig for NSMS Probe Development and Strain Gage Correlation Terry Hayes, Bryan Hayes, Tom Tibbals, Steve Arnold Aerospace Testing Alliance (ATA) Arnold Air Force Base, TN Joel Davenport University of Tennessee Space Institute Tullahoma, TN

ARNOLD ENGINEERING DEVELOPMENT CENTER CONTRACTOR AEROSPACE TESTING ALLIANCE Ground Test Facility Diverse Test Units Aircraft System, Aeropropulsion, and Space and Missile Testing Government and Commercial customers Continuously Changing test objectives 3

Outline Introduction to NSMS Need for Probe Development Spin Rig AEDC Spin Rig Description AEDC Spin Rig Design AEDC Spin Rig Applications Probe Comparison Repeatability AEDC Spin Rig Improvement Areas Summary 4

Introduction to NSMS Non-contact Stress Measurement System Utilizes case mounted probes to measure blade tip deflection Measures blade tip deflection for all blades on a rotor Measurement is intrusive to the case but is non-contact to the blade Measures integral and non-integral vibrations plus static deflections Conversion from deflection to stress can be performed with a detailed Finite Element Model (FEM) of the blade 5

Introduction to NSMS NSMS Applications NSMS is primarily used as an analysis tool to acquire data for analysis of blade vibrations Provides blade vibration data like strain gages Amplitude, Frequency, Phase, Campbell Diagrams NSMS is secondarily used as a safety of test data system that is considered critical instrumentation NSMS has the advantage of obtaining data for every blade on a rotor which increases the chance of detecting an anomaly in the bladed rotor NSMS as a safety of test system has been utilized on more engine tests in recent months and seems to be gaining traction for future engine tests NSMS probes have a longer life span than strain gages and can be removed/repaired without engine rebuild 6

Need for Probe Development Spin Rig NSMS, as with any measurement system, must have quality sensors to provide quality data Probe Designs are driven by cost constraints and performance requirements (size, bandwidth, environment) Repeatable methods to quantify sensor performance are needed Method must be inexpensive but still provide realistic environment for probe comparisons 7

AEDC Spin Rig Description Objective The objective of the spin rig is to provide a smooth running rotor dynamics laboratory environment for NSMS software and hardware development without the safety and cost constraints of running an engine Provide inexpensive and rapid assessment Probe performance and check-out Probe comparison to a reference probe response NSMS SG correlation for deriving NSMS limits from SG component tests Tip deflection FEM model stress (could drive the FEM model with the tip deflections to establish limits) NSMS hardware validation and comparisons NSMS algorithm validation and comparisons 8

AEDC Spin Rig Description Rig originally part of a SpectraQuest Machinery Fault Simulator Rig provides a single shaft rotating system and motor with controller Rig has been highly modified (next slide) Rotating rig basic cost ~$6000 9

AEDC Spin Rig Design Main Rotor Drive Motor Exciter Motor (exciter rotor and concentric shaft removed) Main Rotor 10

AEDC Spin Rig Design Exciter rotor and concentric shaft installed 11

AEDC Spin Rig Design Able to adapt to NSMS needs without destroying fault simulator Handle 7 and 10.5 rotors Easy to align probes for either Leading RPM exciti Edge, N mag RPM rotori Trailing EO nat f exciti Slope 60 N Edge or Mid-chord probe locations mag Dual shaft for blade excitation control Excites +/- nodal diameters RPM excit 200 150 100 50 0 f nat N mag RPM nat.lo RPM nat.hi max RPM excit RPM nat 28.32 28.3 28.28 f excit 28.26 Exciter control RPM showing constant excitation frequency. 50 28.24 0 500 1 10 3 1.5 10 3 2 10 3 RPM rotor At RPM rotor < RPM nat, RPM e xcit is counter-rotation to RPM rotor At RPM rotor > RPM nat, RPM e xcit is same direction as RPM rotor 12

AEDC Spin Rig Design Static Deflection Rotor 13

AEDC Spin Rig Design 36 Blade Rotor 36 Blade Rotor 10.5 Diameter 4 Blade Length.375 W x.100 T 1018 Carbon Steel FEA Frequencies (at 0 rpm) 1B: 200 Hz 2B: 1257 Hz 3B: 3520 Hz 1T: 4116 Hz 1B (axial): 752 Hz Stress/Deflection ratio: 261 psi/mil 14

Frequency (Hz) Frequency (Hz) AEDC Spin Rig Design Integral Excitation Example Strain Gage NSMS Rotor Speed Rotor Speed 36 Blade Rotor 7E Excitation with excitation rotor held fixed 15

Frequency (Hz) Frequency (Hz) AEDC Spin Rig Design NIV Excitation Example Strain Gage NSMS Rotor Speed Rotor Speed 36 Blade Rotor ~210 Hz NIV Excitation with excitation rotor being spun as function of main rotor speed to maintain constant excitation frequency 16

AEDC Spin Rig Applications Probe Comparison Using Static Deflection Rotor Optical Unfocused Spot Probe Comparison 5 µm transmit fiber 100 µm transmit fiber Multi-type Probe Comparison Optical Spot Optical Line Eddy Current Using 36 Blade Mistuned Rotor Optical Spot Eddy Current Repeatability Using 36 Blade Mistuned Rotor Using EDM Machined 36 Blade Rotor 17

1 73 145 217 289 361 433 505 577 649 721 793 865 937 1009 1081 1153 1225 1297 1369 1441 1513 1585 1657 1729 1801 1873 1945 2017 2089 2161 2233 2305 2377 2449 2521 2593 2665 2737 2809 2881 2953 3025 3097 1 32 63 94 125 156 187 218 249 280 311 342 373 404 435 466 497 528 559 590 621 652 683 714 745 776 807 838 869 900 931 962 993 1024 1055 1086 1117 1148 1179 1210 1241 1272 1303 1334 Mils Mils Probe Comparison - Static Deflection Rotor 5 um vs. 100 um Spot Probe 120 Optical Spot Probe 5 um Blade Width 120 Optical Spot Probe 100 um Blade Width 115 115 110 105 100 95 90 Blade 1 Blade 2 Blade 3 Blade 4 Blade 5 Blade 6 Blade 7 Blade 8 Blade 9 Blade 10 Blade 11 Blade 12 Blade 13 Blade 14 Blade 15 Blade 16 110 105 100 95 90 Blade 1 Blade 2 Blade 3 Blade 4 Blade 5 Blade 6 Blade 7 Blade 8 Blade 9 Blade 10 Blade 11 Blade 12 Blade 13 Blade 14 Blade 15 Blade 16 85 85 Rev Revs Revs Actual thickness: 126 mils 18

Mils Mils RPM Mils Mils RPM Mils Mils RPM Probe Comparison Static Deflection Rotor Blade Width Optical Spot Probe Blade Width Optical Line Probe Blade Width 140 349 140 349 348.5 120 348 100 347.5 347 80 346.5 60 346 345.5 40 345 20 344.5 0 344 0 20 40 60 80 100 120 140 160 180 200 Revs Eddy Current Probe Blade Width 140 349 348.5 120 348 100 347.5 347 80 346.5 60 346 345.5 40 345 20 344.5 0 344 0 20 40 60 80 100 120 140 160 180 200 Revs Revs Blade 1 Blade 2 Blade 3 Blade 4 Blade 5 Blade 6 Blade 7 Blade 8 Blade 9 Blade 10 Blade 11 Blade 12 Blade 13 Blade 14 Blade 15 Blade 16 RPM Blade 1 Blade 2 Blade 3 Blade 4 Blade 5 Blade 6 Blade 7 Blade 8 Blade 9 Blade 10 Blade 11 Blade 12 Blade 13 Blade 14 Blade 15 Blade 16 RPM 348.5 120 348 100 347.5 347 80 346.5 60 346 345.5 40 345 20 344.5 0 344 0 20 40 60 80 100 120 140 160 180 200 Revs Revs Probe Comparison Blade 1 Blade 2 Blade 3 Blade 4 Blade 5 Blade 6 Blade 7 Blade 8 Blade 9 Blade 10 Blade 11 Blade 12 Blade 13 Blade 14 Blade 15 Blade 16 RPM True thickness 126 mils Speed Held to within 1% of target 19

Mils Mils Probe Comparison Static Deflection Rotor Blade Spacing 1390 1385 Blade Spacing Actual spacing: 1374 mils 1380 1375 1370 Optical Spot Eddy Current Optical Line 1365 1360 1355 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Blade # Blade # 20

Tip Deflection (mils p-p) Tip Deflection (mils p-p) Frequency (Hz) Frequency (Hz) Tip Deflection (mils p-p) Tip Deflection (mils p-p) Probe Comparison Mistuned Rotor Eddy Current vs. Optical Spot 215 100 210 90 80 205 70 200 60 195 50 190 40 30 185 20 180 10 175 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Blade # Blade # eddy optical eddy optical 100 Blade 23 Amplitude Tracking 90 80 70 60 50 40 30 20 10 0 1480 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 Rotor Speed Rotor Speed (RPM) eddy optical 21

Probe Development Spin Rig Repeatability To identify how well responses are consistent during separate test runs Temperature and Atmospheric Pressure noted Two rotors 36 Blade Mistuned Rotor 36 Blade EDM Machined Concentrated on the Mistuned rotor 22

Frequency (Hz) Repeatability 36 Blade Rotor Natural Frequencies Blade Natural Frequency - 1st Bend 215 210 205 200 195 190 185 180 175 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Blade # NSMS Blade # EDM Mistuned 23

Repeatability 36 Blade Rotor Mode Shapes 1B 2B

Repeatability Mistuned Rotor 7E/1B Blade Waterfall 25

Blade Tip Deflection (mils (mils p-p) p-p) Repeatability Mistuned Rotor 7E/1B Blade Tip Deflection 7E Excitation Disk 600 500 400 300 200 100 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Blade Number NSMS Blade # 3/10 160509 3/10 160730 3/10 160957 3/10 161226 3/16 131337 3/16 131554 3/16 131814 3/16 132036 26

Frequency (Hz) Repeatability Mistuned Rotor 7E/1B Blade Frequency 7E Excitation Disk 220 215 210 205 200 195 190 185 180 175 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Blade Number NSMS Blade # 3/10 160509 3/10 160730 3/10 160957 3/10 161226 3/16 131337 3/16 131554 3/16 131814 3/16 132036 27

Standard Deviation of Blade Tip Deflection (%) Repeatability Mistuned Rotor 7E/1B Blade Tip Deflection Standard Deviation 10 % 9 8 7 6 5 % 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 NSMS Blade # 28

Standard Deviation of Frequency (%) Repeatability Mistuned Rotor 7E/1B Blade Frequency Standard Deviation 1 % 0.9 0.8 0.7 0.6 0.5 % 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 NSMS Blade # 29

Repeatability Mistuned Rotor 1B NIV Blade Waterfall 30

Blade Tip Deflection Blade Tip (mils p-p) p-p) Repeatability Mistuned Rotor 1B NIV Blade Tip Deflection 7E Excitation Disk 800 700 600 500 400 300 200 100 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 # NSMS Blade # 3/16 142145 3/16 142603 3/16 143027 3/17 102849 3/17 103306 3/17 103737 31

Frequency (Hz) Repeatability Mistuned Rotor 1B NIV Blade Frequency 7E Excitation Disk 250 240 230 220 210 200 190 180 170 160 150 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 # NSMS Blade # 3/16 142145 3/16 142603 3/16 143027 3/17 102849 3/17 103306 3/17 103737 32

Standard Deviation of Blade Tip Deflection (%) Repeatability Mistuned Rotor 1B NIV Blade Tip Deflection Standard Deviation 25 % 20 15 % 10 5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 NSMS Blade # 33

Standard Deviation of Frequency (%) Repeatability Mistuned Rotor 1B NIV Blade Frequency Standard Deviation 1 % 0.9 0.8 0.7 0.6 0.5 % 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 NSMS Blade # 34

Repeatability Mistuned Rotor NSMS Data with Strain Gage Data One channel telemetry system was installed on shaft to acquire a single channel of strain gage data on NSMS blade 18 Gage located 0.16 from blade root Stress/deflection ratio for the 1 st bending mode was determined by modeling and experimentally Model: 261 psi/mil Push Test: Blade 18: 155 psi/mil Blade 25: 224 psi/mil Blade 27: 272 psi/mil 35

Blade Tip Deflection Blade Tip (mils p-p) p-p) Repeatability Mistuned Rotor 7E/1B Blade Tip Deflection w/sg 7E Excitation Disk 500 450 400 350 300 250 200 150 100 50 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 # NSMS Blade # nsms 131633 nsms 131914 nsms 132139 36

Blade Stress (Ksi) (Ksi) Repeatability Mistuned Rotor 7E/1B Blade Stress w/sg 7E Excitation Disk 50 45 40 35 30 25 20 15 10 5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 # NSMS Blade # nsms 131633 nsms 131914 nsms 132139 sg 131633 sg 131914 sg 132139 37

Blade Stress (Ksi) (Ksi) Repeatability Mistuned Rotor 7E/1B Blade Stress w/sg 7E Excitation Disk (zoomed) 50 45 40 35 30 25 20 15 10 5 0 17 18 19 # NSMS Blade # nsms 131633 nsms 131914 nsms 132139 sg 131633 sg 131914 sg 132139 38

Frequency (Hz) Repeatability Mistuned Rotor 7E/1B Blade Frequency w/sg 7E Excitation Disk 220 210 200 190 180 170 160 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 # NSMS Blade # nsms 131633 nsms 131914 nsms 132139 sg 131633 sg 131914 sg 132139 Freq @ 1671 RPM 39

Frequency Frequency (Hz) Repeatability Mistuned Rotor 7E/1B Blade Frequency w/sg 7E Excitation Disk (zoomed) 213.8 213.7 213.6 213.5 213.4 213.3 213.2 213.1 213 212.9 212.8 212.7 212.6 212.5 212.4 17 18 19 # NSMS Blade # sg 131633 sg 131914 sg 132139 nsms 131633 nsms 131914 nsms 132139 Freq @ 1671 RPM 40

Standard Deviation of Blade Stress (%) Repeatability Mistuned Rotor 7E/1B Blade Stress w/sg Standard Deviation 25 20 15 % sg 10 5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 NSMS Blade # 41

Standard Deviation of Frequency (%) Repeatability Mistuned Rotor 7E/1B Blade Frequency w/sg Standard Deviation 1.4 1.2 1 0.8 0.6 % sg 0.4 0.2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 NSMS Blade # 42

Blade Tip Deflection Blade Tip (mils p-p) p-p) Repeatability Mistuned Rotor 1B NIV Blade Tip Deflection w/sg 7E Excitation Disk 800 700 600 500 400 300 200 100 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 # NSMS Blade # nsms 142615 nsms 143051 nsms 143523 43

Blade Stress (Ksi) Blade Tip Deflection (mils p-p) Repeatability Mistuned Rotor 1B NIV Blade Stress w/sg 7E Excitation Disk 90 80 70 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 # NSMS Blade # nsms 142615 nsms 143051 nsms 143523 sg 142615 sg 143051 sg 143523 44

Blade Stress (Ksi) Blade Tip Deflection (mils p-p) Repeatability Mistuned Rotor 1B NIV Blade Stress w/sg 7E Excitation Disk (zoomed) 50 48 46 44 42 40 38 36 34 32 30 17 18 19 # NSMS Blade # nsms 142615 nsms 143051 nsms 143523 sg 142615 sg 143051 sg 143523 45

Frequency (Hz) Repeatability Mistuned Rotor 1B NIV Blade Frequency w/sg 7E Excitation Disk 220 210 200 190 180 170 160 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 # NSMS Blade # nsms 142615 nsms 143051 nsms 143523 sg 142615 sg 143051 sg 143523 46

Frequency (Hz) Repeatability Mistuned Rotor 1B NIV Blade Frequency w/sg 7E Excitation Disk (zoomed) 216.2 216 215.8 215.6 215.4 215.2 215 214.8 214.6 214.4 214.2 214 213.8 213.6 213.4 213.2 213 212.8 212.6 212.4 212.2 212 211.8 211.6 211.4 211.2 211 210.8 210.6 210.4 17 18 19 # NSMS Blade # sg 142615 sg 143051 sg 143523 nsms 142615 nsms 143051 nsms 143523 47

Standard Deviation of Blade Stress (%) Repeatability Mistuned Rotor 1B NIV Blade Stress w/sg Standard Deviation 16 14 12 10 8 % sg 6 4 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 NSMS Blade # 48

Standard Deviation of Frequency (%) Repeatability Mistuned Rotor 1B NIV Blade Frequency w/sg Standard Deviation 1 0.9 0.8 0.7 0.6 0.5 % sg 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 NSMS Blade # 49

Frequency (Hz) Blade Frequency (Hz) Repeatability 1B/7E Machined Rotor 207 206 205 204 203 202 NSMS ACCEL #1 NSMS ACCEL #2 NSMS ACCEL #3 Modal Freq + Stiff 201 200 199 0 5 10 15 20 25 30 35 40 Blade # NSMS Blade # 50

Tip Deflection (mils p-p) Mils Frequency FREQ RPM (Hz) Machined Rotor Other Responses 2B/16E and Axial 18ND 18 1400 16 1200 14 1000 12 10 8 800 600 2B Peak_AMP Axial Peak_AMP 2B Frequency Axial Frequency 6 400 4 2 200 0 0 0 5 10 15 20 25 30 35 40 Blade # NSMS Blade # 51

AEDC Spin Rig Improvement Areas Current motor and rotor system Motor is too slow (would like 10K RPM Motor is too small (larger rotor would increase tip velocities commensurate with modern fans) Cannot perform rapid transients (HP limited) Bearing problems (the main shaft ball pass frequency is noticeable in NSMS data; thrust bearings don t last long) Teardown for rotor changes is time consuming to get correct alignment Belt vibes are noticed in NSMS data Probes installation near base not possible Limits probe placement 52

Summary The AEDC Spin Rig has proven to be valuable for Integral and Non-integral excitation of rotor blades Probe Comparison Repeatability Testing The Spin Rig is somewhat limited to small, low speed applications due to its size A Second generation spin rig is needed to address current rig shortcomings 53

Conclusion Questions???? 54