Introduction to Closed-Loop Control Overview

Similar documents
Fincor Series 2230 MKII/2240

RCP200 Series Motor Controls. Instruction Manual Model RCP Model RCP Model RCP202-BC1 Model RCP202-BC2 Model RCP205-BC2

Troubleshooting Bosch Proportional Valves

TROUBLESHOOTING AND MAINTAINING ELECTRONIC KILN CONTROL SYSTEMS

MaxPak Plus Analog DC V S Drive

Fincor DC Drives. Flexible & Powerful TYPICAL APPLICATIONS. Conveyor Rugged. Extruder Reliable. Conveyor Simple. Mixer Flexible

NEMA 1, NEMA 4X and Chassis Mount Adjustable Speed Controls for DC Motors

DC Variable Speed Drive Panel

Application Note CTAN #127

Model ER-340XRi / ER-680XRi / ER-1220XRi DC drive product manual HG iss 9 1

CENTROIDTM. AC Brushless Drive. Product Spec Sheet

Installation & Operation Manual

Servo and Proportional Valves

Graham. Vari Speed S1000 Instruction Manual. TRANSMISSIONS, Inc. Installation, Operation and Maintenance Manual

A flexible, reliable and affordable drive for 1/4 through 2 HP DC applications

Step Motor. Mechatronics Device Report Yisheng Zhang 04/02/03. What Is A Step Motor?

1/6 through 5 HP Adjustable Speed, DC Motor Controllers

5001TCP SPEED CONTROLLER

2122H. Arm Field Arm Field 1/8-1/ / /8-1/ / / /

5001TCP SPEED CONTROLLER

MANTECH ELECTRONICS. Stepper Motors. Basics on Stepper Motors I. STEPPER MOTOR SYSTEMS OVERVIEW 2. STEPPING MOTORS

Tachometer (RPM Feedback) General

Parr Instrument Company

Standard VVMC-1000 or VFMC-1000 controls, dispatched by an M3 Group System, allow group configurations with 64 landings and as many as 12 cars.

DC3N Non-Regenerative DC Drives

SAFTRONICS DF8 PLUS SERIES

A6Z OPERATING MANUAL

DENISON HYDRAULICS Jupiter 500 Driver Card Series S

Installation and Maintenance Instructions. World Leader in Modular Torque Limiters. PTM-4 Load Monitor

Technical Explanation for Inverters

Ch 4 Motor Control Devices

CONTROL FEATURES AVAILABLE OPTIONS

Model 340i / 680i / 1220i DC drive product manual HG iss 8 1

VLT AutomationDrive for marine winch applications

Programmable Logic Controller. Mat Nor Mohamad

TRAC-3 TENSION READOUT AND CONTROL

INSTALLING, OPERATING AND MAINTAINING THE MODEL D1028 COMPUTER INPUT BI-DIRECTIONAL GENERATOR FIELD REGULATOR INSTRUCTION MANUAL # S-225

Model 930 Power Control System Instruction Manual


EE6351 ELECTRIC DRIVES AND CONTROL UNIT-1 INTRODUTION

A3Z OPERATING MANUAL

APPLICATION NOTES VALVE CHECKER M

Temperature Controllers

Electric Motor Controls BOMA Pre-Quiz

Temperature Controllers

User Guide 4Q kW D.C.Motor Regenerative Speed Controller. Part Number: Issue Number: 3

Question Number: 1. (a)

Baldor Motor Basics Part 11

Maintenance Manual 13 AMPERE POWER SUPPLY 19A704647P1-P3. Mobile Communications LBI-31801C

MAGNETIC MOTOR STARTERS

SDC,Inc. SCR-Regenerative Ac Drive

MAGPOWR Spyder-Plus-S1 Tension Control

three different ways, so it is important to be aware of how flow is to be specified

AC Motors vs DC Motors. DC Motors. DC Motor Classification ... Prof. Dr. M. Zahurul Haq

CHAPTER THREE DC MOTOR OVERVIEW AND MATHEMATICAL MODEL

2. AC SERVICE AND MOTOR REQUIRED 1. ENCLOSURE REQUIRED

SALDET SALES & SERVICE, INC. CLINTON TOWNSHIP, MICHIGAN

SHORT-STOP. Electronic Motor Brake Type G. Instructions and Setup Manual

SP4 DOCUMENTATION. 1. SP4 Reference manual SP4 console.

MELLTRONICS DRIVES. Single Phase Regenerative DC Drives ¼ HP TO 7½ HP INSTALLATION OPERATION MAINTENANCE

Understanding the benefits of using a digital valve controller. Mark Buzzell Business Manager, Metso Flow Control

AGV5-1, AGV5-2 FORM AGV5 OM 11-02

Tension Control Inverter

ELECTRIC SCHEMATICS LS1 LS2. "1532ES / 1932ES" Service & Parts Manual - ANSI Specifications March 2008 Page 5-9 ART_2236 ART_2243

SECTION MOTOR CONTROL

American Traction Systems

Note 8. Electric Actuators

Dealing with customer concerns related to electronic throttle bodies By: Bernie Thompson

Example of Combining Different Types of Heater Control. Heater control. Temperature Controller

SINAMICS GM150 IGCT version

1. An inverter can be programmed to stop an AC motor quickly by enabling

Control Systems Application Guide

SINAMICS SM150. 4/2 Overview. 4/2 Benefits. 4/2 Design. 4/6 Function. 4/8 Selection and ordering data. 4/8 Options

MOTOR TERMINAL CONNECTIONS

INSTALLATION AND OPERATING INSTRUCTIONS REGENERATIVE DRIVE FULL WAVE 4 QUADRANT REV S/LT NLT R33 AC LINE FUSE ARMATURE F2 FUSE TB2

ENGINE GOVERNING SYSTEMS

Starting System DS-102 Series 200. Elmatik AS P.O.Box 309 NO-3471, Slemmestad T F

Continental Hydraulics Installation Manual CEM-AA-A

Electronic Dynamo Regulator INSTRUCTION MANUAL. COPYRIGHT 2014 CLOVER SYSTEMS All Rights Reserved

INSTALLATION AND OPERATING INSTRUCTIONS REGENERATIVE DRIVE MODEL KBRG-255 (5HP) KB Part No FULL WAVE 4 QUADRANT FWD ACCEL REV ACCEL FWD CL

Inverter control of low speed Linear Induction Motors

PRODUCT SERIES: DPG-2100

Module 2 CONTROL SYSTEM COMPONENTS. Lecture - 4 RELAYS

Quick Start Guide of CV50- ControlVIT Series

Loadcell Tension Control

DMC mA Positioner

CN0055 & CN0055B DC to DC NEGATIVE RESISTANCE SPEED CONTROL

Series 2330MKII. Single-Phase. Adjustable-Speed. DC Motor Controllers (1/6 3 HP) BOOK 0958-B

Kelly HSR Series Motor Controller with Regen User s Manual V 3.3. Kelly HSR Opto-Isolated Series Motor Controller with Regen.

LNII Series Motor and Drives

Applications: Conveyors, machine tools and other applications requiring adjustable speed. Mult. Sym.

Stearns Heavy Duty Clutches & Brakes... Rugged, Reliable

Tension Control Systems

EDG6000 Electronic Digital Governor

715B CONTROL SERIES. Instruction Manual Line Voltage DC Brushless Motor Control CONTROLS. Phone (317) Fax (317)

J1 Plug Pin Identification

TCwin AND THE STC THROTTLE CONTROLLER... 3 INSTALLATION... 3 SOFTWARE INSTALLATION... 3 DEFINITION OF TERMS... 4 MAP EDITING KEYS... 4 DIAGNOSTICS...

Horns, Wiper, and Washer System Operation

Functions provided by measuring relays in railway equipment

Electronic Dynamo Regulator INSTRUCTION MANUAL. COPYRIGHT 2014 CLOVER SYSTEMS All Rights Reserved

Transcription:

CLC1 Introduction to Closed-Loop Control Overview DC Motor Drive - Simplified Block Diagram Speed Set Point (Reference) PS Com + Summing Point PS Com + Gain Operational Amplifier Error Signal Firing Circuit & SCR Bridge Basics of Closed-Loop Control In Open-Loop control, no feedback loop is employed and system variations which cause the output to deviate from the desired value are not detected or corrected. A Closed-Loop system utilizes feedback to measure the actual system operating parameter being controlled such as temperature, pressure, flow, level, or speed. This feedback signal is sent back to the controller where it is compared with the desired system setpoint. The controller develops an error signal that initiates corrective action and drives the final output device to the desired value. In the DC Motor Drive illustrated above, the tachometer provides a feedback voltage which is proportional to the actual motor speed. Closed-Loop Systems have the following features: + Tachometer DC Motor PS Com Bridge Negative A Reference or Set Point that establishes the desired operating point around which the system controls. The process variable signal that tells the controller at what point the system is actually operating. A Controller which compares the system Reference with the system and generates an Error signal that represents the difference between the desired operating point and the actual system operating value. A Final Control Element or mechanism which responds to the system Error to bring the system into balance. This may be a pneumatically controlled valve, an electronic positioner, a positioning motor, an SCR or transistor power inverter, a heating element, or other control device. System Tuning Elements which modify the control operation by introducing mathematical constants that tailor the control to the specific application, provide system stabilization, and adjust system response time. In process control systems these tuning elements are: Proportional, Integral, and Derivative (PID) functions. In electrical systems, such a generator voltage regulators and motor drives, typical tuning adjustments include: Gain, the amplification factor of the controller error amplifier, which affects both system stability and response time; Stability which provides a time-delayed response to feedback variations to prevent oscillations and reduce system hunting ; an adjustment which controls the amplitude of the feedback signal that is balanced against the system set-point; Boost which is used in AC and DC motor drives to provide extra low-end torque; and IR Compensation which provides a control signal that compensates for the IR Drop (Voltage Drop) which occurs in the armature windings in DC machines due to increased current flow through the armature. Sheet 1

CLC2 Introduction to Closed-Loop Control Polarity / Safety / Signal Ranges Polarity In closed-loop systems, feedback signals may be either Regenerative (in-phase) or Degenerative (out-of-phase). Regenerative feedback exists when the feedback polarity or phase relationship acts to aid or boost the main control signal. If the amplitude of the feedback is sufficiently large oscillations will be developed. (This is the principal used in the operation of radio frequency oscillators.) When regenerative feedback is used in control systems, such in the case of IR Compensation, the effect of excessive feedback must limited, otherwise instability will result. Degenerative feedback, on the other hand, will dampen oscillations and produce system stability. In degenerative feedback, the phase relationship or polarity of the feedback signal acts to cancel or reduce that of the main control signal. polarity is critical and proper feedback polarity must be determined when commissioning equipment which consists of separate control and feedback devices. This is not a concern to the installer of a packaged system where the control and feedback devices are pre-wired as a complete system. In the example DC Motor Drive, shown on the previous page, an operational amplifier configured as a summing inverter is utilized. This configuration requires that the reference and feedback signals be of the opposite polarity because the amplifier output (error) will be the mathematical sum of the input voltages (here the reference is positive and the feedback is negative). When a differential amplifier is used, the reference and feedback will be of the same polarity because the amplifier output (error) will be the mathematical difference of the two input voltages. Safety Considerations Caution! Care must be taken when troubleshooting any closed loop system to prevent the reversal, disconnection or loss of the feedback signal. Improper feedback may result in system run-away because the control reference is no longer being balanced by the process variable feedback signal, causing the error signal to go to maximum. For example, loss of feedback on a generator voltage regulator may force the field to maximum causing the generator output to rise to a dangerously-high voltage. Loss of feedback on a motor drive may cause the motor to over-speed. In a process control system, loss of feedback could cause a process control valve to close or go to the full-open position and upset the system. Fail-Safe Position The position to which a system will revert in the event of a component or other failure is an important consideration for the system design engineer. For example, pneumatic control valves are designated as air-fail-open or air-fail-closed to define the position to which the valve will move on a loss of control air. This fail-safe position is determined by the arrangement of the spring in the actuator. The fail-safe position of control relays is also a consideration. On loss of control power, or in the event that a relay coil fails, the relay will drop-out. By selecting the appropriate contact/s, either Normally Open (NO) or Normally Closed (NC), it may be possible to design a system that will shut-down in an orderly or non-catastrophic manner. Semiconductor components may fail either shorted or open making fail-safe analysis difficult. Analog Signal Ranges Analog Process Control Equipment typically utilizes the following signal ranges: 4-20 milliamp DC current signals 1-5 volt DC signals ( 4-20 ma through a 250 ohm resistor provides a 1-5 volt drop. ) 3-15 PSI pneumatic pressure signals ( Other ranges are also sometimes employed. ) Closed-loop control systems may be either analog or digital. Often, a system will contain a mix of both types of equipment. For these systems to interface properly, circuitry that provides Analog-to-Digital (A/D) and Digital-to-Analog (D/A) signal conversion is employed. Sheet 2

CLC3 Overview Author s Note This wind generator, along with the associated control system, is one that I have designed and built, and with which I am continuing to experiment. There are several closed-loop control systems involved in the operation of this machine and I thought it might be of interest to review the positioning system as an application of closed-loop control. Future Electrician s Notebook articles will focus on more conventional control applications. The basic building construction is patterned after a Dutch-Style post mill where the upper house is free to turn a full 360 o on a supporting post that runs up through the center of the mill. The pyramid-shaped base is stationery and contains the control system. The upper story is balanced on a large thrust bearing, and contains the 5 kw DC generator, speed-increasing jack-shaft, electric brake, blade speed and vibration sensors, and the associated generator and brake controls. The house is automatically turned into the wind for maximum blade torque using a DC positioning motor on the tail-pole of the machine. This is an upwind machine (the blades face into the wind). The blades and hub were salvaged from a refinery cooling tower; blade diameter is 19 feet. (As noted below, the blade size/design is inadequate and this set is slated for replacement.) The Seeker II Flexible cables ( SO cord ) run between the controls in the base and the generator which is mounted on the revolving frame, so no slip rings are required for power or control. The house rotation is limited to 360 o by a travel limit switch. If the travel limit stops the positioning operation before the blades find the wind, the positioning motor reverses and the system searches in the opposite direction. The 5 kv, 125 VDC generator is connected to electric heat loads only; no inverter or battery storage is currently installed. Underground cables run between the generator and the house and shop buildings and a completely redundant set of 125 volt electric heaters has been installed. This eliminates the need for complicated and costly transfer or isolation switches. Electric heat costs represent a major part of our electric utility bill and when this system becomes fully operational some of this expense will be offset. Although all the wind generator electrical systems are complete and function properly, the present blades do not produce enough torque to drive a loaded generator. Research on longer and improved blades is on-going. Also under consideration is the installation of a low RPM generator (more poles) to permit reducing the gear ratio. The present generator drive ratio (a combination of a chain and belt drives) is 1: 25 to increase the blade speed to the 1725 RPM required for the generator. Since Horsepower = Torque x RPM, this should be a viable solution. About the Name Since this machine will track the wind, we have christened it The Seeker II. The original Seeker is an historic Dutch windmill built early in seventeenth century. It began service as a drainage mill and in 1671 was converted to an oil mill, producing oil from ground nuts. Located in the Zaan region of Holland, it is still operational, an outstanding testament to the skill of the Dutch millwrights. Sheet 3

CLC4 System Block Diagram & Operation System Block Diagram Wind Shaft Thrust Bearing Wind Direction Sensor Reference Digital Potentiometer Wire-Wound Potentiometer Error Detector Pulse Width & Phase Detector House Position Sensor PLC CPU IN OUT Machinery Deck Bedplate Tail-Pole (Stairs) Reference One-Shot One-Shot Direction Error Speed Reference Signal to Drive Single-Quadrant SCR Drive Direction Command OL Trip Speed Error Drive Enable DC Drive Positive Blades Torque Tube Support Pole Truck Drive Wheel DC Drive Neg DC MTR OL Rotation Limit Cable Tension Limit DC Positioning Motor Reversing Contactor Legend Red dashed lines - mechanical linkage Blue dashed lines - Programmable Logic Controller (PLC) input. Green dashed lines - Programmable Logic Controller (PLC) output. System Operation Assume the wind speed is sufficiently high to permit generation. Assume also that the machine is not facing directly into the wind. 1. The Reference One-Shot develops a pulse which is proportional to the wind vane position (wind direction). 2. The One-Shot develops a pulse which is proportional to the position of the machine. 3. The Error Detector Circuit determines the phase relationship of the pulses, calculates the error of the loop, and determines the direction in which the machine must move to correct the error. 4. The Programmable Logic Controller (PLC) detects the error, selects the appropriate direction, picks the motor direction contactor, and, after programmed time delay, issues a Drive Enable command to the SCR Drive. This programmable time delay is the main tuning adjustment of the loop and provides stability by ignoring rapid fluctuations in the wind direction sensor and eliminates hunting. 5. When the SCR Drive receives the Drive Enable command from the PLC, it looks at the Speed Reference Signal from the Error Detector and sets the speed of the position motor based on the amount of system error. In this way a large error is corrected quickly and then the motor is slowed down as it approaches the final position. (This concept is used in NC and CNC machine tools in X-Y axis positioning.) 6. The positioning motor drives the house around toward the wind and as it moves it changes the position of the feedback potentiometer reducing the system error. When the feedback signal matches the reference signal, the positioning motor stops with the blades facing directly into the wind. Sheet 4

CLC5 Reference / / PLC Equipment Wind Vane Positioning system reference input. A permanent magnet on vane closes reed switches located in base of the sensor. These switches input a digital display on the operator control panel and the digital potentiometer (D/A converter) on the Wind Direction Card. House Position Sensor Positioning system feedback input. Unit is a 360 degree rotation, wirewound potentiometer which is attached to the channel iron bedplate of the revolving house. The shaft of the pot is driven by a toothed timing belt that is held in a fixed position by a rod that passes through a hole in the bedplate and attaches to the top of the support pole. (The shaft of the potentiometer is stationary and the case turns as the house revolves.) Wind Sensors Located on nearby building. Potentiometer This is an old Heathkit Weather Station that was modified for the application. Anemometer (wind speed indicator) Permanent magnets on cup assembly close a reed switch that inputs the Wind Speed Card and the digital display on the operator control panel. Wind Shaft 3 inch diameter 10 foot long stress-proof steel. Timing Belt Potentiometer leads to control. Potentiometer housing locking screw permits position zero adjustment. Electronic Controls Card Cage Opto Isolators Power Supply Wind Speed Card Digital Potentiometer Wind Direction Card House Position Card Position Error Logic Blade Speed Control Logic Metering and Misc. Logic Generator Control Logic Control Panel Door Operator interface metering and controls. Both manual and automatic operation are possible. Sensor Termination Strip PLC Modicon Micro 84. One of the first Programmable Logic Controllers. A low-cost, highly reliable, and very easy-to-program system, but physically large by today s standards. It has only 2 kb of memory but is quite satisfactory for this application. The windmill control uses 32 inputs and 24 outputs. Hand-Held Programmer Displays ladder logic on a four-rung LCD display. PLC Control Cabinet Spare Program Pack Sheet 5

CLC6 Positioning Motor and Drive Components Stairs to Revolving Frame Right-Angle Gearbox 18:1 Ratio Wooden Slip-Joint Enables Truck to move up and down as required for slight variations in sidewalk elevation. Drive Wheel Drive Motor Power Cable Attached to stairway. Drive Chain and Sprocket Windmill Truck 1/4 HP 90 VDC Positioning Motor This SCR DC Drive is itself a closed-loop system. The speed reference signal is compared to the counter-emf of the motor to hold the speed of the motor constant under varying load conditions. High Speed Rectifier Fuse Adjustment Potentiometers Max Speed Main Speed SCR Pulse Transformer Min Speed Gain Current Limit Position Motor SCR Drive Control Board Drive Motor Thermal Overload Heater DC Drive also has electronic current limit protection. The OL heater is used as a current shunt - the voltage drop across the heater element is an input to the current limit circuitry on the drive board above. Direction Contactors Energized by PLC Drive Motor Reversing Contactor Sheet 6