DEVELOPMENT OF NEW MANIPULATORS FOR PWR AND VVER VESSEL INSPECTION. Authors: Mats Wendel and Torbjörn Sjö, DEKRA Industrial, Sweden

Similar documents
DEKRA Industrial. Torbjörn Sjö, Mats Wendel and Jorge Benitez, Business Area Nuclear

SUBMARINE NOZZLE PIPE MANIPULATOR. R. Zeilinger, G. Hünies, F. Mohr AREVA NDE-Solutions/ intelligendt Systems & Services GmbH

EXAMINATION OF NOZZLE INNER RADIUS AND PIPING FROM THE OUTER SURFACE

Visual Inspection of Reactor Vessel Head Penetration Nozzles

Deployment of Weld Inspection Manipulator for RPV upper shell welds of TAPS-1&2

INSPECTION TECHNIQUE FOR BWR CORE SPRAY THERMAL SLEEVE WELD

Robotics and Manipulators for Reactor Pressure Vessel Head Inspection

The Tecnatom s news bulletin JULY

B. HOLMQVIST Nuclear Fuel Division, ABB Atom AB, Vasteras, Sweden

ESTABLISHMENT OF ULTRASONIC TESTING IN UNIQUE DESIGNED PARTIAL PENETRATION END PLUG OF HEADER IN BOILERS.

ULTRASONIC TESTING OF RAILWAY AXLES WITH PHASED ARRAY TECHNIQUE EXPERIENCES DURING OPERATION

ULTRASONIC EXAMINATION

p h a s e d - a r r a y t e c h n o l o g i e s w w w. m 2 m - n d t. c o m

SECTION XI. Subject Interpretation File No. Cases N and N-729-2, -3141(c)...XI

Improving the Quality of NDT in the Rail Sector through the Introduction of Advanced Technologies and NDT Means

NRC Non-Destructive Examination Research

Operational risks of old nuclear power plants in Switzerland

DACON INSEPECTION SERVICES CORROSION UNDER SUPPORT

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER E: THE REACTOR COOLANT SYSTEM AND RELATED SYSTEMS

EMERGENCY DIESEL GENERATOR SETS FOR NUCLEAR POWER PLANTS

ARTICLE 5 ULTRASONIC EXAMINATION METHODS FOR MATERIALS

New Robotic Technologies for Inspecting Two Pole Electric Generators while the Rotor Remains in Place

High-Speed Ultrasonic Testing of ERW Pipes

Annex to the Accreditation Certificate D-PL according to DIN EN ISO/IEC 17025:2005

Oconee Nuclear Station ALLOY 600 REPAIRS 1EOC23

QUARTER SCALE ROBOTICS POSITOING SYSTEM

Figures T Basic Calibration Block T Straight Beam Calibration Blocks for Bolting

Algeria, November 2016

THE APPLICATION OF LONG RANGE GUIDED ULTRASONICS FOR THE INSPECTION OF RISER PIPES

RDT&E BUDGET ITEM JUSTIFICATION SHEET (R-2 Exhibit) June 2001

Current Status of Ultrasonic Examination Performance Demonstration in Korea

ADVANCED INSPECTION TECHNIQUE FROM INSIDE SURFACE FOR DISSIMILAR METAL WELD OF STEAM GENERATOR NOZZLE

Comprehensive Management of Hydrocarbon Storage Tanks Ageing

Prevention vs. Reaction The Importance of Asset Integrity

TSC INSPECTION SYSTEMS

TOFD on Weld Seams. New Prestandard CEN/TS : professional customer focused cost aware. ECNDT 2006 Berlin, September 2006 We.2.7.

Blade Testing. In production

Component Asset Management with Ultra-High Pressure Cavitation Peening

Special Projects. Pump Modules. Fluid complete solutions from the KRAL brand. s i n c e PUMPS.

The role of CVR in the fuel inspection at Temelín NPP

A Recommended Approach to Pipe Stress Analysis to Avoid Compressor Piping Integrity Risk

Enhanced Process Efficiency Hot gas expander replacement

Detection and evaluation of rail defects with nondestructive

Gated and assembled in one moulding cycle

DEMO FUSION CORE ENGINEERING: Blanket Integration and Maintenance

Ultrasonic Inspection Equipment for Al-Fin Insert Diesel Pistons

Sabertooth A Hybrid AUV/ROV offshore system. Jan Siesjö Chief Engineer

Health Monitoring of Rotating Equipment from Torsional Vibration Features

PM/ECCM Course Description and Outline

Urea Reactor Height Extension to Increase Capacity

Double Marine Gearboxes Type NDS(H)(Q)(L)

ABB MEASUREMENT & ANALYTICS. Predictive Emission Monitoring Systems The new approach for monitoring emissions from industry

Ultrasonic Production Monitoring of Small Diameter ERW Pipes

WELD CRAWLER TM HIGHLY FLEXIBLE & ADAPTABLE SCANNER FOR WELD INSPECTIONS TRANSFORMING WELD INSPECTIONS.

KSTAR Assembly. National Fusion Research Center, Daejeon, Korea

NOVEL LIGHTWEIGHT SOLUTIONS FOR HIGHLY LOADED POWER TRANSMISSION COMPONENTS

Principles of NDT Methods on Railway Axles

SNS Operation and Upgrade Plans

(3) 2-Loop B&W PWR s Unit 1- Commissioned 7/5/1973 Unit 2- Commissioned 9/9/1974 Unit 3- Commissioned 12/16/ MW per unit for a total of 2880 MW

Annex to the Accreditation Certificate D-PL according to DIN EN ISO/IEC 17025:2005

Alstom Supplier Requirements for Scottish Supply Chain Opportunities FOR

First Quality Solutions

Development of Seamless Shift for Formula One Car

GUIDELINE FOR GLOVEBOXES THIRD EDITION AGS-G001 February 2007

INTEGRATION OF THE MODULAR DUAL COOLANT PB-17LI BLANKET CONCEPT IN THE ARIES-CS POWER PLANT

Annex to the Accreditation Certificate D PL according to DIN EN ISO/IEC 17025:2005

M.E. Barker, T.E. Holt, D.R. LaValle PaR Systems, Inc. 899 Highway 96 West, Shoreview, MN 55126

Low and medium voltage service. Power Care Customer Support Agreements

Status of HPLWR Development

Defect Monitoring In Railway Wheel and Axle

PIPELINE PIGS types of mechanical pigs. Pig length (inches) = 1 and ½ pipeline diameters.

DECOMMISSIONING CONSORT CONTROL ROD REMOVAL

Tanks: Informal Working Group on the inspection and certification of tanks

Forsmark 12. S3K Applications. Thomas Smed US User Group Meeting Arizona, October 2008

Inline-Process and Quality Control of Spotwelds of Car Bodies - Ultrasonic Sensors integrated in Resistance Welding Electrodes

F.I.R.S.T. Robotic Drive Base

Post Irradiation Examinations of High Performance Research Reactor Fuels

SVENSK STANDARD SS-EN Järn och stål Ultraljudprovning av H-profil med parallella flänsar samt IPE-profil

Wayside Energy Storage Project: Progress Update & Lessons Learned

Gas turbine outage Sept 2012 Bad things happen to a well planned outage

About us. 3 ARMOTECH s.r.o.

Plastic Ball Bearing Design Improvement Using Finite Element Method

IAE-101: Electrical Fundamentals for Non-Electrical Personnel

Steampath Services Capabilities. The Turbine-Generator Engineering & Outage Services Company

ARI 300 Tank Car and Underframe Structural Inspection Bulletin

Experimental study of DHC. cladding and implications. dry storage conditions

REGULATORY CONTROL OF NUCLEAR FUEL AND CONTROL RODS

Key-Words : Eddy Current Testing, Garter Spring, Coolant Channels, Eddy Current Test Coil Design etc.

ASME BPV XI NUCLEAR INSERVICE INSPECTION STANDARDS COMMITTEE HANDOUT

NON-INTRUSIVE INSPECTION OF ABOVE GROUND STORAGE TANKS AND ITS USE IN A TANK RBI PROGRAM

PIPINGSOLUTIONS, INC.

Fuse: On-wing engine inspection

Sandwich nozzle hot test on Vulcain 2 engine.

Aoý. 0Constellation Nuclear. Calvert Cliffs Nuclear Power Plant. February 27, U. S. Nuclear Regulatory Commission Washington, DC 20555

STAMANT-Safety Pipe. System Description SMR

Ultrasonic Transit Time Flow Measurement for Coker Furnace Feed

CHAPTER 25. SUBSTANTIVE RULES APPLICABLE TO ELECTRIC SERVICE PROVIDERS.

Pulsed Eddy Current (PEC) Probe Catalog. December 2017

ITER Shield Blanket Design Activities At SWIP

Broetje-Automation Company Standard Structural component specification for welded parts

Transcription:

DEVELOPMENT OF NEW MANIPULATORS FOR PWR AND VVER VESSEL INSPECTION Authors: Mats Wendel and Torbjörn Sjö, DEKRA Industrial, Sweden ABSTRACT TIME, has been the key word for the inspection of Ringhals PWR vessels in Sweden. By using three parallel manipulators we succeeded to fulfill the customer demand with a complete inspection of all vessel welds, nozzles and bottom nozzles in only 5 days. This is probably a world record! The new manipulator concept has been used twice in the reactors Ringhals 3 and 4 with outstanding performance. The next planned use will be in Ringhals 2 and in Beznau, Switzerland. Our goal was also to minimize the time in the reactor containment with the possibility to prepare the equipment in only one day for a full vessel exam.furthermore, the manipulators are neutrally buoyant in water and work in parallel with ROV functions totally independent of each other and with minimum support from the crane and service bridge. No pre-installation in the vessel is needed. All control systems are identical and will thus increase the redundancy. The NDE technique has been qualified according to the ENIQ and the Swedish rules. The data gathered will be sufficient for detection, characterization and sizing. The following objects were inspected using ET, UT and VT: BMI Nozzle and J-groove weld Inlet and Outlet Nozzles, Nozzle to shell welds, inner radius and connection welds Circumferential and longitudinal shell welds including the bottom dome Areas with UCC (Under Clad Cracks) Radial support A new concept for vessel head penetrations including probes will be presented. Another concept has been developed for the VVER market. The VVER equipment can perform a vessel exam in only 8 days considering the demand to start the inspection with the water level below the nozzles. The equipment consists of one vessel wall manipulator and two nozzle ROV manipulators. Development of tooling Fig. 1 All three inspection tools working in parallel at Ringhals 4 PWR DEKRA Industrial AB Mechanized Inspection was awarded a large order from Ringhals AB. The order included development of scanners and manipulators for the inspection of the RPV Shell Welds, Nozzle Welds and BMI Welds (Bottom Mounted Instrumentation nozzles) as well as visual testing of Radial Support Welds in all three PWRs at Ringhals (units 2, 3 & 4). The order was won in tough competition and the decisive factors were the suggested inspection strategy, inspection technique and manipulator concepts, as well as resources, competencies and a strong reputation to deliver as promised. All manipulators have been designed to minimize the time in the reactor vessel and also in the reactor containment. The equipment can be prepared in only one shift for a full vessel exam. 533

Furthermore, the equipment will work in parallel totally independent of each other and with minimum support from the crane and service bridge. No pre-installation in the vessel is needed. The main principle with all equipment is to make them neutral buoyant in water and also to use thrusters for independent movement. The NDE technique has been qualified according to the ENIQ and the Swedish regulations. The data gathered will be sufficient for detection, characterization and sizing. The personnel resources cover all needs for development of manipulators and NDT, as well as probe design. All equipment was tested at the Ringhals test facility before the first outage performance. Fig. 2 The nozzle tool during set up at Ringhals Fig. 3 The inspection team All: 1 PM, 3 Coordinators, 1 QA/QC Vessel: 3 x (1 Operator/Data Acq., 1 Tooling) Nozzles: 3 x (1 Operator/Data Acq., 1 Tooling) BMI: 3 x (1 Operator/Data Acq., 1 Tooling) Analyst: 2 x (3 Analyst (one per insp.obj.) + 1 Super Analyst) Total: 31 people Fig. 4 Commissioning of the equipment at Ringhals THE EQUIPMENT Three completely new equipment and one replica tool were designed with the focus to allow a parallel inspection in the vessel without obstructing or delaying the other ongoing inspections. SKIDBLADNER, Manipulator for Vessel Inspection, SÄRIMNER, Manipulator for Nozzle Inspection GUNGNER, Manipulator for BMI Nozzle and J-groove weld DRAUPNER, Replica tool for BMI J-groove weld The concept is based on the idea of lightweight and remotely operated vehicles, ROVequipment, independent of cranes and platforms. The manipulators for nozzle inspection and the manipulator for bottom nozzles can freely swim between the different objects, while the vessel inspection manipulator keeps on scanning in segments. Inspection of the vessel wall is performed in sectors with a repositioning of the manipulator after that all welds in the sector is inspected. 534

Fig. 5 The vessel manipulator Skidbladner in lower position Fig. 6 The vessel manipulator in upper position Fig. 7 The Nozzle inspection manipulator Särimner Fig. 8 The BMI nozzle manipulator Gungner 535

Fig. 9 The Nozzle inspection manipulator Särimner swimming Fig. 10 The BMI manipulator Gungner Fig. 11 The moulding VT tool Draupner Fig. 12 The moulding VT tool Draupner NDE Vessel welds qualification Table 1 Qualification defects for vessel welds 536

Fig. 13 Vessel welds The vessel welds were inspected with pulse echo & ET probes, manufactured by DEKRA. Nozzle area qualification Table 2 Qualification defects for nozzles Table 3 Detection targets for nozzles Fig. 14 Nozzle to safe end welds 537

Fig. 15 RPV to Nozzle welds The nozzles were inspected with pulse echo, TOFD and ET probes manufactured by DEKRA. BMI demonstration Table 4 Detection targets for bottom nozzles The BMIs were inspected with combination of pulse echo, TOFD and ET probes, manufactured by DEKRA. Test blocks were supplied by EPRI, Ringhals AB and SQC. Fig. 17 Fusion face inspection, with reportable defects 538

Fig. 16 BMI with inspection areas Fig. 18 DEKRA BMI probe with, 0 TRL, 2x TOFDT and ET Fig. 19 Ellipse program to ensure coverage of the weld and HAZ. Fig. 20 Probe skew relative to the weld, depending on nozzle geometry. Vessel Head Penetrations The new concept for VHP inspection functions with two separate end effectors working in parallel. A probe with 4 functions has been qualified. One end effector at a time can reach out from under the vessel head for change of probes during operation of the other. 4 different functions in the same probe: TOFD for circumferential defects TOFD for axial defects ET driver/ pickup Transducer at 0 for thickness measurement (lack of fusion indications at the interface of the J-groove weld and tubing outside surface) The VHP equipment will reduce the inspection time by using the parallel approach as well as giving full information when using the new blade probe. 539

Fig. 21 Vessel Head Penetration, during inspection and in probe change mode Fig. 22 Vessel Head Penetration Blade Probe VVER A new set of tooling is now under development for the VVER market where demands exist to perform part of the inspection with the water level under the nozzles during part of the outage. There is also a demand to perform extensive visual inspection as well as ultrasonic and eddy current testing. The concept is similar to our PWR solution and works with two different nozzle manipulators. The concept is based on the idea of lightweight and remotely operated vehicles, ROVequipment, independent of cranes and platforms. The manipulators for nozzle inspection can freely swim between the different objects. The VVER equipment can perform a vessel exam in only 8 days considering the demand to start the inspection with the water level below the nozzles. PERFORMANCE The task was to perform a qualified inspection of all vessel welds including nozzles, bottom nozzles and VT of the radial supports for all 3 PWRs in Ringhals Sweden. Technique development and qualification efforts were performed during a 2 year period and the first use was in June 2010. The second inspection was made in September 2010 on record time. The full scope of inspection was performed in just 5 days. In September 2012 the third inspection will take place at Ringhals 2. The inspection scope covered: Vessel Circumferential and longitudinal shell welds including the bottom dome Areas with UCC (Under Clad Cracks) Nozzles Inlet and Outlet Nozzles, Nozzle to shell welds, Inner radius and connection 540

Fig. 23 VVER Vessel Inspection Fig. 24 VVER Nozzle Inspection welds Areas with UCC (Under Clad Cracks) Bottom Nozzles BMI Nozzle, J-groove weld and lower attachment weld, 50 nozzles in total Radial Supports Visual testing of Radial Support Welds The next inspection projects with the vessel manipulators will be the feed water nozzles in a BWR in Oskarshamn, Sweden and the vessel in the PWRs in Beznau, Switzerland. The existing qualification will be adapted to fit the requirements in Switzerland. The inspection scope in Beznau: Vessel Shell welds Nozzles Inlet and Outlet Nozzles, Nozzle to shell welds, Inner radius and connection welds Safety Injection Nozzles Attachment weld Brackets Reactor outside Ligaments and core bearing area Internal supports 541