COMPARISON OF STANDARD EXHAUST AND RACING EXHAUST ON MACHINE PERFORMANCE. Arranged by: BONDAN SENOAJI PRAKOSA D

Similar documents
COMPARISON OF STANDARD EXHAUST AND RACING EXHAUST ON MACHINE PERFORMANCE

EXPERIMENT AND ANALYSIS OF MOTORCYCLE EXHAUST DESIGN ABDUL MUIZ BIN JAAFAR

Journal of Mechanical Engineering Science and Technology ISSN: Vol. 2, No 2, November 2018, pp

EFFECT OF EXHAUST TEMPERATURE ON THE PERFORMANCE OF A DIESEL ENGINE WITH EGR

THE RELATIONSHIP OF SAFETY AND COMPONENTS OF TOLL ROADS SERVICE

Effect of The Use of Fuel LPG Gas and Pertamax on Exhaust Gas Emissions of Matic Motorcycle

INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION. Department of Electrical Engineering, Politeknik Negeri Padang, Indonesia *

DESIGN & OPTIMIZATION OF EXHAUST MUFFLER & DESIGN VALIDATION

SCIENTIFIC PROCEEDINGS 2014, Faculty of Mechanical Engineering, STU in Bratislava Vol. 22, 2014, pp , DOI:10.

TECHNOLOGY AND INNOVATION MANAGEMENT AWARENESS AND PRACTISE A CASE STUDY IN BRITISH AMERICAN TOBACCO GSD (KL) SDN BHD

ENERGY BALANCE STUDY FOR 4 STROKE GASOLINE ENGINE ANALYSES ABDULLAH SHARIFFUDIN MOHAMAD BACHELOR OF MECHANICAL ENGINEERING UNIVERSITI MALAYSIA PAHANG

Conversion of Heat Energy from Cooling Water of Diesel Engine to Electrical Energy Using Thermoelectric Generator

DEVELOPMENT OF COMPRESSED AIR POWERED ENGINE SYSTEM BASED ON SUBARU EA71 MODEL CHEN RUI

DISC BRAKE SQUEAL GENERATION DURING DRY AND WET CONDITIONS MUNEER NAJI WAHEED UNIVERSITI TEKNOLOGI MALAYSIA

The Effect of Efi to the Carbureted Single Cylinder Four Stroke Engine

8 th International Symposium TCDE Choongsik Bae and Sangwook Han. 9 May 2011 KAIST Engine Laboratory

NUMERICAL ANALYSIS OF ELASTOHYDRODYNAMIC LUBRICATION WITH BIO-BASED FLUIDS DEDI ROSA PUTRA CUPU UNIVERSITI TEKNOLOGI MALAYSIA

Experimental Study of Incorporating Fins on the Rotor Blades of Savonius Wind Turbine

The Experimental Study of the Plateau Performance of the F6L913 Diesel Engine

DEVELOPMENT OF ELECTRICAL DISCHARGE MACHINING POWER GENERATOR MUHD ABU BAKAR BIN MUHD RADZI

ROBUST ELECTRONIC BRAKE FORCE DISTRIBUTION IN HYBRID ELECTRIC VEHICLES YEOH WEI CHERNG UNIVERSITI TEKNOLOGI MALAYSIA

MODIFICATION OF DIESEL ENGINE TO PRODUCER GAS ENGINE

EXHAUST EMISSION OF SINGLE CYLINDER DIESEL ENGINE BY USING TIRE DISPOSAL FUEL MOHD. HERZWAN BIN HAMZAH

GLYCERINE PITCH FROM GLYCERINE CONCENTRATION PROCESS AS ALTERNATIVE FUEL FOR BOILER OPERATIONS KIRUBAHARAN A/L MERAPAN

Template for the Storyboard stage

This item is protected by original copyright

Comparative Study Of Four Stroke Diesel And Petrol Engine.

The influence of thermal regime on gasoline direct injection engine performance and emissions

Simulation of Performance Parameters of Spark Ignition Engine for Various Ignition Timings

The Effect of diesel Fuel Mixed Water in Engine Performance and Emission Annisa Bhikuning 1), M.Hafnan 1) 1) Mechanical Engineering Department,

THE STUDY ON THE IMPACT OF CONSTANT POWER LOAD TO A DIRECT CURRENT POWER SYSTEM DRIVEN BY PHOTOVOLTAIC, WIND - THYRISTOR RECTIFIER AND LINEAR SOURCES

OPTIMAL ANTI LOCK BRAKING SYSTEM WITH REGENERATIVE BRAKING IN HYBRID ELECTRIC VEHICLE DANA DEHGHANI UNIVERSITI TEKNOLOGI MALAYSIA

ENGINES ENGINE OPERATION

GT-Power Report. By Johan Fjällman. KTH Mechanics, SE Stockholm, Sweden. Internal Report

D.Baswaraj, 2 P.V.Krishna Murthy, 3 K.Prasanna Lakshmi 1 Jayaprakash Narayan College of Engineering, Dharmapur, Mahabubnagar.

The Effect of Spring Design as Return Cycle of Two Stroke Spark Ignition Linear Engine on the Combustion Process and Performance

FINITE ELEMENT (FE) MODEL OF BRAKE INSULATOR IN REDUCING BRAKE SQUEAL NOISE FOR MOTORCYCLES MUNDHER FADHIL ABDULRIDHA UNIVERSITI TEKNOLOGI MALAYSIA

Noise Reduction in a Reciprocating Compressor by Optimizing the Suction Muffler

CONTROL OF INVERTED PENDULUM-CART SYSTEM BASED ON FUZZY LOGIC APPROACH HASRULNIZAM BIN HASHIM

TUNING MAZDA B6 ENGINE FOR SPORTS COMPETITIONS

Jurnal Bahan Alam Terbarukan

Effect of Helix Parameter Modification on Flow Characteristics of CIDI Diesel Engine Helical Intake Port

EVALUATION OF ROAD MEDIAN CONSTRUCTION ON JALAN HAYAM WURUK KM JBR KM JBR JEMBER

CHARACTERISTICS AND CONSUMPTION OF FUEL OIL SOLAR OIL WITH HAZELNUT OIL IN DIESEL MOTOR

Back pressure analysis of an engine muffler using cfd and experimental validation

TEST BENCH EVALUATION OF HEAVY VEHICLE SUPPLEMENTARY BRAKE SYSTEMS

The influence of fuel injection pump malfunctions of a marine 4-stroke Diesel engine on composition of exhaust gases

SpiritPFC Torque/Horsepower Comparison Dynamometer Test Date: 5/7/2006

Conversion of Naturally Aspirated Genset Engine to Meet III A Norms for Tractor Application by Using Turbocharger

CURRENT CARRYING CAPABILTY OF POLYESTER CARBON COATED FOR ELECTRICAL CONDUCTOR MOHD HAIDIR BIN MANAF UNIVERSITI TEKNOLOGI MALAYSIA

EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST

Design of Piston Ring Surface Treatment for Reducing Lubricating Oil Consumption

Experimental Investigation of Acceleration Test in Spark Ignition Engine

MODELING OF ELECTRIC DOUBLE LAYER CAPACITOR FATHIN ASILA BINTI MOHD PABLI UNIVERSITI TEKNOLOGI MALAYSIA

VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE

Design & Development of Regenerative Braking System at Rear Axle

Exhaust Gas Waste Heat Recovery and Utilization System in IC Engine

KINEMATICAL SUSPENSION OPTIMIZATION USING DESIGN OF EXPERIMENT METHOD

COMBUSTION AND EXHAUST EMISSION IN COMPRESSION IGNITION ENGINES WITH DUAL- FUEL SYSTEM

Multi Body Dynamic Analysis of Slider Crank Mechanism to Study the effect of Cylinder Offset

Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System

Effect of Thermal Barrier Coating on Piston Head of 4-Stroke Spark Ignition Engine

AT 2303 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering Question Bank

(v) Cylinder volume It is the volume of a gas inside the cylinder when the piston is at Bottom Dead Centre (B.D.C) and is denoted by V.

Available online at ScienceDirect. Procedia Environmental Sciences 23 (2015 ) 86 92

DEVELOPMENT HYDROGEN GAS GENERATOR FOR DUAL FUEL ENGINE USING YULL BROWN METHOD AHMAD ZAKI BIN ZAIMANI UNIVERSITI MALAYSIA PAHANG

Analysis of Parametric Studies on the Impact of Piston Velocity Profile On the Performance of a Single Cylinder Diesel Engine

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends

CHARACTERISTICS OF A RECIPROCATING PUMP FOR LOW-COST SUSTAINABLE WATER HYDRAULIC TECHNOLOGY DEMONSTRATOR

THE INFLUENCE OF THE EGR RATE ON A HCCI ENGINE MODEL CALCULATED WITH THE SINGLE ZONE HCCI METHOD

MODEL UPDATING FOR FUN KART CHASSIS MOHD SAHRIL BIN MOHD FOUZI UNIVERSITI MALAYSIA PAHANG

A STUDY ON VARIOUS TYPE OF ROTOR DISC BRAKE USING FAE ANALYSIS MOHD AFFENDI BIN IBRAHIM

SAMPLE STUDY MATERIAL

Investigation of Fuel Flow Velocity on CNG Engine using New Injector

X4v2 Testing Update 19 th November 2007

CRANKCASE ANALYSIS FOR TWO-STROKE SPARK IGNITION ENGINE TING SWEE KEONG

Design and Development Of Opposite Piston Engine

PREDICTION STUDIES FOR THE PERFORMANCE OF A SINGLE CYLINDER HIGH SPEED SI LINEAR ENGINE MOHD NORDIN BIN ZAZALLI

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine

Effect of Varying Load on Performance and Emission of C.I. Engine Using WPO Diesel Blend

OPTIMAL LOCATION OF FACTS FOR ATC ENHANCEMENT BY USING SENSITIVITY ANALYSIS RAIMON OMAR AL SHAIKH SALEM

Influence of Commercial Gasoline Samples on the Performance Characteristics of Si Engines

WITH BIO LUBRICANTS JATROPHA OIL, CASTOR OIL, NEEM OIL AND MINERAL OIL (SAE 20W50)

e t Performance of Extended Inlet and Extended Outlet Tube on Single Expansion Chamber for Noise Reduction

Thermal Stress Analysis of Diesel Engine Piston

EFFECT OF EXHAUST GAS RECIRCULATION TO PERFORMANCE AND EMISSIONS OF DIESEL ENGINE MUSTAQIM BIN MOHAMAD

ACTUAL CYCLE. Actual engine cycle

ONE-DIMENSIONAL SIMULATION OF TWO STROKE HYDROGEN DIRECT INJECTION LINEAR GENERATOR FREE-PISTON ENGINE

Noise Distribution of the Internal Combustion Engine Guo Ya Ru 1, a, Liu Yan2, b, Xiaopai Zhang3, c, Xiaojuan Zhang4, d, Changbin Zhang5, e

System Analysis of the Diesel Parallel Hybrid Vehicle Powertrain

DESIGN OF THROTTLE BODY: A COMPARATIVE STUDY OF DIFFERENT SHAFT PROFILES USING CFD ANALYSIS

THE ENGINE COMBUSTION ANALYSIS OF NEWLY DEVELOPING DIESEL TRACTOR ENGINE ZETOR Z1727 WITH COMMON-RAIL SYSTEM IN A FIRST FIRING WEEK

1 Design and Experimental Validation of Intake System to Improve Performance of Race Car. Sanchit Jain, Mohammad Rafiq B. Agrewale,K. C.

Figure 1: The Turbocharger cross-section with turbine and compressor connected with shaft [2]

Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine

DESIGN OPTIMIZATION AND TESTING OF ELECTRIC TIRE PATCHING TOOL WITH GRIP PLIERS

RADIAL DRILLING CUTTING TRANSPORT CALCULATION USING SOLID CONTENT SENSITIVITY ANALYSIS TO DETERMINE RATE OF PENETRATION (ROP)

A STUDY ON DIESEL ENGINE PERFORMANCE DEPENDS ON BP AND BSFC BY APPLYING DIFFERENT INJECTION PRESSURE

ISSN: SIMULATION AND ANALYSIS OF PASSIVE SUSPENSION SYSTEM FOR DIFFERENT ROAD PROFILES WITH VARIABLE DAMPING AND STIFFNESS PARAMETERS S.

AN INVESTIGATION INTO HOW DIESEL FUEL ADDITVES AFFECT EXHAUST GAS EMISSIONS, POWER, TORQUE AND FUEL CONSUMPTION

Transcription:

COMPARISON OF STANDARD EXHAUST AND RACING EXHAUST ON MACHINE PERFORMANCE Arranged by: BONDAN SENOAJI PRAKOSA D200102007 MECHANICAL ENGINEERING DEPARTMENT INTERNATIONAL PROGRAM IN AUTOMOTIVE/MOTORCYCLE ENGINEERING UNIVERSITAS MUHAMMADIYAH SURAKARTA 2017 i

COMPARISON OF STANDARD EXHAUST AND RACING EXHAUST ON MACHINE PERFORMANCE ABSTRAK Tujuan dari penelitian ini adalah untuk mengetahui kinerja tenaga dan torsi pada mesin untuk menguji knalpot standar dan balap knalpot balap. Pada pengujian ini menggunakan roda motor Honda Tiger 2000 raft 2005. Pengujian kinerja mesin dilakukan dengan menggunakan Dynojet 250i. Pengujian dilakukan secara bergantian untuk setiap knalpot agar mendapatkan perbandingan kinerja daya dan torsi maksimum. Hasil penelitian menunjukkan bahwa penggunaan knalpot balap menghasilkan kinerja yang lebih baik, yaitu performa maksimum yang lebih lama dan kinerja torsi maksimum yang lebih besar, dibandingkan dengan penggunaan knalpot standar. Knalpot balap menghasilkan tenaga maksimum 17,08 hp dan torsi maksimum 11,35 kaki-lbs (15,38 Nm), sedangkan knalpot standar menghasilkan tenaga maksimum 17,00 hp dan torsi maksimum 11,35 kaki-lbs (15,38 Nm). Kata kunci: standar, balap, knalpot, kinerja kinerja ABSTRACT The purpose of this study is to determine the performance of power and torque on the engine to test the standard exhaust and racing exhaust racing. In this test using Honda Tiger 2000 motorcycle object raft 2005. Testing engine performance is done by using Dynojet 250i. The test is performed alternately for each exhaust in order to obtain the maximum performance comparison of power and torque. The results show that the use of racing exhaust produces better performance, that is longer maximum performance and greater maximum torque performance, compared to standard exhaust usage. The racing exhaust generates an optimum power of 17.08 hp and an maximum torque of 11.35 ft-lbs (15.38 Nm), while the standard exhaust generates an maximum power of 17.00 hp and an optimum torque of 11.35 ft-lbs (15.38 Nm). Keywords: standard, racing, exhaust, performance 1. BACKGROUND There are many parameters that can increase engine power such as increasing the maximum volumetric and thermal efficiency of the engine, or by changing the exhaust system on the machine. Important variables that can improve engine performance, are the performance of the gas flow through the engine, and the flow rate gas flow coefficient in the engine (Blair, 1999). 1

Energy generated from the combustion process that occurs there are three main components needed in the combustion process of air, fuel, and heat. Of the three main components of combustion will produce the rest of the combustion of exhaust gases, where the residual gas brings heat energy from the rest of the combustion in the vehicle. The design quality of a disposal system requires an understanding of its contribution to both the engine's overall power output and noise attenuation (Blair, 2009). To support optimal results on performance / performance of the engine, the exhaust or called exhaust system is one of the vital parts of a motorcycle. 1.1 Objective of Study The purpose of this research is to determine the comparison of power performance and torque obtained between the use of a standard exhaust with racing muffler on a standard four-step motorized vehicle. 1.2 LITERATURE REVIEW Abdul Muiz (2013), Conducting test of variable length of exhaust pipe aimed to improve power performance and torque of machine. This experiment was conducted with a 15kW Eddy Current Dynamometer. With two different length of exhaust pipe to be tested that is 570mm and 1140mm. Experiments were obtained with graphs of parameters on power and torque tests based on engine speed, and obtained on the 570mm exhaust test chart resulted in improved torque graphs and power charts better than the 1140mm exhaust. In its conclusion, the best exhaust to improve GT128 engine performance is the 570mm exhaust. Sandra Yance (2009), conducted a test of four-stroke motor vehicle with a model of silencer exhaust racing different. Based on the research, the best fuel consumption test using exhaust racing model with a large silencer consumption (48 ml), while acceleration testing 0-100 km / h without displacement gears using racing exhaust silencer short model that is (22.29 sec). In the best top speed test using the exhaust racing large silencer model that is (118.67 km / h) on lap (9621 2

rpm). In testing the noise level on the racing exhaust produces a sound level (110 db). Rendi Norian (1998), conducted a test with the method of lowering the temperature of the exhaust gas, the test is done using injection system. The experiment uses a gasoline engine with a capacity of 500 cc that has 4 cylinders by using an injection system that is sprayed into the exhaust pipe header using water fluid. The results obtained can improve the performance of a special motor torque, the increase in torque obtained reaches 24% of the peak torque achieved at a lower round of 8150 rpm, and down to 1500 rpm. 1.3 BASIC THEORY The exhaust is part of the vehicle system that is useful for disposing of combustion residue on the internal combustion engine. In Motorcycle exhaust motors have several Components, motor exhaust consists of one drain pipe with main components are Exhaust Header, Resonator, and Silencer. 1.3.1 Exhaust Header Pipe Header Exhaust is the part that connects between the cylinder with all parts of the exhaust for exhaust gas leftover combustion. Parts of this exhaust header that is connected directly to the machine. This exhaust header will adjust to the number of cylinders on the motor (one fruit on a motor generally), on the bias car found more than one, because more car cylinders. 1.3.2 Exhaust Length Pipe The length of the exhaust will help improve engine power performance around the maximum torque point. Increasing the length of the exhaust pipe will provide maximum power performance at low engine speeds, and on shorter pipes will provide maximum power performance at longer engine speeds. L = 850 ED rpm 3... (1) ED = 180 + EVO (2) Where: L = Length Exhaust (Inch) Rpm = Engine Rotation 3

ED = Exhaust Duration (Degree) EVO = Bottom Dead Center (BDC) / Exhaust Valve Open (Angle) From the above equation it can be seen that the bigger the open valve open (exhaust valve open) before the dead point down, the longer the exhaust neck. And the higher the rpm position at maximum power, the shorter the exhaust neck. 1.3.3 Exhaust Diameter Pipe Then the increase in diameter of the pipe will affect the engine speed and power increases higher. This is because the pipe enlargement will produce a vacuum that serves as a fuel + air mixture to get faster into the cylinder. And this can take place if supported by the appropriate "overlapping" camshaft construction. The length of each stage can be percentage by the ratio of the total pipe length. Figure 1. Diameter Pipe Din = CC (L+3) 25 2.1...... (3) Where: Din = Diameter in the Exhaust (Inch) L = Exhaust Length (Inch) 4

CC = Cylinder Volume (cc) 1.3.4 Resonator Resonator is the middle tube before the muffler. The resonator is placed behind the collector (header pipe). The size of the resonator will determine the effect on engine power and exhaust sound. "The main function of the resonator is to generate back pressure (Back Pressure) flue gas and also muffle the sound. Figure 2. Resonator Exhaust 1.3.5 Silencer The exhaust silencer part is usually at the end of the exhaust, its function is almost the same as the resonator that minimizes the noise of the motor engine. In a two-wheeled motor vehicle, usually silencers also contain filters that serve as a resonator, whereas in four-wheeled vehicles usually resonators are in the back of the pipe header and behind the Catalytic Converter (CAT) Figure 3: Silencer 5

1.3.6 Exhaust Megaphone Diffusers Exhaust (also referred to as Megaphone), is sometimes used for high engine performance on four-stroke engines (Blair, 1999). The advantages of megaphone exhaust are evaluated for modeling machines that want to optimize Power from 6,000 to 10,000 rpm. A smooth widening (tapered), following the shape of a cone, will result in a negative pressure (negative pressure) backlash. This effect will cause the exhaust suction power to the exhaust gas that has not got out of the cylinder. This incident will be very effective at high rpm where the ex-valve open time (exhaust) becomes very fast. Figure 4: Exhaust Megaphone Angle ML = ID4 ID Cot A 2. (4) Where: ML = Megaphone Length ID4 = Megaphone Diameter ID = Primary Diameter of the Pipe Cot A = Angular Ecoefficiency Megaphone between 3-8 6

2. METHODOLOGY OF PROJECT 2.1 Flow Chart of Project Figure 5 : Flow Chart Project 2.2 Materials Research 1. Motorcycle Type: Honda Tiger 2000 2. Exhaust Type 1: Exhaust Standard AHM 3. Exhaust Type 2: Exhaust Racing HRC 7

Figure 6. Exhaust Standard AHM Dimension: 2.3 Header Pipe I. Header Pipe Length 1: 58 cm II. Header Pipe Length 2: 37 cm III. Header Pipe Diameter 1 in: 2.8 cm IV. Header Pipe Diameter 1 out: 3.5 cm V. Header Pipe Diameter 2 in: 4 cm VI. Header Pipe Diameter 2 out: 4.8 cm 2.4 Silencer I. Silencer length: 40 cm II. Silencer diameter in: 2.4 cm III. Silencer diameter out: 9.6 cm Figure 7. Exhaust Racing HRC Dimension: 2.5 Header Pipe I. Header Pipe Length 1: 60 cm II. Header Pipe Length 2: 20 cm III. Header Pipe Length 3: 25 cm IV. Header Pipe Diameter 1: 3.3 cm V. Header Pipe Diameter 2: 3.8 cm 8

VI. Header Pipe Diameter 3: 4.3 cm 2.6 Silencer I. Silencer Length: 20 cm II. Silencer Diameter in: 4.5 cm III. Silencer Diameter out: 8.3 cm 2.7 Research Tool Research tool that will be used is: 2.7.1 Dynojet type: Dynojet 250i Performance Evaluation. 2.8 Research Step The planned steps start from preparing materials and tools for making specimens. Materials such as: Honda Tiger 2000 and Exhaust vehicles that will be tested on the vehicle that is Exhaust standard AHM and HRC Exhaust Racing. Then do the installation of standard exhaust on the vehicle. Next tested the Dynojet test kits, performed by Dynojet engineers for 3x run test and extracted the most accurate data from the three run test comparisons. Next remove the standard exhaust from the vehicle and install the next test material that is exhaust racing. Next tested the Dynojet test kits, performed by Dynojet technicians for 3x run test and extracted the most accurate data from the three run test comparisons. Then retrieve data from all Dynojet testing and do data comparison. 3. RESULT AND ANALYSIS After the test, showed a significant result on the Dynojet run test performed on both specimens of the exhaust. Type Exhaust Table Result 1. Performance Evaluation of Exhaust Max Power Engine Speed (RPM x 1000) Max Torque Conditions Temperature Humidity Exhaust Standart AHM 17.00 hp 11.35 ft-lbs (15.38 N m) 92.59 F (33.66 C) 25 % SAE 1.02 9

Exhaust Racing HRS 17.08 hp 11.46 ft-lbs (15.53 N m) 92.33 F (33.51 C) 26 % SAE 1.02 Figure 8. Comparison Performance of Exhaust Figure 8 above shows a comparison of performance racing exhaust racing performance with a standard muffler. On Power relation to Engine Speed Rotation and relationship between Torque with Engine Speed Rotation. From the power chart shows that the amount of power will increase in proportion to the increase of engine speed. At 5000 rpm engine speed, the power generated racing exhaust is 10 hp, while the power generated standard exhaust is 8.5 hp. The engine performance increases to reach the optimum peak, the standard muffler reaches the maximum peak at 8000 rpm engine speed with 17.00 hp power, while the performance graph of racing exhaust power is longer until it reaches peak maximum at 9000 rpm engine speed and produces 17.08 hp power. 10

Seen power performance on the standard muffler began to decline at 9000 rpm engine speed, while the power performance on the racing muffler decreased at 10000 rpm engine speed. Decreased performance on the standard exhaust is allegedly more stable and the racing exhaust is allegedly more aggressive. From the above comparison graph, it can be seen that the racing exhaust still produce better power in comparison with the standard exhaust. From the graph relation between Torque to Engine Speed Rotation shows that the use of standard exhaust produces lower torque compared with the results of torque use on racing muffler. In the 5000 rpm torque engine rpm generated on the racing muffler is larger than the standard exhaust, racing exhaust generates a torque of 10.5 ft-lbs (14.23 Nm) while the standard exhaust produces a torque of 9 ft-lbs (12.20 Nm). Performance on both specimens increased to an maximum peak at 7000 rpm engine speed, and on the standard exhaust produced an maximum torque of 11.35 ft-lbs (14.23 Nm) while the racing exhaust produced an maximum torque of 11.46 ft-lbs (14.23 Nm). At the engine speed of 8000 rpm performance on each of the exhaust decreased, but at 9000 rpm engine speed rpm exhaust racing rendering performance torque 10 ft-lbs (13.55 Nm) higher than the standard exhaust that produces toque performance 9 ft-lbs (12.20 Nm) is lower, until the engine speed of 1000 rpm allegedly the performance of racing exhaust torque decreased more aggressive compared with the performance of the standard exhaust torque that decreased more stable. 4. CONCLUSION AND SUGGESTION 4.1 Conclusion 4.1.1 The dimensional design of the exhaust has a major effect on the maximum and responsive performance of the working machine, where the effect of performance is on the pipe header length, header pipe diameter, header pipe enlargement, and also the working system on the silencer. 4.1.2 The experimental results on the standard exhaust produce the maximum peak power of 17.00 hp and the maximum torque of 11.35 ft-lbs (15.38 11

Nm). Where the dimension of the standard exhaust has a smaller diameter with 2 times diameter magnification and the length of the pipe header is shorter 5 cm. The silencer system of the standard exhaust also has a larger retaining level, since the standard exhaust silencer system itself has the purpose of holding and filtering the flue gas which has a chemical gas hazard not to carry out, and withstand the working sound of the engine in order not to interfere with human hearing. 4.1.3 The experimental results on the racing muffler produce the maximum peak power of 17.08 hp and the maximum torque of 11.46 ft-lbs (15.53 Nm). Where the dimension exhaust racing has a larger diameter with 3 times diameter magnification and longer pipe header length. The silencer system from the racing exhaust has a better level of exhaust in comparison with the standard exhaust, but in the racing exhaust silencer system is less able to filter out the chemical gas out of the engine and the louder sound levels that can interfere with human hearing 4.2 Suggestion From experiments that have been done by researchers, there are some things that need to be well understood to conduct an exhaust experiment. Suggestions for the next best experiment are: 4.2.1 For further experiments it is advisable to perform comparative tests on fuel consumption in racing exhaust and standard exhaust. 4.2.2 Further tests on the comparison of noise / acoustic system levels in racing exhaust and standard exhaust. 4.2.3 Exhaust emission test aimed to see the level of environmental hazard on racing exhaust and exhaust standard. 4.2.4 Studies that have relevance to this subject are better proposed in the design and basic calculations that can lead to a deeper understanding. 12

REFERENCE A. Graham Bell. 1981. Handbook Performance Tuning in Theory and Practice Four Strokes. England: Haynes Publishing Group. Abdul Muiz Bin Jaafar, 2013. Experiment And Analysis Of Motorcycle Exhaust Design. Malaysia: University Malaysia Pahang. Blair and P.Gordon, 1999. Design and Simulation of Four Stroke Engines. USA: SAE International Inc. http://www.sae.org Correia, 2009. Exhaust Length Analysis for Motorcycle Performance. USA: SAE International Inc. http://www.sae.org John D. Stanitz. 1947. An Analysis of The Factors That Affect The Exhaust Process of a Four Stroke Cycle Reciprocating Engine. Cleveland, USA: NASA Technical Note. Mohideen Anver,M. and Russell,J. 2008. Research on Modern Optimization Algorithms and Applications. USA: SAE International Inc. http://www.sae.org Motogokil. 2013. Knalpot Racing Design. https://motogokil.com Motogokil. 2013. Salah Satu Ciri Knalpot MotoGP, Megaphone, https://motogokil.com ORD Exhaust. 2014. Exhaust System, Bagian-bagian Exhaust. http://ordexhaust.com ORD Exhaust. 2014. Muffler Design, http://ordexhaust.com Rendi Norian, 1998. Decreasing Temperature Analysis of Motor Vehicle Exhaust Gases on Performance. USA: SAE International Inc. http://www.sae.org Rido Manunggal, Warju, 2012. Pengaruh Penggunaan Metallic Catalytic Conventer Berbahan Tembaga Dan Aplikasi Teknologi SASS Terhadap 13

Performa Sepeda Motor Honda New Mega Pro. Surabaya: Universitas Negeri Surabaya. Sandra Yance, 2009. Effect of Silencer Variation on Motor Vehicles. USA: KCDJ SAE International Inc. http://www.sae.org Sasongko Leksono, 2014. Analisis Knalpot Modifikasi Terhadap Penurunan Polutan Emisi Gas Buang Kendaraan Bermotor Berbahan Bakar Bensin. Malang: P4TK-VEDC Malang. Welsa Putra, Hasan Maksum, Donny Fernandez, 2015. Pengaruh Penggunaan Knalpot Standard an Racing Terhadap Tekanan Balik,Suhu dan Bunyi Pada Sepeda Motor 4 Tak. Padang: Universitas Negeri Padang. 14