Biodiesel Composition and Fuel Properties

Similar documents
Biodiesel Specification in Indonesia

Louis Dreyfus Claypool Holdings, LLC. Biodiesel Production Plant Claypool, Indiana

Biodiesel Business Environment

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria

Palm Fatty Acids Esterification on Heterogeneous Catalysis

Production and Properties of Biodistillate Transportation Fuels

Biodiesel Technical Issues related to Biodiesel Production, Handling, Storage, and Use in Diesel Engines

Project Reference No.: 40S_B_MTECH_007

Biodiesel and SmartWay Grow and Go Go. EPA-MMTA Fuel-Saving Seminar June 15, 2007

Biodiesel Fuel Quality

Biodiesel from Various Vegetable Oils as the Lubricity Additive for Ultra Low Sulphur Diesel (ULSD)

This presentation focuses on Biodiesel, scientifically called FAME (Fatty Acid Methyl Ester); a fuel different in either perspective.

Alternative Automotive Fuels - Biodiesel

Abstract Process Economics Program Report 251 BIODIESEL PRODUCTION (November 2004)

Biodiesel. Basics, Technical Aspects, and Issues for Mining Operations - Biodiesel and diesel particulate matter reductions

Biodiesel Product Quality Challenges: Gaylord Palm Resort and Convention Center, Orlando Florida, February 4, Fuel Quality Services, Inc.

What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

ASTM D Standard Specification for Biodiesel Fuel (B 100) Blend Stock for Distillate Fuels

Background on Biodiesel

BIODIESEL PRODUCTION BY A CONTINUOUS PROCESS USING A HETEROGENEOUS CATALYST

Biodistillate Fuels and Emissions in the U.S.

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL

What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source

Biodiesel Update. Eagle Core Team. Edward J. Lyford-Pike Advanced Engineering, Advanced Alternative Fuels group

COLOMBIA. 2. Vehicle categories: 2.1. Categories for application with European limits. M = Passenger vehicle N = Commercial vehicle

GC Analysis of Total Fatty Acid Methyl Esters (FAME) and Methyl Linolenate in Biodiesel Using the Revised EN14103:2011 Method

CHAPTER 3 VEGETABLE OIL, BIODIESEL AND OXYGENATES AN OVERVIEW

Module8:Engine Fuels and Their Effects on Emissions Lecture 36:Hydrocarbon Fuels and Quality Requirements FUELS AND EFFECTS ON ENGINE EMISSIONS

The storage stability issue of Biodiesel and the additives solution. Long - Term Storage of Fuels Seminar Israeli Institute of Energy and Environment

Biodiesel Analytics. Important Parameters and their Meaning

The Importance of Biodiesel Meeting the ASTM D6751 Standard. Barbara E Goodrich Manager, Engine Fluids John Deere Power Systems 6 February 2008

Conversion of Peanut Oil into Jet and Diesel Fuels. Panama City, Florida 22 July 2016 Edward N. Coppola

Alberta Innovates - Technology Futures ~ Fuels & Lubricants

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Experimental Study of Linseed Oil as an Alternative Fuel for Diesel Engine

The Analysis of Biodiesel for Trace Metals and the Development of Certified Biodiesel Standards

Monitoring Biodiesel Fuel Quality

Biodiesell productionn withh Lewatit GF202 Lewatit GF202

Biodiesel Solutions André Y. Tremblay, P.Eng., Ph.D. Department of Chemical and Biological Engineering University of Ottawa

SYNERGISTIC EFFECTS OF ALCOHOL- BASED RENEWABLE FUELS: FUEL PROPERTIES AND EMISSIONS

Project DIREKT 4th meeting Mauritius April Biofuels in Fiji and the Pacific - research, production and possibilities

CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF

Quantitative Analysis of Chemical Compositions from Various Sources of Crude Glycerine

NEDO Biodiesel Production Process by Supercritical Methanol Technologies. Shiro Saka

ANNEX 2, REFERENCE FUELS

Biodiesel is NOT raw vegetable oil or SVO (Straight Vegetable Oil) or refined oil or filtered used cooking oil.

Properties and Use of Jatropha Curcas Ethyl Ester and Diesel Fuel Blends in Variable Compression Ignition Engine

Annex to the Accreditation Certificate D-PL according to DIN EN ISO/IEC 17025:2005

Material Science Research India Vol. 7(1), (2010)

PERP Program New Report Alert

Biodiesel Production from waste Oil with Micro-Scale Biodiesel System Under Laboratory Condition

ComparativeStudyonPropertiesofMethylEsterofCottonSeedOilandMethylEsterofMangoSeedOilwithDiesel

A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea)

Study of viscosity - temperature characteristics of rapeseed oil biodiesel and its blends

ANNEX 3 REFERENCE FUELS. Parameter Unit Limits (1) Test method Minimum Maximum Research octane number, RON

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL

Biofuels and characteristics

V.Venkatakranthi Teja. N S Raju Institute of Technology (NSRIT), Sontyam, Visakhapatnam, Andhra Pradesh , India.

Combustion Properties of Alternative Liquid Fuels

Technology Development within Alternative Fuels. Yves Scharff

Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine

Differences in raw material sources for biofuel processing

World Wide Fuel Charter - Recommended Biofuel Specifications -

Dr. Onkar S. Tyagi. Indian Institute of Petroleum Dehradun.

Prodigy ICP Application Note: # 1039

CHAPTER 1 INTRODUCTION

Irish Biodiesel Production and Market Outlook

2007 B100 Quality Survey Results

A Winning Combination: REG Ultra Clean Diesel

What s s in your Tank?

COMBUSTION CHARACTERISTICS OF DI-CI ENGINE WITH BIODIESEL PRODUCED FROM WASTE CHICKEN FAT

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels 1

Biodiesel for Diesel Engines

SCOPE OF ACCREDITATION TO ISO/IEC 17043:2010. ASTM INTERNATIONAL 100 Barr Harbor Drive West Conshohocken, PA Amy Meacock

Experimental Investigation On Performance And Emission Characteristics Of A Diesel Engine Fuelled With Karanja Oil Methyl Ester Using Additive

EFFECT OF BIODIESEL IMPURITIES ON FILTERABILITY AND PHASE SEPARATION FROM BIODIESEL AND BIODIESEL BLENDS. National Biodiesel Conference 2008

Author: Vincenzo Piemonte, Associate Professor, University UCBM Rome (Italy)

CHAPTER 4 PRODUCTION OF BIODIESEL

Annex no. 1 of Accreditation Certificate no. LI 333 from

Introduction of H-FAME* Technology for Thai B10 Program

Biodiesel. Emissions. Biodiesel Emissions Compared to Diesel Fuel

Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels 1

Performance and Emission Evaluation of a Diesel Engine Fueled with Methyl Esters of Tobacco Seed Oil

Experimental investigation on constant-speed diesel engine fueled with. biofuel mixtures under the effect of fuel injection

Study on the Production of Biodiesel from Sunflower Oil

ISCC EU Biodiesel (UK) B100 UCOME EN 14214

Evaluation of New Fuel Oil for Internal Combustion Engine

Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels 1

Host in Japan : List of invited researcher:

The Purification Feasibilityof GlycerinProduced During

Application Note. Author. Introduction. Energy and Fuels

SCOPE OF ACCREDITATION

BDI BioEnergy International GmbH

BIODIESEL LAB EXERCISE WITH HYDROGEN ENRICHMENT. Developed for the 2012 SEET Workshop

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India

Performance and Experimental analysis of a Safflower biodiesel and Diesel blends on C.I. Engine

ABSTRACT: 412 BIODIESEL FEEDSTOCKS ARE CHANGING AFFECTING THE VALUE OF THE BY-PRODUCTS

Effects of Feedstock-related Properties on Engine Performance of Biodiesel from Canola and Sunflower Oils of South African Origin

Transcription:

Biodiesel Composition and Fuel Properties Gerhard Knothe USDA / ARS / NCAUR Peoria, IL 61604 U.S.A. E-mail: gerhard.knothe@ars.usda.gov

the Diesel Engine It All Began With Diesel s Vision: Develop an engine more efficient than the steam engine, but...rudolf Diesel did not originally investigate vegetable oils as fuel. Diesel s first engine Rather

The Original Demonstration in the Words of Rudolf Diesel At the Paris Exhibition in 1900 there was shown by the Otto Company a small Diesel engine, which, at the request of the French Government, ran on Arachide (earth-nut or pea-nut) oil, and worked so smoothly that only very few people were aware of it. The engine was constructed for using mineral oil, and was then worked on vegetable oil without any alterations being made. R. Diesel, The Diesel Oil-Engine, Engineering 93:395 406 (1912). Chem. Abstr. 6:1984 (1912).

The Original Demonstration in the Words of Rudolf Diesel The French Government at the time thought of testing the applicability to power production of the Arachide, or earth-nut, which grows in considerable quantities in their African colonies, and which can be easily cultivated there, because in this way the colonies could be supplied with power and industry from their own resources, without being compelled to buy and import coal or liquid fuel. Diesel, R., The Diesel Oil-Engine, Engineering 93:395 406 (1912). Chem. Abstr. 6:1984 (1912).

Vegetable Oils as Alternative Fuel for Energy Independence: Not a New Concept 1920 s-1940 s: Many European countries interested in vegetable oils as fuels for their African colonies in order to provide a local energy source. Also interest in Brazil, China, India. A.W. Baker and R.L. Sweigert, Proc. Oil & Gas Power Meeting of the ASME :40-48 (1947): The United States is one of the countries in the world fortunate enough to have large supplies of petroleum, which its inhabitants have not always used wisely. With a possible diminishing supply of oil accompanied by an increase in consumption, the study of substitute fuels becomes of some importance. Vegetable oils loom as a possibility for engines of the compression-ignition type.

The First Report on Biodiesel Belgian Patent 422,877 (1937): Procédé de transformation d huiles végétales en vue de leur utilisation comme carburants.

An Extensive Report on Biodiesel

Old Research: First Cetane Number Determination for Biodiesel Bulletin Agricole du Congo Belge, Vol. 33, p. 3-90 (1942):

(Potential) Sources of Biodiesel Vegetable oils Classical (edible) commodity oils (palm, rapeseed / canola, soybean, etc.) Alternative (inedible) oils (jatropha, karanja, pennycress, etc.) Animal fats Used cooking oils Alternative feedstocks Algae Variety of feedstocks with considerably varying fatty acid profiles Fuel properties vary considerably

Why biodiesel and not the neat oil? CH 2 -OOCR 1 OOCR R 1 CH 2 OH Catalyst CH-OOCR 2 + 3 OH R OOCR R 2 + CHOH CH 2 -OOCR 3 OOCR R 3 CH 2 OH Vegetable Oil Alcohol Vegetable Oil Alkyl Esters Glycerol (Triacylglycerol) (Biodiesel) Viscosity! 27-35 mm 2 /sec 4-5 mm 2 /sec Kinematic viscosity of petrodiesel fuels usually 1.8-3.0 mm 2 /sec.

Major Ester Components of Most Biodiesel Fuels Fatty esters in from common vegetable oils (palm, soybean, canola/rapeseed, sunflower, etc): Methyl palmitate (C16:0): CH 3 OOC-(CH 2 ) 14 -CH 3 Methyl stearate (C18:0): CH 3 OOC-(CH 2 ) 16 -CH 3 Methyl oleate (C18:1, 9c): CH 3 OOC-(CH 2 ) 7 -CH=CH-(CH 2 ) 7 -CH 3 Methyl linoleate (C18:2; all cis): CH 3 OOC-(CH 2 ) 7 -(CH=CH-CH 2 ) 2 -(CH 2 ) 3 -CH 3 Methyl linolenate (C18:3; all cis): CH 3 OOC-(CH 2 ) 7 -(CH=CH-CH 2 -) 3 -CH 3 From other oils: Methyl laurate (C12:0): CH 3 OOC-(CH 2 ) 10 -CH 3 Methyl ricinoleate (C18:1, 12-OH; cis): CH 3 OOC-(CH 2 ) 7 -CH=CH-CH 2 -CHOH-(CH 2 ) 5 -CH 3 Algal Oils: Methyl eicosapentaenoate (C20:5): CH 3 OOC-(CH 2 ) 3 -(CH=CH-CH 2 -) 5 -CH 3 Methyl docosahexaenoate (C22:6): CH 3 OOC-(CH 2 ) 2 -(CH=CH-CH 2 -) 6 -CH 3

Minor Constituents in Biodiesel Can influence fuel properties Cold flow, oxidative stability, corrosion, combustion, catalyst poisons, lubricity CH 2 -OOCR 1 CH 2 OOCR 1 CH 2 OOCR CH-OOCR 2 CHOOCR 2 CHOH CH 2 -OOCR 3 CH 2 OH CH 2 OH Triacylglycerols Diacylglycerols Monoacylglycerols Glycerol Free Fatty Acids: R-COOH Alcohol Na, K, Ca, Mg, P, (S) Sterol glucosides

Technical Problems with Biodiesel Cold flow Oxidative stability NO x exhaust emissions May fade with time due to new exhaust emissions control technologies. Other fuel quality issues: Minor components influencing fuel properties.

Biodiesel Standard ASTM D6751-(11a) Property Test method Limits Units Flash point (closed cup) D 93 93 min o C Alcohol control. One of the following must be met: 1. Methanol content EN 14110 0.2 max % volume 2. Flash point D 93 130 min 130 min Water and sediment D 2709 0.050 max % volume Kinematic viscosity, 40 o C D 445 1.9-6.0 mm 2 / s Sulfated ash D 874 0.020 max % mass Sulfur D5453 0.05 or 0.0015 max a) % mass Copper strip corrosion D 130 No. 3 max Cetane number D 613 47 min Cloud point D 2500 Report o C Carbon residue D 4530 0.050 max % mass Acid number D 664 0.50 max mg KOH / g Free glycerin D 6584 0.020 % mass Total glycerin D 6584 0.240 % mass Phosphorus content D 4951 0.001 max % mass Distillation temperature, D 1160 360 max o C Atmospheric equivalent temperature, 90% recovered Sodium and potassium, combined EN 14538 5 max ppm (µg/g) Calcium and magnesium, comb. EN 14538 5 max ppm (µg/g) Oxidation stability EN 15751 3 min hours Cold soak filterability D7501 360 max sec a) The limits are for Grade S15 and Grade S500 biodiesel, respectively. S15 and S500 refer to maximum sulfur specifications (ppm).

Biodiesel Standard EN 14214 Property Test method Limits Units Ester content EN 14103 96.5 min % (m/m) Density; 15 o C EN ISO 3675, 12185 860-900 kg/m 3 Viscosity, 40 o C EN ISO 3104, ISO 3105 3.5-5.0 mm 2 /s Flash point EN ISO 2719, 3679 101 min o C Sulfur content EN ISO 20846, 20884 10.0 max mg/kg Carbon residue (10% dist. res.) EN ISO 10370 0.30 max % (m/m) Cetane number EN ISO 5165 51 min Sulfated ash ISO 3987 0.02 max % (m/m) Water content EN ISO 12937 500 max mg/kg Total contamination EN 12662 24 max mg/kg Copper strip corrosion (3h, 50 o C) EN ISO 2160 1 Oxidative stability, 110 o C EN 14112, 15751 6.0 min h Acid value EN 14104 0.50 max mg KOH / g Iodine value EN 14111 120 max g iodine /100g Linolenic acid content EN 14103 12 max %(m/m) Content of FAME with 4 double bonds 1 max % (m/m) Methanol content EN 14110 0.20 max % (m/m) Monoglyceride content EN 14105 0.80 max % (m/m) Diglyceride content EN 14105 0.20 max % (m/m) Triglyceride content EN 14105 0.20 max %(m/m) Free glycerine EN 14105, 14106 0.02 max %(m/m) Total glycerine EN 14105 0.25max %(m/m) Alkali metals (Na + K) EN 14108, 14109, 14538 5.0 max mg/kg Earth alkali metals (Ca + Mg) pren 14538 5.0 max mg/kg Phosphorus content EN 14107 4.0 max mg/kg

Some Fatty Acid Profiles Vegetable Oil C16:0 C18:0 C18:1 C18:2 C18:3 Palm 45 4-5 38-40 10-11 Rapeseed / Canola 3-4 1-3 58-62 20-22 9-12 Soy 8-13 2-6 18-30 49-57 2-10 Sunflower 6-7 3-5 21-29 58-67 Jatropha 13-15 7-8 34-44 31-43

Properties of Vegetable Oil Esters Methyl Ester Cloud Point Cetane Number Kin. Visc. ( C) (40 C; mm 2 /s) Palm 16 68-70 4.4 Rapeseed / Canola -3 52-55 4.5 Soy 0 48-52 4.1 Sunflower 0 55 4.4 Jatropha 4-5 Oxidative stability: usually antioxidants required to meet standard specifications

Properties to Consider Two types of specifications in biodiesel standards (ASTM D6751; EN 14214): Properties inherent to fatty esters: Cetane number Cold flow Viscosity Oxidative stability ( Feedstock restrictions: Iodine value, viscosity, specific esters in EN 14214) ( Density only in EN 14214) Parameters related to production, storage, etc. Acid value Free and total glycerol Na, K, Mg, Ca, P, S Water and sediment, sulfated ash, carbon residue Not in biodiesel standards: Exhaust emissions, lubricity

Some General Observations on Fatty Ester Fuel Properties Fuel properties of fatty esters depend on Chain length (number of CH 2 moieties) Number and position of double bonds

Cetane Number Dimensionless descriptor related to the ignition delay time of a fuel in a cylinder Higher cetane numbers indicate reduced ignition delay time, better combustion. Hexadecane is the high-quality reference compound with assigned CN = 100. CN can be correlated to NOx exhaust emissions Saturated compounds (higher CN) show reduced NOx exhaust emissions.

Cetane Numbers 100 90 80 Saturated methyl esters (ME) Saturated ethyl esters Mono-, di-, and triunsaturated ME Highly polyunsaturated ME C16:0 / 85.9 C18:0 / 101 Cetane Number 70 60 50 40 30 C10:0 / 51.6 C18:1 9c / 59.3 EN 14214 =51 min ASTM D6751 = 47 min C18:2 9c,12c / 38.2 C20:4 / 29.6 20 C18:3 9c,12,15c / 22.7 C22:6 / 24.4 10 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Number of carbon atoms in the fatty acid chain

Cetane Number Cetane numbers of mixtures: CN mix = A C x CN C (CN mix = CN of the mixture, A C = relative amount of an individual neat ester in the mixture, CN C = CN of the individual neat ester) Most biodiesel fuels from vegetable oils meet CN requirements in standards (ASTM D6751: 47 min; EN 14214: 51 min) as there are usually sufficient amounts of esters with higher CN

Why Triacylglycerol Feedstocks? Alkanes are ideal diesel fuels. Branched compounds and aromatics have low cetane numbers Structural similarity (long hydrocarbon chains) responsible for suitability of fatty esters as diesel fuels. Compounds such as methyl palmitate and methyl stearate have CN comparable to hexadecane and other long-chain alkanes

Exhaust Emissions Studies Average effect of biodiesel and B20 vs. petrodiesel on regulated emissions (Source: USEPA report 420-P-02-001): 100 Petrodiesel Biodiesel 100 Petrodiesel B20 Relative emissions 80 60 40 20 Relative Emissions 80 60 40 20 0 NOx PM CO HC Pollutant 0 NOx PM CO HC Pollutant

NO x and PM Exhaust Emissions of Petrodiesel, Biodiesel, Their Components 2003 Engine; EPA Heavy Duty Test 3.0 2.5 2.0 1.5 1.0 0.5 2007PM Standard NOx PMx10 Brake-Specific Emission Rate, g/hp-hr 0.0 Base Soy Biodiesel Methyl Oleate Hexadecane Dodecane Methyl Palmitate Base 2 Methyl Laurate G. Knothe, C.A Sharp, T.W. Ryan III, Energy & Fuels 20, 403-408 (2006).

Change in NO x and PM vs. petrodiesel 10 0-10 -20-30 -40 Change in Exhaust Emissions Relative to Base Fuel (%) -50-60 -70-80 NOx PM Hexadecane Dodecane Me soyate Me oleate Me palmitate Me laurate

Change in HC and CO vs. petrodiesel 10 0-10 -20-30 Change in Exhaust Emissions Relative to Reference Fuel (%) -40-50 -60 Hydrocarbons CO Me oleate Hexadecane Me soyate Me palmitate Dodecane Me laurate

Viscosity Kinematic Viscosity (40 o C; mm 2 /s) 8 7 6 5 4 3 2 1 Saturated methyl esters (ME) Saturated ethyl esters Mono-, di-, and triunsaturated ME Highly polyunsaturated ME C12:0 / 2.43 C10:0 / 1.72 C16:0 / 4.38 C18:0 / 5.85 C18:3 9c,12c,15c / 3.14 C18:1 9c / 4.51 C22:1 13c / 7.33 C18:2 9c,12c / 3.65 ASTM D6751 upper limit EN 14214 upper limit EN 14214 lower limit C22:6 / 2.97 C20:4 / 3.11 ASTM D6751 lower limit 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Number of carbon atoms in the fatty acid chain

Viscosity Viscosity increases with chain length and increasing saturation. Kinematic viscosity of mixtures ν mix ν mix = A c x ν c Virtually all biodiesel fuels meet ASTM D6751 specifications EN 14214 more restrictive Biodiesel fuels with greater amounts of lower-viscosity components may not meet lower limit

Cold Flow: Melting Points of Fatty 80 Acid Esters Melting Point ( o C) 70 60 50 40 30 20 10 0-10 -20-30 -40-50 -60-37.4-44.7-13.5 Saturated methyl ester Saturated ethyl ester -20.4 4.3-1.8 18.5 11.8 28.5 16:1 9c / -34 23.2 37.7 33.0 18:1 9c / -20.2 46.4 41.3 20:1 11c / -7.8 53.2 48.6 18:2 9c,12c / -43.1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Number of carbon atoms in the fatty acid chain 58.6 18:3 9c,12c,15c / <-50 55.9 22:1 13c / -3.1

Cold Flow Melting points of fatty acid esters depend on chain length and unsaturation Cold flow properties determined by nature and amount of saturated compounds Cloud point common and stringent test procedure Soft specification in biodiesel standards ASTM D6751: Cloud point by report, cold soak filtration EN 14214: Cold-filter plugging point, depending on time of year and geographic location

Cold Flow Minor constituents such as monoacylglycerols and sterol glucosides also influence cold flow. Melting points of monopalmitin and monostearin > 70 C Melting points of sterol glucosides 240 C Effects often noticeable upon storage

Oxidative Stability Oxidative stability is one of the major technical challenges facing biodiesel. Affected by presence of air, temperature, light, extraneous materials, container material, headspace volume Structural reason for the autoxidation of fatty compounds: Allylic CH 2 positions H 3 CO 2 C-(CH 2 ) x -CH 2 -CH=CH-CH 2 -CH=CH-CH 2 -(CH 2 ) y -CH 3 especially: bis -allylic CH 2 positions

Oxidative Stability Relative rates of oxidation (E.N. Frankel, Lipid Oxidation, 2005): Oleates = 1 (two allylic positions) Linoleates = 41 (two allylic positions, one bis-allylic position) Linolenates = 98 (two allylic positions, two bis-allylic positions) Chains with > 3 double bonds have even higher relative rates Is the oxidative stability of mixtures (vegetable oil esters) directly proportional to the amount of unsaturated compounds or do small amounts of unsaturated compounds have greater influence than their amounts indicate?

Rancimat test (110 C): Saturated esters > 24 h Methyl palmitoleate 2.11 h Methyl oleate 2.79 h Methyl linoleate 0.94 h Methyl linolenate 0.00 h Oxidative Stability Methyl eicosatetraenoate (C20:4) 0.09 h Methyl docosahexaenoate (C22:6) 0.07 h ASTM D6751 minimum specification 3h EN 14214 minimum specification 6h Almost always antioxidant additives required

Density Only in EN 14214 Range of 0.86 0.90 g/cm 3 (15 C) Not a problem for most biodiesel fuels. Only highly polyunsaturated fatty esters may be problematic: C20:4 0.9064 g/cm 3 C22:6 0.9236 g/cm 3 Density of a mixture: ρ mix = A c x ρ c

Biodiesel and Lubricity Neat biodiesel has excellent lubricity as do neat methyl esters. Low-level blends (~ 2% biodiesel in petrodiesel = B2): Lubricity benefits through biodiesel with (ultra-)low sulfur petrodiesel which do not possess inherent lubricity compared to non-desulfurized petrodiesel. Marginal cost impact. Not included in biodiesel standards. High-frequency reciprocating rig (HFRR) tester (ASTM D6079; ISO 12156) in ASTM and EN petrodiesel standards. Maximum wear scars of 520 (ASTM) and 460 µm (EN).

Biodiesel and Lubricity Lubricity of low-level blends of biodiesel with petrodiesel to a great extent determined by minor constituents, especially free fatty acids and monoacylglycerols. In the neat form, even better lubricity than methyl esters. Glycerol has limited effect (insolubility in petrodiesel). Example (HFRR wear scars): ULSD: 651, 636 µm w. 1% methyl oleate: 597, 515 µm 1% oleic acid in methyl oleate, then 1% thereof in ULSD: 356, 344 µm. w. 2% methyl oleate: 384, 368 µm G. Knothe, K.R. Steidley; Energy & Fuels 19, 1192-1200 (2005).

Biodiesel and Lubricity Higher lubricity with increasing number of double bonds and greater chain length: Methyl laurate 416, 408, Methyl stearate 322, 277, Methyl oleate 290, 342, Methyl linoleate 236, 219, Methyl linolenate 183, 185 Effect of oxygenated functional groups: COOH > CHO > OH > COOCH3 > C=O > C-O-C G. Knothe, K.R. Steidley; Energy & Fuels 19, 1192-1200 (2005).

Property Trade-off Increasing chain length: Higher melting point (-) Higher cetane number (+) Increasing unsaturation: Lower melting point (+) Decreasing oxidative stability (-) Lower cetane number (-)

Five Approaches to Improving Biodiesel Fuel Properties Unchanged fatty ester composition Additives A Change alcohol B Physical procedures C Modified fatty ester composition Change fatty acid profile Genetic modification D Inherently different fatty acid profile Alternative feedstocks E G. Knothe; Energy & Environmental Science, 2, 759-766 (2009).

Additives, physical procedures Additives Cold flow improvers Do not affect cloud point Antioxidants Oxidation delayers Physical procedures Winterization for removing saturates to improve cold flow

Influence of Alcohol Moiety Branched and longer-chain esters: Lower melting points, similar cetane numbers compared to methyl esters Ester M.P. ( C) CN Ester M.P. ( C) CN C16:0 Methyl 28.5 85.9 C18:0 Me 37.7 101 C16:0 Ethyl 23.2 93.1 C18:0 Et 33.0 97.7 C16:0 Propyl 20.3 85.0 C18:0 Pr 28.1 90.0 C16:0 iso-propyl 13-14 82.6 C18:0 i-pr 96.5 C18:1 Methyl -20.2 59.3 C18:2 Me -43.1 38.2 C18:1 Ethyl -20.3 67.8 C18:2 Et -56.7 39.6 C18:1 Propyl -30.5 58.8 C18:2 Pr 44.0 C18:1 iso-propyl 86.6 Disadvantage: Higher costs of alcohols Source: Handbook of Chemistry and Physics; The Lipid Handbook, various publications.

Fatty Acid Profile: Something Better Than Methyl Oleate? Positional Isomers No major advantages compared to methyl oleate Geometric Isomers (cis /trans) Higher melting points, higher viscosity of trans Hydroxylated Chains High viscosity, low cetane number, low oxidative stability Shorter Saturated Chains Shorter Unsaturated Chains

Shorter-Chain Monounsaturates Methyl palmitoleate (C16:1) Melting point: -34 C Cetane number: 51-56 (ASTM D6890) Kinematic viscosity (40 C): 3.67 mm 2 /s Oxidative stability: 2.11 h Extrapolation of exhaust emissions: Effect likely similar to methyl oleate (slight chain-length effect) Methyl myristoleate (C14:1) Melting point: -52 C Kinematic viscosity (40 C): 2.73 mm 2 /s Major advantage compared to methyl oleate: Improved cold flow, lower kinematic viscosity G. Knothe; Energy & Fuels 22, 1358-1364 (2008).

Shorter-Chain Monounsaturates: Macadamia nut oil methyl esters: An Example Two examples: 16 and 20 % C16:1; 59 and 55% C18:1 9; 4% C18:1 11. Cetane number: 57-59 Oxidative stability: 2 h Kinematic Viscosity: 4.5 mm 2 /s Cloud Point: 7.0 / 4.5 C but: C16:0 8.5%; C18:0 3.5%; C20:0 2.5%; C22:0 0.8%. G. Knothe; Energy & Fuels 24, 2098 2103 (2010).

Shorter-Chain Saturates M.P. Cetane Kin. Visc. Heat of comb. ( C) number (40 C; mm 2 /s) (kj/kg) Methyl octanoate -37.3 39.7 1.20 34907 Ethyl octanoate -44.5 42.2 1.32 Methyl decanoate -13.1 51.6 1.71 36674 Ethyl decanoate -19.8 54.5 1.87 Methyl laurate 4.6 66.7 2.43 37968 High oxidative stability: All > 24 h. Extrapolation of exhaust emissions for C10 esters: NOx likely slightly reduced (ca. -5%); PM significantly reduced (80-85%); CO reduced; HC increased

Shorter-Chain Saturates: Cuphea Methyl Esters Fatty Acid Profile of Cuphea PSR 23 (C. Viscosissima C. Lanceolata): Fatty acid Cuphea Jatropha Palm Rapeseed Soybean Sunflower PSR 23 C8:0 0.3 C10:0 64.7 C12:0 3.0 C14:0 4.5 C16:0 7.0 14.5 44.1 3.6 11 6.4 C18:0 0.9 7.5 4.4 1.5 4 4.5 C18:1 12.2 34-45 39.0 61.6 23.4 24.9 C18:2 6.7 29-44 10.6 21.7 53.2 63.8 C18:3 < 0.5 0.3 9.6 7.8 -

Shorter-Chain Saturates: Cuphea Methyl Esters Properties of cuphea PSR23 methyl esters (CuME): Cetane number: 55-56 Kinematic viscosity (40 C): 2.38-2.40 mm 2 /s Oxidative stability: 3.1 3.5 h Cloud point: -9 to -10 C G. Knothe, S.C. Cermak, R.L. Evangelista; Energy & Fuels, 23, 1743-1747 (2009).

Distillation Curve: CuME vs SME and ULSD B.T. Fisher, G. Knothe, C.J. Mueller, Energy Fuels, 24, 1563-1580 (2010).

Castor Oil Methyl Esters Fatty acid profile of castor oil 85-90% ricinoleic acid Cetane Kinematic Viscosity Oxidative Number (40 C; mm 2 /s) Stability (h) Castor methyl esters 37.55 14.82 5.87 ASTM D6751 47 min 1.9-6.0 3 min EN 14214 51 min 3.5-5.0 6 min Cold flow related properties: Melting point of methyl ricinoleate: Pour point of castor methyl esters: -5.8 C -20 C C18:1 12-OH 37-5 15.29 0.67

Biodiesel from Algae Claimed high production potential Order of magnitude greater than highest-yielding vegetable oils? Avoids food vs. fuel issue. Problems with growth and harvesting of algae, oil extraction. High production costs. Little to no technical information on biodiesel derived from algal oils. Potential properties need to be estimated from fatty acid profiles and data on other biodiesel and neat compounds.

Biodiesel from Algae: Fatty Acid Profiles Most profiles contain high amounts of saturated and / or polyunsaturated fatty acid chains Eicosapentaenoic (C20:5) and docosahexaenoic (C22:6) acids most common highly polyunsaturated fatty acids in algal oils Palmitic acid most common fatty acid (m.p. of methyl ester 28.5 C) in algal oils (and palm oil!); Myristic (C14:0) acid also present in many algal oils (m.p. methyl ester 18 C). Some exceptions

Biodiesel from Algae: Fuel Properties Cetane numbers of most algal biodiesel likely lower to mid 40 s. Not all will meet CN specification in ASTM D6751; most will not meet CN specification in EN 14214 Kinematic viscosity (40 C) of most algal biodiesel likely in the range 3.0 4.0 mm 2 /s Oxidative stability low due to highly polyunsaturated fatty acids. Cold flow: Cloud point of palm oil (44% C16:0; 4% C18:0) around 16 C. Cloud point of soybean oil (10% C16:0; 5% C18:0) around 0 C. Cloud points of most algal biodiesel fuels likely between these values.

Biodiesel from Algae Claimed high production potential not (yet) realized Uncertain future. Any algal biodiesel will need favorable properties to compete in the marketplace. Conversely, algae delivering fuels with favorable properties will need actual high production. Property trade-off likely missing due to relatively low amounts of monounsaturated fatty acid chains

Fatty Acid Profiles of Algal Oils A different profile: Trichosporon capitatum 16:0 7.0%, 18:0 1.1% 16:1 1.0%, 18:1 / 79.8%, C18:2 / 8.0% (H. Wu et al., Appl. Energy 2011, 88, 138-142) i Usually greater number of components than vegetable oils Fatty acid profiles of a species depend on growing conditions such as Temperature Light Nutrients.

Renewable Diesel: Overview Closer in composition and properties to (ultra-low sulfur) petrodiesel. No / low sulfur, aromatics Higher oxidative stability Cold flow varies Lighter form: Aviation fuel Regulated exhaust emissions likely reduced compared to regular petrodiesel (but not necessarily biodiesel). Feedstock availability and cost issues similar to biodiesel Low lubricity Energy use / energy balance? Likely less favorable than biodiesel

Biodiesel vs. Renewable Diesel: Mass (Energy) Balance of Products Biodiesel - Methyl oleate from triolein: C 57 H 104 O 6 + 3 CH 3 OH 3 C 19 H 36 O 2 + C 3 H 8 O 3 885.45 3 x 296.495 =889.458 = 100.5% mass 40000 kj/kg x 1.005 = 40200 kj 39547 kj/l Renewable Diesel - Heptadecane from triolein: C 57 H 104 O 6 + 6 H 2 3 C 17 H 36 + 3 CO 2 + C 3 H 8 885.45 3 x 240.475 =721.425 = 81.5% mass 47500 kj/kg x 0.815 = 38305 kj 41310 kj / L Glycerol and propane not accounted for here.

Biodiesel / Renewable Diesel: An Evaluation Use each fuel where most appropriate for its properties? Biodiesel for ground applications? Utilize environmental and other benefits: Reduced exhaust emissions, biodegradability, safer handling Renewable diesel (in lighter form) for aviation applications due to cold flow? Energy balance may be of less interest here: Sacrifice some other energy source(s) in order to have aviation fuel available? No other (realistic) alternative jet fuel.

Biodiesel / Renewable Diesel: An Evaluation Consider limited amount of feedstock available. Feedstocks with high yield not (yet) available in sufficient quantities (algae). Fuel property issues. Co-products: Renewable glycerol is preferable Complex issue: Advantages and disadvantages to both approaches.

Summary / Conclusions Biodiesel with improved properties needed to take advantage of its benefits Legislative and regulatory incentives may/do not suffice if properties do not meet market demands Feedstocks with high supply potential (algae!) will need to address the issue of fuel properties.

Parting Thoughts: Rudolf Diesel (1912) The fact that fat oils from vegetable sources can be used may seem insignificant to-day, but such oils may perhaps become in course of time of the same importance as some natural mineral oils and the tar products are now.... In any case, they make it certain that motor-power can still be produced from the heat of the sun, which is always available for agricultural purposes, even when all our natural stores of solid and liquid fuels are exhausted. R. Diesel, The Diesel Oil-Engine, Engineering 93:395 406 (1912). Chem. Abstr. 6:1984 (1912).