CHAPTER 19 DC Circuits Units

Similar documents
Chapter 26 DC Circuits. Copyright 2009 Pearson Education, Inc.

Chapter 26 DC Circuits

Chapter 28. Direct Current Circuits

AP Physics B Ch 18 and 19 Ohm's Law and Circuits

Chapter 19: DC Circuits

Lecture PowerPoints. Chapter 19 Physics: Principles with Applications, 6 th edition Giancoli

Circuits-Circuit Analysis

Chapter 27. Circuits

10/23/2016. Circuit Diagrams. Circuit Diagrams. Circuit Elements

Direct-Current Circuits

COLLEGE PHYSICS Chapter 21 CIRCUITS, BIOELECTRICITY, AND DC INSTRUMENTS

Lecture 5, 7/19/2017. Review: Kirchhoff s Rules Capacitors in series and in parallel. Charging/Discharging capacitors. Magnetism

INVESTIGATION ONE: WHAT DOES A VOLTMETER DO? How Are Values of Circuit Variables Measured?

7. How long must a 100-watt light bulb be used in order to dissipate 1,000 joules of electrical energy? 1) 10 s 3) 1,000 s 2) 100 s 4) 100,000 s

Electronics Technology and Robotics I Week 2 Basic Electrical Meters and Ohm s Law

SOURCES OF EMF AND KIRCHHOFF S LAWS

Chapter Assessment Use with Chapter 22.

V=I R P=V I P=I 2 R. E=P t V 2 R

Name: Base your answer to the question on the information below and on your knowledge of physics.

Series and Parallel Networks

Write the term that correctly completes the statement. Use each term once. ampere. electric current. resistor battery.

16.3 Ohm s Law / Energy and Power / Electric Meters

Chapter 19. DC Circuits

Which of the following statements is/are correct about the circuit above?

PHYSICS MCQ (TERM-1) BOARD PAPERS

Electric current, resistance and voltage in simple circuits

11.1 CURRENT ELECTRICITY. Electrochemical Cells (the energy source) pg Wet Cell. Dry Cell. Positive. Terminal. Negative.

Electric Circuits Exam

ELECTRICITY & MAGNETISM - EXAMINATION QUESTIONS (4)

Class X Chapter 09 Electrical Power and Household circuits Physics

Level 3 Physics: Demonstrate understanding of electrical systems Batteries and Kirchoff s Laws - Answers

Batteries n Bulbs: Voltage, Current and Resistance (8/6/15) (approx. 2h)

PhysicsAndMathsTutor.com 1

Lab #1: Electrical Measurements I Resistance

Mandatory Experiment: Electric conduction

INDIAN SCHOOL MUSCAT

Name Period. (c) Now replace the round bulb(s) with long bulb(s). How does the brightness change?

34.5 Electric Current: Ohm s Law OHM, OHM ON THE RANGE. Purpose. Required Equipment and Supplies. Discussion. Procedure

Electromagnetic Induction, Faraday s Experiment

Unit 8 ~ Learning Guide Name:

Current, resistance and potential difference

Basic Circuits Notes- THEORY. An electrical circuit is a closed loop conducting path in which electrical current flows

Section 6 HOW ARE VALUES OF CIRCUIT VARIABLES MEASURED?

Figure 1: (a) cables with alligator clips and (b) cables with banana plugs.

EXPERIMENT - 1 OHM S LAW

Sharjah Indian School Sharjah Boys Wing

Electricity Unit Review

Chapter 19: Direct Current Circuits

Chapter 21 Electric Current and Direct- Current Circuits

Q2. The diagram shows a network of four 2 Ω resistors. The effective resistance, in Ω, between X and Y is A 0.5 B 1.2 C 1.7. D 2.

LABORATORY 2 MEASUREMENTS IN RESISTIVE NETWORKS AND CIRCUIT LAWS

The rod and the cloth both become charged as electrons move between them.

Electricity concepts teacher backgrounder

Student Exploration: Advanced Circuits

Ohm s Law. 1-Introduction: General Physics Laboratory (PHY119) Basic Electrical Concepts:

PAPER ASSIGNMENT #1: ELECTRIC CIRCUITS Due at the beginning of class Saturday, February 9, 2008

Science Olympiad Shock Value ~ Basic Circuits and Schematics

A device that measures the current in a circuit. It is always connected in SERIES to the device through which it is measuring current.

15 Electrical Circuits Name Worksheet A: SERIES CIRCUIT PROBLEMS

ELECTRICITY: INDUCTORS QUESTIONS

Current Electricity. GRADE 10 PHYSICAL SCIENCE Robyn Basson CAPS

RL Circuits Challenge Problems

Chapter 3. ECE Tools and Concepts

Circuit Analysis Questions A level standard

PHY222 Lab 4 Ohm s Law and Electric Circuits Ohm s Law; Series Resistors; Circuits Inside Three- and Four-Terminal Black Boxes

4.2 Electrical Quantities

Chapter 7. The Series-Parallel Network


ELECTRICAL FUNDAMENTALS

JSUNIL TUTORIAL PUNJABI COLONY GALI 01

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

DC CIRCUITS ELECTROMAGNETISM

Unit P.2, P2.3. Currents in electric circuits E ½. F Fuel gauge indicator. Fuel tank. Ammeter. Float. Battery. Sliding contact. Pivot 12V.

8.2 Electric Circuits and Electrical Power

LAB 7. SERIES AND PARALLEL RESISTORS

Application Notes. Calculating Mechanical Power Requirements. P rot = T x W

Lab 2 Electrical Measurements and Ohm s Law

Physics Experiment 9 Ohm s Law

Goals. Introduction (4.1) R = V I

Using Electricity. Summary Notes. 1. From the Wall Socket Household appliances. Earth wire and safety.

2. Four 20-Ω resistors are connected in parallel and the combination is connected to a 20- V emf device. The current in any one of the resistors is:

physicspp.com Lester Lefkowitz/CORBIS

Higher - Electricity Powerpoint Answers

12.7 Power in Electric Circuits

INDUCTANCE FM CHAPTER 6

ELEN 236 DC Motors 1 DC Motors

Chapter 31. Faraday s Law

Exam-style questions: electricity

Chapter 21 Practical Electricity

Electrical Circuits W.S.

7.9.2 Potential Difference

HOW IS ELECTRICITY PRODUCED?

Update. This week A. B. Kaye, Ph.D. Associate Professor of Physics. Michael Faraday

Physics Work with your neighbor. Ask me for help if you re stuck. Don t hesistate to compare notes with nearby groups.

CLASSIFIED 5 MAGNETISM ELECTROMAGNETIC INDUCTION GENERATOR MOTOR - TRANSFORMER. Mr. Hussam Samir

CHAPTER 2 ELECTRIC CIRCUIT

Higher Homework One Part A. 1. Four resistors, each of resistance 20Ω, are connected to a 60V supply as shown.

APPARATUS AND MATERIAL REQUIRED Resistor, ammeter, (0-1.5A) voltmeter (0-5V ), battery, one way key, rheostat, sand paper, connecting wires.

Principles and types of analog and digital ammeters and voltmeters

Electromagnetic Induction

Transcription:

CHAPTER 19 DC Circuits Units EMF and Terminal Voltage Resistors in Series and in Parallel Kirchhoff s Rules EMFs in Series and in Parallel; Charging a Battery Circuits Containing Capacitors in Series and in Parallel RC Circuits Resistor and Capacitor in Series Electric Hazards Ammeters and Voltmeters ammeter MEANING OF ELECTRIC SYMBOLS voltmeter galvanometer resistor capacitor cell switch electric connection battery of cells in series battery of cells in parallel EMF and Terminal Voltage Electric circuit needs battery or generator to produce current these are called sources of emf. Battery is a nearly constant voltage source, but does have a small internal resistance, which reduces the actual voltage from the ideal emf: 1

This resistance behaves as though it were in series with the emf. Example 1: Battery with internal resistance A 65.0 resistor is connected to the terminals of a battery whose emf is 12.0V and whose internal resistance is 0.50. Calculate a) The current in the circuit. b) The terminal voltage of the battery, V ab. 12.0V I 0.183A R r 65.0 0.5 12.0 V (0.183A)(0.5 ) 11.9V c) the power dissipated in the resistor R and the battery s internal resistance r. P 2 2 R I R P (0.183A) (65.0 ) 2.18W 2 2 r I r (0.183A) (0.5 ) 0.02W Resistors in Series and in Parallel A series connection has a single path from the battery, through each circuit element in turn, then back to the battery. The current through each resistor is the same; the voltage depends on the resistance. The sum of the voltage drops across the resistors uals the battery voltage. 2

From this we get the uivalent resistance (that single resistance that gives the same current in the circuit). When several resistors are put in series the total or uivalent resistances is the sum of the separate resistances. Equivalent Resistance Series Four resistors are replaced with their uivalent resistance This sum applies to any number of resistances in series. Note that when you add more resistance to the circuit, the current through the circuit will decrease. For example, if a 12-V battery is connected to a 4 resistor, the current will be 3A. But if the 12-V battery is connected to three 4 resistors in series, the total resistance is 8 and the current through the entire circuit will be only 1 A. Resistors in Series and in Parallel A parallel connection splits the current; the voltage across each resistor is the same: The wiring in houses and buildings is arranged so all electric devices are in parallel. With parallel wiring, if you disconnect one device, the current to the other devices is not interrupted. 3

In a parallel circuit, the total current I that leaves the battery splits into three separate paths. Let I1, I2, and I3be the currents through each of the resistors, R1, R2, and R3 respectively. The current I flowing into junction A must ual the current flowing out of the junction. The total current is the sum of the currents across each resistor: Equivalent Resistance Parallel Equivalent resistance replaces the two original resistances Equivalent Resistance 1 1 1 1 R R1 R2 R3 The inverse of the uivalent resistance of two or more resistors connected in parallel is the algebraic sum of the inverses of the individual resistance The uivalent is always less than the smallest resistor in the group Problem-Solving Strategy, 1 Combine all resistors in series They carry the same current The potential differences across them are not the same The resistors add directly to give the uivalent resistance of the series combination: R = R 1 + R 2 + 4

Problem-Solving Strategy, 2 Combine all resistors in parallel The potential differences across them are the same The currents through them are not the same The uivalent resistance of a parallel combination is found through reciprocal addition: 1 1 1 1 R R R R 1 2 3 Problem-Solving Strategy, 3 A complicated circuit consisting of several resistors and batteries can often be reduced to a simple circuit with only one resistor Replace any resistors in series or in parallel using steps 1 or 2. Sketch the new circuit after these changes have been made Continue to replace any series or parallel combinations Continue until one uivalent resistance is found Problem-Solving Strategy, 4 If the current in or the potential difference across a resistor in the complicated circuit is to be identified, start with the final circuit found in step 3 and gradually work back through the circuits Use ΔV = I R and the procedures in steps 1 and 2 Equivalent Resistance Complex Circuit 5

Example 2: Series and parallel resistors Two 100 resistors are connected in (a) series. What is the current through each resistor and what is the uivalent resistance of each circuit? V 24.0V I 0.120A R R 100 100 1 2 R V 24.0V 200 I 0.120A (b) parallel, to a 24.0V battery. Any given charge (or electron) can flow through only one or the other of the two resistors. The total current I from the battery split to flow through each resistor, so I uals the sum of the separate currents through the two resistors. V V 24.0V 24.0V I R R 100 100 R 1 2 V 24.0V 50 I 0.48A 0.24A + 0.24A=0.48A Example 3: Circuit with series and parallel How much current is drawn from the battery shown to the right? The current I that flows out of the battery all passes through the 400 resistor, but then splits into I1 and I2 passing through the 500 and 700 resistors. 1 1 1 0.0020 0.0014 500 700 R P 0.0034 1 1 1 RP 1 290 1 0.0034 R 400 290 690 I V 12.0V 0.0174A 17mA R 690 6

Example 4: Current in one branch What is the current through the 500 resistor? V IR Vab (0.0174A)(400 ) 7.0V 5.0V I1 x m 500 I 1 5.0V 7mA 700 2 1.0 10 A 10 A Example 5: Analyzing a circuit A 9.0-V battery whose internal resistance r is 0.050 connected in the circuit. How much current is drawn from the battery? To find the current out of the battery first determine the uivalent resistance of the entire circuit, including the r. 1 1 1 3 R 8.0 4.0 8.0 1 so R1 2.7 This 2.7 is in series with the 6.0 resistor. The net resistance of the lower arm of the circuit is R2 6.0 2.7 8.7 1 1 1 0.21 10.0 8.7 R 3 so R 1 4.8 0.21 3 1 1 This 4.8 is in series with the 5.0 resistor and the 0.50 internal resistance of the battery so the total uivalent resistance of the circuit is R 4.8 5.0 0.50 10.3 9.0V I 0.87A R 10.3 The internal voltage of the battery is Vab Ir 9.0 V (0.87A)(0.50 ) 8.6V 7

To determine the current in the 6.0 resistor: It must be the same as the current through the8.7. Why? The voltage across that will be 8.7 the emf of the battery minus the voltage drops across r and the 5.0 resistor: 9.0 V (0.87A)(0.50 5.0 ) I ' 0.48A 8.7 Example 6: Resistor ladder. Estimate the uivalent resistance of the ladder of ual 100 resistors. Start at the end where the three are in series. 3R R1 R2 R 3(100 ) 300 3 Next we can see that this combination is in parallel with the next resistor to the left. The uivalent resistance of the resistors in the dashed box is 1 1 1 4 3R so R 1 R R 3R 3R 4 1 which numerically is 300 / 4 75 The resistor in the dashed box (c) are in series, and are uivalent to 2R 3 R / 4 11 R / 4 which uals 1100 / 4 275 Now this 11 R / 4 is in parallel with the next step on the ladder The resistance in the dashed box (d) is uivalent to 1 1 4 15 so 11R R R 11R 11R R2 15 This in turn is in series with two more, yielding the final uivalent resistance of 11R 41 R R R R R 100 so R 273 15 15 8

Gustav Kirchhoff 1824 1887 Invented spectroscopy with Robert Bunsen Formulated rules about radiation Kirchhoff s Rules There are ways in which resistors can be connected so that the circuits formed cannot be reduced to a single uivalent resistor Two rules, called Kirchhoff s Rules can be used instead For these circuits we use Kirchhoff s rules. Junction rule: The sum of currents entering a junction uals the sum of the currents leaving it. I 1 = I 2 + I 3 From Conservation of Charge Diagram b shows a mechanical analog Loop Rule The sum of the potential differences across all the elements around any closed circuit loop must be zero A statement of Conservation of Energy 9

Traveling around the loop from a to b In a, the resistor is transversed in the direction of the current, the potential across the resistor is IR In b, the resistor is transversed in the direction opposite of the current, the potential across the resistor is +IR In c, the source of emf is transversed in the direction of the emf (from to +), the change in the electric potential is +ε In d, the source of emf is transversed in the direction opposite of the emf (from + to -), the change in the electric potential is -ε Junction Equations from Kirchhoff s Rules Use the junction rule as often as needed, so long as, each time you write an uation, you include in it a current that has not been used in a previous junction rule uation In general, the number of times the junction rule can be used is one fewer than the number of junction points in the circuit The loop rule can be used as often as needed so long as a new circuit element (resistor or battery) or a new current appears in each new uation You need as many independent uations as you have unknowns Problem-Solving Strategy Kirchhoff s Rules Draw the circuit diagram and assign labels and symbols to all known and unknown quantities Assign directions to the currents. Apply the junction rule to any junction in the circuit Apply the loop rule to as many loops as are needed to solve for the unknowns Solve the uations simultaneously for the unknown quantities Check your answers EMFs in Series and in Parallel; Charging a Battery When two or more sources of emf, such as batteries, are arranged in series, the total voltage is the algebraic sum of their respective voltages. When a 20-V and a 12-V battery are connected oppositely the net voltage is 8-V. That is, a positive test charge moved from a to b gains in potential by 20-V, but when it passes from b to c it drops by 12-V. So the net change is 20V 12 V = 8 V. 10

You might think that connecting batteries in reverse like this would be wasteful. For most purposes that would be true. But such a reverse arrangement is precisely how a battery charger works. The 20-V source is charging up the 12-V battery. Because of its greater voltage, the 20-V source is forcing charge back into the 12-V battery. Electrons are being forced into its negative terminal and removed from its positive terminal. EMF s in parallel only make sense if the voltages are the same; this arrangement can produce more current than a single emf. Example 8: Jump starting a car A good battery is used to jump start a car with a weak battery. The good battery has an emf of 12.5 V and an internal resistance of0.020. The weak battery has an emf of 10.1 V and internal resistance of 0.10. Each jumper cable is 3.0 m long and 0.50 cm in diameter, and can be attached as shown. Assume the starter motor can be represented as a resistor RS 0.15. Determine the current through the starter motor (a) if only the weak battery is connected to it. The current with only the weak battery and no jumper cables is an emf connected to two resistances in series: Determine the current through the starter motor (b) if the good battery is also connected. Apply Kirchhoff s rules first determine the resistance of the jumper cables using their dimensions and the resistivity 8 1.68x10 m for copper Find the resistance of the jumper cables that connect the good battery. RJ Kirchhoff s loop rule for the full outside gives: 0.10 0.15 0.25 I V / R 10.1V / 0.25 40A 8 2 2 L/ A (1.68 x10 m)(3.0 m)/ (0.25x10 m) 0.0026 12.5 V I (2 R r ) I R 0 1 J 1 3 12.5 V I (0.025 ) I (0.15 ) 0 1 3 S (a) Since (2 RJ r) (0.0052 0.020 ) 0.025 The loop rule for the lower loop, including the weak battery and the starter, gives 10.1 V I (0.15 ) I (0.10 ) 0 3 2 (b) 11

The junction rule at point B gives I I I 1 2 3 (c) We have three uations in three unknowns: I1 I3 I2 and we substitute this: 12.5 V ( I I )(0.025 ) I (0.15 ) 0 3 2 3 12.5 V I (0.175 ) I (0.025 ) 0 3 2 Combining this last uation with (b) gives I3 71A The other currents are I 5 A and I 76A 2 1 The terminal voltage of the weak 10.1V battery is V 10.1 V ( 5 A)(0.10 ) 10.6V BA Circuits Containing Capacitors in Series and in Parallel Capacitors in parallel have the same voltage across each one Capacitors in parallel are shown to the right. In this case, the total capacitance is the sum: Capacitors in series have the same charge: In this case, the reciprocals of the capacitances add to give the reciprocal of the uivalent capacitance: 12

CHAPTER 16 17 18 CURRENTS RESISTANCE CIRCUITS CONCEPTS 1. The number of electrons that pass a certain point in a conductor in a given amount of time is defined as an electric current. 2. An electric current in a metallic solid consists of moving electrons. 3. Electrical conductivity in liquid solutions depends on the presence of free ions. 4. Conductivity in ionized gases depends on positive ions, negative ions, and free electrons. 5. The condition that must exist between two points in a conductor in order to maintain a flow of charge is a potential difference. 6. The ratio of the potential difference across a conductor to the current in the conductor is called resistance. 7. If the diameter of a wire were to increase, its electrical resistance would decrease. 8. If the length of a copper wire is reduced by half, the resistance of the wire will be halved. 9. The resistance of a metallic wire conductor is inversely proportional to its cross-sectional area. 10. If both the cross-sectional area and the length of a metallic conductor were doubled, the resistance of the conductor would be unchanged. 11. The graph that best represents how the resistance (R) of a series of copper wires of uniform length and temperature varies with cross-sectional area (A) is D. 13

12. The graph that best represents the relationship between the resistance of a copper wire of uniform cross-sectional area and the wire s length at constant temperature is C. 13. As the temperature of a metallic conductor increases, its resistance usually increases. 14. The graph to the right shows the relationship between current and potential difference for four resistors, A, B, C, and D. The resistor with the greatest resistance is A. 15. The slope of the line on the graph to the right represents resistance of a material. 16. The graph to the right shows how the voltage and current are related in a simple electric circuit. For any point on the line, the ratio of V to I represents resistance in ohms. 17. The graph o the right that best represents a material behaving according to Ohm s law is D. 18. The graph on the right that best represents the relationship between current (I) and the potential difference (V) in a circuit in which resistance remains constant is B. 14

19. The two resistor arrangements to the right that have uivalent resistance is B and C. 20. Diagram A shown below shows the correct current direction in a circuit segment. 21. The diagram on the right represents a segment of a circuit. The current in wire X may be 2 amperes. 22. The quantity that must be the same for each component in any series circuit is current. 23. As more resistors are added in series across a battery, the potential drop across each resistor decreases. 24. The unit of electric power is volt 2 /ohm. 25. As the resistance of a constant-voltage circuit is increased, the power developed in the circuit decreases. 26. As the resistance of a lamp operating at a constant voltage increases, the power dissipated by the lamp decreases. 27. Joule/second is a unit uivalent to a watt, the SI unit of power. 28. The diagram to the right represents a segment of a circuit. The current in ammeter A is 7 amperes. 29. The diagram to the right shows the current in a segment of a direct current circuit. The reading of ammeter A is 5 A. 30. An electric heater rated at 4,800 watts is operated on 120 volts. If the heater were replaced by one having a greater resistance, the amount of heat produced each second would decrease. 15