Solenoid valves Type EVR 2 40 NC/ NO REFRIGERATION AND AIR CONDITIONING. Technical leaflet

Similar documents
Solenoid valve Types EVR 2 EVR 40 NC/NO

Solenoid valves. Solenoid valves, type PKVD Solenoid valves, type EVR NC / NO

Solenoid valves type EVR 2 40 NC / NO

Solenoid valve for R410A and R744 Types EVR 2 - EVR 6 and EVRH 10 - EVRH 40

Solenoid valves, type EVRA 3 40 and EVRAT REFRIGERATION AND AIR CONDITIONING. Technical leaflet

Solenoid valves EVRA and EVRAT

Solenoid valves type EVRA 3 to 40 and EVRAT 10 to 20

MAKING MODERN LIVING POSSIBLE. Solenoid valves Type EVU for fluorinated refrigerants REFRIGERATION AND AIR CONDITIONING.

Solenoid valves Type EVU

Solenoid valves Type EVU for fluorinated refrigerants

Solenoid valves type EVSA 25 50

Pressure and temperature regulators, type PM, and pilot valves

Hot gas bypass regulator type CPCE Liquid gas mixer type LG (accessory)

Electrically Operated Expansion Valve Types AKV 10, AKV 15 and AKV 20

Capacity regulators (hot gas bypass) PMC and CVC

Electric Expansion Valve Type AKVO 10

Modulating liquid level regulators, direct-controlled SV 1 and SV 3

Electric expansion valves Types AKVA 10, 15 & 20

Thermostatic expansion valves PHT

Electronically operated expansion valve for CO 2 Type AKVH

Pressure operated water valve Type WVFX and WVS

Crankcase pressure regulator Type KVL

Electric expansion valve Type AKV 10P, AKV 10PS

Crankcase pressure regulator Type KVL

HANDBOOK SOLENOID VALVES. Ed SOLENOID VALVES VS-ED 01/ ENG 1

HANDBOOK SOLENOID VALVES. Ed SOLENOID VALVES VS-ED 01/ ENG 1

Electronic suction modulating valves type KVS

Crankcase Pressure Regulating Valves

Electric expansion valve for R744 (CO 2 ) Type AKVH

Liquid level control. Thermostatic liquid level regulators, type TEVA. High pressure float valve, type HFI

Solenoid valves REFRIGERATION AND AIR CONDITIONING. Fitters notes

SOLENOID VALVES FOR REFRIGERATING SYSTEMS

Solenoid Valves Type EVR

Servo-operated 2/2-way solenoid valves Type EV220A

Electric expansion valve Type ETS ETS 400

Electric expansion valve Type ETS ETS 400

Pilot valves Types CVP, CVPP, CVC, CVE, EVM and CVH

Crankcase pressure regulator Type KVL

Expansion valves - 2 of 2

Pilot operated main valves for regulating pressure and temperature, type PM

Technical brochure Electrically operated expansion valves, type ETS 6

FA + solenoid valve Type ICF 15/20 EVRAT

Pilot valves for servo opereated main valves REFRIGERATION AND AIR CONDITIONING. Technical leaflet

HANDBOOK SOLENOID VALVES. Ed SOLENOID VALVES VS-ED 01/ ENG 1

Stainless steel - the strong solution

HANDBOOK REGULATOR VALVES. Ed REGULATOR VALVES RP-ED 01/ ENG 1

Technical leaflet Thermostatic expansion valves with fixed orifice

Pilot-operated servo valve Type ICS

Assisted lift operated 2/2-way solenoid valves Type EV251B

Electric expansion valves Type ETS 6

Electrically operated expansion valves, type ETS

SOLENOID VALVES FOR REFRIGERATING SYSTEMS

Pressure Control Type KPU

Servo piston operated 2/2-way solenoid valves for steam Type EV245B

Data sheet. 2-way solenoid valves with Clip-on coils for neutral liquids and gases. January 2003 DKACV.PD.200.K B1472

Installation EVRA 32 & 40 precautions When pressure testing The coil The correct product... 18

Refrigeration K-211. Replacement Parts. Chillers, Condensers. Compressors, Motors. Electrical. Components. Heating. Indoor Air Quality.

Automatic controls catalogue E.N. 4

Injection valve, type TXI 2 REFRIGERATION AND AIR CONDITIONING. Technical leaflet

AIR CONDITIONING COMMERCIAL REFRIGERATION HEAT PUMP STANDARD PRODUCT

Thermostatic expansion valves Type TGE 10, TGE 20 and TGE 40

Pilot valves for servo operated main valves

Indirect servo-operated 2/2-way solenoid valves Type EV220W 10 - EV220W 50, NBR and EPDM versions

Servo-operated 2/2-way solenoid valves for steam Type EV225B

Solenoid valves for water supply and steam inlet Types EV220T, EV220W, EV220B, EV225B, and AV210

MAKING MODERN LIVING POSSIBLE. Solenoid valves, 2/2-way assisted lift operated type EV251B Technical brochure

Pressure Controls type KPU REFRIGERATION AND AIR CONDITIONING. Technical leaflet

EX4 / EX5 / EX6 / EX7 / EX8 Electrical Control Valves

Refrigeration Solenoid Valves & 3-Way Heat Reclaim Valves

Thermostatic expansion valves type TGE 10, TGE 20 and TGE 40

Pilot controlled servo valves Type ICS - Solenoid Valves Pressure Regulating Valves. Technical leaflet MAKING MODERN LIVING POSSIBLE

Type EV224B. Servo-operated 2/2-way solenoid valves for high pressure air. Data sheet

Data sheet. Solenoid valves 2/2-way direct-operated Type EV210B. February 2002 DKACV.PD.200.A B1504

Thermostatic expansion valves type TGE 10, TGE 20 and TGE 40

Coils for solenoid valves REFRIGERATION AND AIR CONDITIONING. Technical leaflet

Thermostatic Expansion Valve

Pilot-operated servo valve Type ICS

The precise step to take

A full line of field-tested CO 2 controls, stocked for your convenience

Servo-operated 2/2-way solenoid valves for high pressure

Electric operated valves Type CCM for R744 / CO2

Pressure Control, Differential Pressure Control, Type RT

Thermostatic Expansion

Pulse Width Modulation Valves. Models SPW-0 thru -7

Pilot-operated servo valve Type ICS

Solenoid valves for drinking water Types EV220BW and EV228BW

Pilot valves for servo operated main valves

Pressure control valve Type KDC

Solenoid valves 3/2-way direct-operated Type EV310A

HANDBOOK EXPANSION VALVES. Ed EXPANSION VALVES VE-ED 01/ ENG 1

Pressure switch and Thermostat Type CAS

Thermostatic Expansion

Thermo. operated water valve Type WVTS

HANDBOOK VALVES. Ed VALVES VR-ED 02/ ENG 1

CCMT - Electrically operated valves for transcritical and subcritical CO2

PRODUCT DATA HDF SERIES Solenoid Valve

(S)PORT - (S)PORT-II Evaporator Pressure Regulators

Solenoid valves, 2/2-way servo-operated type EV220B 6-22

Multi Ejector Solution TM for R744 (CO 2 ) Product type - CTM 1 and CTM 2 Liquid Ejector

quality products for refrigeration and air conditioning products suitable for CFC, HCFC and HFC 2006 release PRODUCT HANDBOOK

Transcription:

Solenoid valves EVR 2 40 NC/ NO REFRIGERATION AND AIR CONDITIONING Technical leaflet

2 DKRCCPDBB0A202-520H275 Danfoss A/S, 0-2006

Contents Page Introduction....................................................................................... 4 Features........................................................................................... 4 Approvals......................................................................................... 4 Technical data................................................................................... 4-5 Ordering........................................................................................ 6-8 Liquid capacity Q o kw, R22/ R4a/R404A/R507.................................................... 9 Liquid capacity Q o kw, R407C..................................................................... 0 Suction vapour capacity Q o kw, R22............................................................... 0 Suction vapour capacity Q o kw, R4a/R404A/R507................................................ Suction vapour capacity Q o kw, R407C............................................................ 2 Hot gas capacity Q h kw, R22....................................................................... Hot gas capacity Q h kw, R4a.................................................................... 4 Hot gas capacity Q h kw, R404A/R507.............................................................. 5 Hot gas capacity Q h kw, R407C.................................................................... 6 Hot gas capacity G h kg/s, R22/R4a............................................................... 7 Hot gas capacity G h kg/s, R404A/R507/R407C...................................................... 8 Design/ Function................................................................................. 9 Material specification............................................................................. 20 Dimensions and weight, EVR (NC) 2 5 and -> 5 (NO) with fl are connection.............. 2 Dimensions and weight, EVR (NC) 2 22 and -> 22 (NO) with solder connection............. 22 Dimensions and weight, EVR (NC) 25, 2 og 40 with solder connection............................. 2 Danfoss A/S, 02-2006 DKRCCPDBB0A202-520H275

Introduction EVR is a direct or servo operated solenoid valve for liquid, suction, and hot gas lines with fluorinated refrigerants. EVR valves are supplied complete or as separate components, i.e. valve body, coil and flanges, if required, can be ordered separately. Features Approvals Technical data Complete range of solenoid valves for refrigeration, freezing and air conditioning plant Supplied both normally closed (NC) and normally open (NO) with de-energized coil Wide choice of coils for a.c. and d.c. Suitable for all fluorinated refrigerants Designed for media temperatures up to 05 C DnV, Det norske Veritas, Norge Pressure Equipment Directive (PED) 97/2/EC The Low Voltage Directive (LVD) 7/2/EC with amendments EN 6070-2-8 Refrigerants CFC, HCFC, HFC Temperature of medium 40 +05 C with 0 W or 2 W coil. Max. 0 C during defrosting. MOPD up to 25 bar with 2 W coil Flare connections up to 5/8 in. Solder connections up to 2 /8 in. Extended ends for soldering make installation easy It is not necessary to dismantle the valve when soldering in. EVR are also available with flange connections Polski Rejestr Statków, Polen MRS, Maritime Register of Shipping, Russia Versions with UL approval can be supplied to order. Ambient temperature and enclosure for coil See "Coils for solenoid valves", RD.J.E2.02 4 DKRCCPDBB0A202-520H275 Danfoss A/S, 0-2006

Technical data (continued) Opening differential pressure with standard coil Δp bar Max. (= MOPD) liquid 2 ) Temperature of medium Max. working pressure PB k v value ) Min. 0 W a. c. 2 W a. c. 20 W d. c. C bar m /h EVR 2 0.0 25 8 40 05 45.2 6 EVR 0.0 2 25 8 40 05 45.2 7 0.05 2 25 8 40 05 5 NO 0.05 2 2 2 40 05 5 EVR 0 0.05 2 25 8 40 05 5.9 EVR 0 NO 0.05 2 2 2 40 05 5.9 EVR 5 0.05 2 25 8 40 05 2 2.6 EVR 5 NO 0.05 2 2 2 40 05 2 2.6 (a.c.) 0.05 2 25 40 05 2 5.0 (d.c.) 0.05 6 40 05 2 5.0 NO 0.05 9 9 9 40 05 2 5.0 EVR 22 0.05 2 25 40 05 2 6.0 EVR 22 NO 0.05 9 9 9 40 05 2 6.0 ) 0 2 25 8 40 05 2 0.0 ) 0 2 25 8 40 05 2 6.0 ) 0 2 25 8 40 05 2 25.0 ) The k v value is the water flow in m /h at a pressure drop across valve of bar, ρ = 000 kg/m. 2 ) MOPD for media in gas form is approx. bar greater. ) Min. diff. pressure 0.07 bar is needed to stay open. Rated capacity kw Liquid Suction vapour Hot gas R22 R4a R404A/R507 R407C R22 R4a R404A/R 507 R407C R22 R4a R404A/R507 R407C EVR 2.20 2.90 2.20.0.50.20.20.46 EVR 5.40 5.00.80 5.08 2.50 2.00 2.00 2.4 6.0 4.80.20 5..80.0 0 6 7.40 5.90 6.00 7.8 EVR 0 8.20 5.0 26.70 5.9 4.0.0.90.96 7.50.90 4.0 6.98 EVR 5 52.0 48.0 6.50 49.6 5.90 4.20 5.0 5.4 24.00 9.00 9.60 2.28 0.00 92.80 70.0 94.94.40 8.0 0 9 46.20 6.60 7.70 44.8 EVR 22 2.00.00 84.0.74.70 9.70 2.20 2.60 55.40 4.90 45.20 5.74 20.00 86.00 4.00 88.94 22.80 6.0 20 20.98 92.0 7.20 75.0 89.5 22.00 297.00 225.00 02.68 6.50 26.0 2.60.58 48.00 7.00 20.00 4.56 50.00 464.00 5.00 472.82 57.00 40 5.00 52.44 2.00 8.00 88.00 224.07 Rated liquid and suction vapour capacity is based on evaporating temperature t e = -0 C, liquid temperature ahead of valve t l = C, pressure drop in valve Δp = 5 bar. Rated hot gas capacity is based on condensing temperature t c = +40 C, pressure drop across valve Δp = bar, hot gas temperature t h = +65 C, and subcooling of refrigerant Δt sub = 4 K. Danfoss A/S, 02-2006 DKRCCPDBB0A202-520H275 5

Ordering Complete valves Normally closed (NC) with a.c. coil ) Code no. Connection Valve body + 0 W a. c. coil with m cable Flare 2 ) Solder ODF in. mm in./mm in. mm EVR / 4 6 02F809 02F2042 02F2052 / 8 0 02F807 02F2082 02F2092 EVR 0 / 2 2 02F809 02F222 02F22 EVR 5 5 / 8 6 02F802 02F292 02F292 Code no. Connection Valve body + 0 W a. c. coil with terminal box Flare 2 ) Solder ODF in. mm in./mm in. mm EVR / 4 6 02F80 02F204 02F205 / 8 0 02F8074 02F208 02F209 EVR 0 / 2 2 02F8092 02F22 02F2 EVR 5 5 / 8 6 02F80 02F29 02F29 7 / 8 22 02F224 02F224 ) Please specify code no., voltage and frequency. Voltage and frequency can also be given in the form of an appendix number, see table "Appendix numbers". 2 ) Supplied without flare nuts. Separate flare nuts: / 4 in. or 6 mm, code no. 0L0 / 8 in. or 0 mm, code no. 0L5 / 2 in. or 2 mm, code no. 0L0 5 / 8 in. or 6 mm, code no. 0L67 ) Can only be used with DIN plug Appendix numbers Voltage V 2 24 42 48 5 220-20 240 80-400 420 24 5 220 240 0 220-20 Frequency Hz 50 50 50 50 50 50 50 50 50 60 60 60 60 50/60 50/60 Energy consumpt. W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Appendix no. 5 6 7 8 22 7 8 4 20 29 0 2 2 6 DKRCCPDBB0A202-520H275 Danfoss A/S, 0-2006

Ordering (conmtinued) Components Flare and solder connections Separate valve bodies, normally closed (NC) Required coil type Connection Flare ) in. mm in./mm in. mm EVR 2 a.c. / 4 6 02F8056 02F20 02F202 EVR EVR 0 EVR 5 a.c./d.c. / 4 6 02F807 02F206 02F207 / 8 0 02F86 02F204 02F208 / 8 0 02F8072 02F22 02F2 / 2 2 02F8079 02F209 02F26 / 2 2 02F8095 02F27 02F28 5 / 8 6 02F8098 02F24 02F24 5 / 8 6 02F80 02F228 02F228 Code no. Valve body without coil Solder ODF With manual With manual operation 5 / 8 6 02F800 2 ) 02F227 7 / 8 22 02F225 02F225 7 / 8 22 02F240 02F240 a.c. 7 / 8 22 02F254 / 8 28 02F244 02F245 7 / 8 22 02F264 02F264 d.c. 7 / 8 22 02F274 EVR 22 a.c. / 8 5 02F267 02F267 a.c./d.c. Without manual operation / 8 02F2200 02F220 28 02F2205 02F2206 / 8 5 02F2207 02F2208 / 8 5 042H05 042H06 5 / 8 042H0 042H04 42 042H07 042H08 5 / 8 042H09 042H0 42 042H 042H4 2 / 8 54 042H 042H2 Separate valve bodies, normally open (NO) ) Code no. Required Connection Valve body without coil ) coil type Flare ) Solder ODF in. mm in. mm in. mm / 8 0 02F8085 02F8085 02F290 02F295 EVR 0 / 2 2 02F809 02F809 02F29 02F296 5 / 8 6 02F8099 02F8099 02F299 02F299 EVR 5 a.c./d.c. 7 / 8 22 02F270 02F270 7 / 8 22 02F260 02F260 / 8 28 02F269 02F279 EVR 22 a.c. / 8 5 02F268 02F268 ) Valve bodies are supplied without flare nuts. Separate flare nuts: / 4 in. or 6 mm, code no. 0L0 / 8 in. or 0 mm, code no. 0L5 / 2 in. or 2 mm, code no. 0L0 5 / 8 in. or 6 mm, code no. 0L67 2 ) With manual operation. ) The normal range of coils can be used for the NO valves, with the exception of the double frequency versions of 0 V, 50/60 Hz and 220 V, 50/60 Hz. Coils See "Coils for solenoid valves", RD.J.E2.02. Danfoss A/S, 02-2006 DKRCCPDBB0A202-520H275 7

Ordering (continued) Components Flare and solder connections Separate valve bodies, normally closed (NC) EVR 5 Require coil type Connection Code no. Valve body + gaskets +bolts; without coil and flanges Without manual operation Without manual operation a.c./d.c. 02F24 02F224 a.c. Flanges 02F25 02F24 d.c. 02F27 02F26 Coils See "Coils for solenoid valves", RD.J.E2.02. Flange sets Valve type EVR 5 Connection Code no. Solder Weid in. mm in. mm in. / 2 027N5 5 / 8 6 027L7 027L6 / 4 027N20 7 / 8 22 027L2 027L22 / 4 027N220 7 / 8 22 027L22 027L222 027N225 / 8 28 027L229 027L228 Example EVR 5 without manual operation, code no. 02F224 + /2 in. weld flange set, code no. 027N5 + coil with termfnal box, 220 V, 50 Hz, code no. 08F670 (See "Coils for solenoid valves", RD.J.E2.02.). Accessories Description Mounting bracket for EVR 2,, 6 and 0 Strainer FA for direct mounting Code no. 02F097 See "FA" 8 DKRCCPDBB0A202-520H275 Danfoss A/S, 0-2006

Capacity Liquid capacity Q e kw Liquid capacity Q e kw at pressure drop across valve Δp bar 0. 0.5 EVR 2 2.6.7 4.6 5. 5.9 EVR 4.5 6. 7.7 8.9 9.9. 8.6 22.8 26. 29.4 EVR 0.4 44. 54.2 62.5 69.9 EVR 5 42.7 60. 74. 85.5 95.7 82.2 6.0 4.0 65.0 84.0 EVR 22 99.0 9.0 7.0 97.0 220.0 65.0 22.0 285.0 29.0 68.0 26.0 72.0 455.0 526.0 588.0 4.0 58.0 72.0 822.0 99.0 R22 Liquid capacity Q e kw Capacities are based on liquid temperature t l = C ahead of valve, evaporating temperature t e = 0 C, superheat 0 K. Correction factors When sizing valves, the plant capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of valve/evaporator. When the corrected capacity is known, the selection can be made from the table. R4a Liquid capacity Q e kw at pressure drop across valve Δp bar 0. 0.5 EVR 2 2.4.4 4.2 4.9 5.4 EVR 4. 5.8 7. 8.2 9. 2. 7.2 2.0 24. 27. EVR 0 28.8 40.7 49.9 57.6 64.4 EVR 5 9.4 55.7 68. 78.8 88. 75.8 07.0.0 52.0 70.0 EVR 22 90.9 29.0 58.0 82.0 20.0 52.0 24.0 26.0 0.0 9.0 24.0 4.0 420.0 485.0 542.0 79.0 56.0 656.0 758.0 847.0 Liquid capacity Q e kw R404A/R507 Liquid capacity Q e kw at pressure drop across valve Δp bar 0. 0.5 EVR 2.8 2.6.2.7 4. EVR. 4.4 5.4 6.2 6.9 9.2.0 5.9 8.4 20.5 EVR 0 2.8 7.8 4.6 48.8 EVR 5 29.8 42.2 5.7 59.6 66.8 57.4 8. 99.4 5.0 28.0 EVR 22 68.9 97.4 9.0 8.0 69.0 5.0 62.0 99.0 20.0 257.0 84.0 260.0 8.0 67.0 4.0 287.0 406.0 497.0 574.0 642.0 Correction factors for liquid temperature t l t l C 0 0 0 5 20 25 0 5 40 45 50 R22 0.76 2 8 0.92 0.96.0.05.0.6.22.0 R4a 0.7 0.79 6 0.90 0.95.0.06.2.9.27.7 R404A/R507 0.65 0.72 6 0.9.0.09.20..5.74 Danfoss A/S, 02-2006 DKRCCPDBB0A202-520H275 9

Capacity (continued) Liquid capacity Q e kw R407C Liquid capacity Q e kw at pressure drop across valve Δp bar 0. 0.5 EVR 2 2.4.4 4. 5.0 5. EVR 4.2 5.9 7.2 8.4 9. 2. 7.5 2.4 24.7 27.6 EVR 0 29.5 4.5 50.9 58.7 65.7 EVR 5 4 56.7 69.7 8 90.0 77.0 09.0 4.0 55.0 72.0 EVR 22 9. 0.0 6.0 85.2 207.0 55.0 28.0 268.0 09.0 46.0 247.0 50.0 428.0 494.0 55.0 86.0 546.0 669.0 77.0 864.0 Capacities are based on liquid temperature t l = C ahead of valve, evaporating temperature t e = 0 C, and superheat 0 K. Correction factors When sizing valves, the plant capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of valve/evaporator. When the corrected capacity is known, the selection can be made from the table. Correction factors based on liquid temperature t l t l C 0 0 0 5 20 25 0 5 40 45 50 R407C 0.7 0.78 5 9 0.94.0.06.4.2..46 Capacities are based on liquid temperature t l = C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function of evaporating temperature t e and pressure drop Δp across valve. Capacities are based on dry, saturated vapour ahead of valve. During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 0 K superheat. Suction vapour capacity Q e EVR 0 EVR 5 EVR 22 Pressure drop Δp bar 5 5 5 5 5 5 5 5 Suction vapour capacity Q e kw at evaporating temperature t e C 40 0 20 0 0 +0 0.7 7 0.98.7 2. 2. 2. 2.8.2 4.6 5.4 6. 5.5 6.5 7. 9. 0.9 2.2 4.6 7.4 9.6 22.8 27.2 0.5 0.94.. 2.2 2.7...7 4.2 5.9 7. 8. 7. 8.5 9.7.8 4.2 6. 8.9 22.7 25.7 29.5 5.4 4.2.4 2.9.4.9 4.0 4.7 5. 7.6 9. 0. 9. 0.7 2. 5.2 7.9 2 24. 28.8 2.6 8. 45.0 5.0.5.8 2.0.5 4. 4.8 4.8 5.9 6.6 9..4 2.7.2.7 5.2 8.6 22.8 25. 29.8 6.5 40.5 46.5 57.0 6..8 2.2 2.5 4. 5.2 6.0 5.8 7. 8.2.2.9 5.9.4 6.4 9.0 22.4 27.4.7 5.8 4.8 50.7 56.0 68.6 79.2 R22 2. 2.6.0 5. 6.2 7. 6.9 8.5 9.8. 6.7 8.8 6.0 20.0 22.6 26.6 2.6 7.6 42.6 52.2 6 66.5 8.5 94.0 Correction factors When sizing valves, the evaporator capacity must be divided by a correction factor depending on liquid temperature t l ahead of expansion valve. When the corrected capacity is known, the selection can be made from the table. Correction factors for liquid temperature t l t l C 0 0 0 5 20 25 0 5 40 45 50 R22 0.76 2 8 0.92 0.96.0.05.0.6.22.0 0 DKRCCPDBB0A202-520H275 Danfoss A/S, 0-2006

Capacity (continued) Capacities are based on liquid temperature t l = C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function of evaporating temperature t e and pressure drop Δp across valve. Capacities are based on dry, saturated vapour ahead of valve. During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 0 K superheat. Suction vapour capacity Q e EVR 0 EVR 5 EVR 22 Suction vapour capacity Q e kw EVR 0 EVR 5 EVR 22 Pressure drop across valve Δp bar 5 5 5 5 5 5 5 5 Pressure drop across valve Δp bar 5 5 5 5 5 5 5 5 R404A/R507 Suction vapour capacity Q e kw at evaporating temperature t e C 40 0 20 0 0 +0 0.62 0.7 2.5.7 2.0 2.0 2.4 2.7.9 4.6 5.2 4.6 5.5 6.2 7.7 9. 0. 2. 4.6 6.5 9. 22.8 25.8 0.97..9 2. 2.6 2.6.2.6 5.0 6. 6.9 6.0 7. 8. 2..8 6.2 9.4 22.0 25. 0. 4.5...4 2.5.0.4.5 4. 4.7 6.7 7.9 9.0 8.0 9.5. 5.8 8.0 2. 25. 28.8. 9.5 45.0..8.2.9 4. 4. 5. 5.9 8..4 0.0 2.2.6 6.6 2 22.7 26.6 2.6 6. 4.5 5.0 56.8 2.0 2..9 4.8 5.5 5. 6.5 7.5 2.5 4.4 2.2 5.0 7. 2 25.0 28.8 2.6 40.0 46. 5.0 62.5 72. R4a Suction vapour capacity Q e kw at evaporating temperature t e C 40 0 20 0 0 +0 0.7 7 0.98.7 2. 2. 2. 2.8.2 4.6 5.4 6. 5.5 6.5 7. 9. 0.9 2.2 4.6 7.4 9.6 22.8 27.2 0.5 6 0.5 0.58...4.5.7.9 2.9..7.4 4.0 4.4 5.8 6.6 7. 9. 0.6.7 4.5 6.5 8. 4.0. 2.0 2.4 2.7 2.7..7 5. 6. 7. 6. 7.5 8.5 0.5 2.5 4. 6.8 20.0 22.6 26.. 5....5 2.6..5.6 4.2 4.8 7.0 8. 9. 8. 9.7..9 6. 8.5 22.2 26. 29.6 4.8 4 46..4.7.9. 4.0 4.5 4.5 5.5 6. 8.6 0.6.7 0. 2.7 4.0 7.2 2. 2.4 27.7.8 7.4 4. 52.8 58.5.7 2.0 2.4 4.0 4.9 5.7 5.5 6.7 7.8 0.6.0 5.0 2.7 5.5 7.9 2. 25.9 29.9.8 4.4 47.4 52.8 64.8 74.8 2.0 2.4 2.8 4.7 5.8 6.7 6.4 7.9 9. 2. 5.2 7.5 4.8 8.2 2.0 24.6 0. 5.0 9.4 48.5 56.0 6.5 75.6 87.5 Correction factors When sizing valves, the plant capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of valve/evaporator. When the corrected capacity is known, the selection can be made from the table. Correction factors based on liquid temperature t l t l C 0 0 0 5 20 25 0 5 40 45 50 R4a 0.7 0.79 6 0.90 0.95.0.06.2.9.27.7 R404A/R507 0.65 0.72 6 0.9.0.09.20..5.74 Danfoss A/S, 02-2006 DKRCCPDBB0A202-520H275

Capacity (continued) Pressure drop across valve Δp bar R407C Suction vapour capacity Q e kw at evaporating temperature t e C 40 0 20 0 0 +0 5 0.6 0.72 0.95....4.4.7.8.7 2. 2.4 2.0 2.5 2.9 EVR 0 5.4.7.9.9 2. 2.7 2.6.0.5.2 4.0 4.4 4.0 4.9 5.6 4.9 6.0 6.9 EVR 5 5.9 2. 2.7 2.7.2.6.6 4.2 4.7 4.4 5.4 6. 5.5 6.7 7.7 6.7 8.2 9.5 Capacities are based on liquid temperature t l = C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function of evaporating temperature t e and pressure drop Δp across valve. Capacities are based on dry, saturated vapour ahead of valve. During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 0 K superheat. EVR 22 5 5 5 5 5.8 4.5 5. 4.6 5.4 6. 7.6 9. 2. 4.4 6. 8.9 22.6 25. 5. 6. 7.0 6. 7. 8. 2.2.9 6. 9.5 22. 25.4 4.6 6.8 8. 9.2 8. 9.5.0.5 5.9 8.2 2 25.6 29.0.9 4 45.4 8.6 0.5.7 0. 2.6 4.0 7. 2.0 2. 27.4.6 7. 42.8 52.4 58.2 0.5. 4.9 2.6 5.4 7.9 2. 25.8 29.8.7 4.2 47.7 52.6 64.5 74.4 2.9 6.2 8.2 5.5 9.4 2.9 25.8 6.5 4. 50.6 58.4 64.5 79. 9.2 Correction factors When sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve. When the corrected capacity is known, the selection can be made from the table. Correction factors based on liquid temperature t l t l C 0 0 0 5 20 25 0 5 40 45 50 R407C 0.7 0.78 5 9 0.94.0.06.4.2..46 Hot gas defrosting With hot gas defrosting it is not normally possible to select a valve from condensing temperature t c and evaporating temperature t e. This is because the pressure in the evaporator as a rule quickly rises to a value near that of the condensing pressure. It remains at this value until the defrosting is finished. In most cases therefore, the valve will be selected from condensing temperature t c and pressure drop Δp across the valve, as shown in the example for heat recovery. Heat recovery The following is given: Refrigerant = R22 Evaporating temperature t e = 0 C Condensing temperature t c = + 40 C Hot gas temperature ahead of valve t h = + 85 C Heat recovery condenser yield Q h = 8 kw The capacity table for 22 with t c = + 40 C gives the the capacity for an EVR 0 as 8.9 kw, when pressure drop Δp is bar. The correction factor for t e = 0 C is given in the table as 0.94. The correction for hot gas temperature t h = + 85 C has been calculated as 4% which corresponds to a factor of.04. Q h must be corrected with factors found: With Δp = bar is Q h = 8.9 x 0.94 x.04 = 8.7 kw. With Δp = bar, Q h becomes only 6. x 0.94 x.04 = 6.2 kw. An would also be able to give the required capacity, but with Δp at approx. bar. The is therefore too small. The EVR is so large that it is doubtful whether the necessary Δp of apprx. bar could be obtained. An EVR 5 would therefore be too large. Result: An EVR 0 is the correct valve for the given conditions. 2 DKRCCPDBB0A202-520H275 Danfoss A/S, 0-2006

Capacity (continued) An increase in hot gas temperature t h of 0 K, based on t h = t c C, reduces valve capacity approx. 2% and vice versa. A change in evaporating temperature t e changes valve capacity; see correction factor table below. Hot gas capacity Q h kw EVR 2 EVR EVR 0 EVR 5 EVR 22 Pressure drop across valve Δp bar Hot gas capacity Q h kw Evaporating temp. t e =-0 C. Hot gas temp. t h =t c C. Subcooling Δt sub =4 K Condensing temperature t c C +20 +0 +40 +50 +60 7 0.67 0.96.2.87 0.4 2.2.5 2.4.4 4.8 6.6 9. 5.6 8.0.4 5.7 22.2 7.7.0 5.7 2.5 0. 4.8 2. 0.0 4. 58. 7.8 25. 6. 49.5 70.0 29.6 42. 6 82.5 7.0 47.4 67.4 96. 2.0 87.0 74.0 05.0 5.0 206.0 29.0 0.50 0.7.02.7.99 5.20.72 2..5 2.5.6 5. 6.8 9.9 6.0 8.5 2. 6.2 2.6 8.2 6.6 22.2 2. 5.7 22..9 42.7 62. 8.8 26.8 8. 5.2 74.5.4 44.6 6.8 87.9 24.0 5 7.4 02.0 40.0 99.0 78.5 2.0 59.0 222.0 0.0 0.5 0.75.07.48 2.08 9.26.80 2.49.52 2.6.7 5. 7.4 6. 8.9 2.7 7.5 24.8 8.6 2. 7. 24.0.9 6.5 2.4. 46.2 65.2 9.7 28.0 40.0 55.4 78.2 2.9 46.7 66.6 92. 0.0 52.6 74.7 07.0 48.0 209.0 82. 7.0 67.0 2.0 26.0 0.54 0.77.0.57 2.6 0.92.0.85 2.65.64 2.7.4 5.5 7.9 6.5 9.2.0 8.7 25.6 8.8 2.5 7.8 25.5 5.0 7.0 24. 4. 49. 67.4 2 28.9 4.2 58.9 8 4.0 48.2 68.6 98.2 5.0 54.4 77. 0.0 57.0 26.0 85.0 2.0 72.0 246.0 7.0 R22 0.55 0.78..59 2.9 0.9.2.87 2.68.69 2.8.9 5.6 7.9 0.9 6.5 9..2 8.9 26.0 8.9 2.7 8.0 25.9 5.5 7.2 24.4 4.7 49.6 68.4 20.6 29. 4 59.5 82.0 4.4 48.8 69.4 99.2 7.0 55.0 78..0 59.0 29.0 86.0 22.0 74.0 248.0 42.0 Correction factors When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e. Correction factors for evaporating temperatur t e t e C 40 0 20 0 0 +0 R22 0.90 0.94 0.97.0.0.05 Danfoss A/S, 02-2006 DKRCCPDBB0A202-520H275

Capacity (continued) An increase in hot gas temperature t h of 0 K, based on t h = t c C, reduces valve capacity approx. 2% and vice versa. A change in evaporating temperature t e changes valve capacity; see correction factor table below. Hot gas capacity Q h kw EVR 2 EVR EVR 0 EVR 5 EVR 22 Pressure drop across valve Δp bar Hot gas capacity Q h kw R4a Evaporating temp. t e =-0 C. Hot gas temp. t h =t c C. Subcooling Δt sub =4 Kv Condensing temperature t c C +20 +0 +40 +50 +60 0.8 0.54 0.74.06.50 0.64 0.9.26.79 2.57.88 2.69.7 5.29 7.6 4.5 6.4 8.9 2.6 8. 6. 8.7 2. 7.2 24.8.8 6.8 2.4. 47.6 4. 2 28.0 9.7 57. 2.6.6 46.6 66.2 95.2 7.6 5.8 74.7 06.0 52.0 58.8 84. 7.0 66.0 28.0 0 0.57 2. 0.67 0.96.8.90 2.72.99 2.84 4.08 5.62 8.05 4.7 6.8 9.7. 9. 6.5 9.2. 8. 26.2 2.5 7.8 25.5 5. 50. 5.0 2. 0.6 42.2 6 24.9 5.5 5.0 7 0.0 9.8 56.8 8 2.0 6.0 62. 88.8 27.0 76.0 252.0 0.59 4.7 7 0.70 0.99.42.98 2.82 2.07 2.95 4.22 5.86 8.7 4.9 7.0 0.0.9 9.9 6.7 9.6.7 9.0 27.2.0 8.4 26.4 6.6 52. 5.5 22. 4.9 62.8 25.9 6.8 52.7 7.2 05.0 4.4 58.9 84. 7.0 67.0 64.7 92. 2.0 8.0 262.0 2 0.60 6.2.70 0.7.0.44 2.08 2.88 2..00 4.28 6.6 8.52 5.0 7. 4.6 2 6.7 9.7.9 20.0 27.7.2 8.7 26.7 8.5 5. 5.8 22.6 2. 46.2 6.9 26.4 7.4 5.4 77.0 07.0 42. 59.8 85.4 2.0 70.0 65.8 9.5 4.0 92.0 266.0 2 0.59 5.22 9 0.7.00.4 2.05 2.86 2.09 2.97 4.2 6.08 8.46 5.0 7. 4.4 2 6.8 9.7.8 9.8 27.5. 8.6 26.5 8.0 52.9 5.7 22..7 45.6 6.5 26.2 7. 52.9 76.0 06.0 4.8 59.4 84.6 22.0 69.0 65. 92.8 2.0 90.0 265.0 Correction factors When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e. Correction factors for evaporating temperatur t e t e C 40 0 20 0 0 +0 R4A 8 0.92 0.98.0.04.08 4 DKRCCPDBB0A202-520H275 Danfoss A/S, 0-2006

Capacity (continued) An increase in hot gas temperature t h of 0 K, based on t h = t c C, reduces valve capacity approx. 2% and vice versa. A change in evaporating temperature t e changes valve capacity; see correction factor table below. Hot gas capacity Q h kw EVR 2 EVR EVR 0 EVR 5 EVR 22 Pressure drop across valve Δp bar Hot gas capacity Q h kw R404A/R507 Evaporating temp. t e =-0 C. Hot gas temp. t h =t c C. Subcooling Δt sub =4 K Condensing temperature t c C +20 +0 +40 +50 +60 0.6 7.9 8 0.7.0.46 2.0 2.8 2.6.0 4.4 5.94 8.7 5. 7.2 0. 4. 9.9 7.0 9.9 4. 9. 27.2.4 8.9 27. 7. 52.4 6. 22.7 2.5 44.5 62.8 26.8 7.9 54.2 74.2 05.0 4.0 60.6 86.7 9.0 67.0 67.0 94.8 6.0 86.0 262.0 4 0.62 7.2.70 0.74.04.48 2.04 2.87 2.8.08 4.8 6.05 8.52 5.2 7. 4.4 20. 7. 0.0 4. 9.7 27.7.7 9.2 27.4 7.8 5. 6.4 2. 2.9 45.4 64.0 27.4 8.4 54.9 75.6 07.0 4.8 6.4 87.8 2.0 7.0 68.5 96.0 7.0 89.0 266.0 0.6 7.2 9 0.7.0.47 2.0 2.84 2.5.05 4.5 6.02 8.4 5. 7. 0. 4. 20.0 7.0 9.9 4.2 9.6 27.6.5 9. 27.2 7.7 52.6 6. 22.9 2.7 45.2 6.2 26.9 8.2 54.5 75. 05.0 4.0 6. 87.2 20.0 68.0 67. 95.5 6.0 88.0 26.0 0 0.58 2.9 2 0.69 0.98.9 2.00 2.74 2.05 2.90 4. 5.92 8.0 4.9 6.9 9.8 4. 9.2 6.7 9.4.4 9.2 26. 2.8 8.2 25.8 7.0 50.6 5.4 2.8.0 44.4 6 25.6 6. 5.7 74.0 0.0 40.9 58. 82.7 8.0 62.0 64.0 9 29.0 85.0 25.0 0.7 0.5 0.75.07.48 0.6 9.27.8 2.50.86 2.64.76 5.7 7.40 4.4 6. 8.9 2.8 7.6 6. 8.6 2.2 7.5 24. 6.5 2.5.6 46.2 4.0 9.8 28.2 40. 55.5 2..0 47.0 67.2 92.5 7. 52.8 75.2 07.0 48.0 58. 82.5 7.0 68.0 2.0 Correction factors When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e. Correction factors for evaporating temperatur t e t e C 40 0 20 0 0 +0 R440A/R507 6 8 0.9.0.0.07 Danfoss A/S, 02-2006 DKRCCPDBB0A202-520H275 5

Capacity (continued) An increase in hot gas temperature t h of 0 K, based on t h = t c C, reduces valve capacity approx. 2% and vice versa. A change in evaporating temperature t e changes valve capacity; see correction factor table below. Hot gas capacity Q h kw EVR 2 EVR EVR 0 EVR 5 EVR 22 Pressure drop across valve Δp bar Hot gas capacity Q h kw R407C Evaporating temp. t e =-0 C. Hot gas temp. t h =t c C. Subcooling Δt sub =4 K Condensing temperature t c C +20 +0 +40 +50 +60 0.5 0.75.08.48 2.09 0.9.28.8 2.50.5 2.7.8 5.4 7.4 6. 9.0 2.8 7.6 24.9 8.6 2. 7.6 24..9 6.6 2.6.6 46. 65. 9.9 28. 4 55.4 78.4.2 47.2 67.4 92.4.0 5. 75.5 07.9 47.8 209.4 82.9 7.6 69. 20.7 25.9 Correction factors When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e. 0.55 0.78.2.5 2.9 0.94.2.89 2.54.69 2.8 4.0 5.6 7.5 0.9 6.6 9.4. 7.8 26.0 9.0 2.8 8. 24.4 5.5 7. 24.5 5. 47 68. 20.7 29.5 42. 56. 82.0 4.5 49. 7 96.7 6.4 55.2 78.5 2.2 54.0 28.9 86.4 2.2 74.9 244.2 4.0 0.57 0.4.58 2.2 0.95.5.9 2.66.77 2.8 4.0 5.7 7.9. 6.7 9.5.6 8.7 26.5 9.2 2.9 8.5 25.7 6. 7.7 25.0 5.6 49.4 69.8 2. 0.0 42.8 59. 8.7 5.2 50.0 7. 98.8 9. 56. 79.9 4.5 58.4 22.6 88. 25.2 78.7 247.2 48.8 0.56 0.4 2.25 0.96.5.92 2.76.79 2.8.5 5.7 8.2.2 6.8 9.6.5 9.4 26.6 9.2 8.5 26.5 6.4 7.7 25. 5.7 5. 7 2.2 42.8 6. 84 5.4 5 7. 02. 4 56.6 8 4.4 6. 224.6 88.4 25.8 78.9 255.8 50.5 0.54 0.76.09.56 2.5 0.9.29.8 2.6.62 2.7.8 5.5 7.7 0.7 6.4 9. 2.9 8.5 25.5 8.7 2.4 7.6 25.4 4.8 6.9 2.9 4.0 48.6 67.0 2 28.7 4 58. 8.7 47.8 68.0 97.2 4. 5.9 76.5 08.8 55.8 24.6 84. 9.6 70.5 24.0 5.2 Correction factors for evaporating temperatur t e t e C 40 0 20 0 0 +0 R407C 0.90 0.94 0.97.0.0.05 6 DKRCCPDBB0A202-520H275 Danfoss A/S, 0-2006

Capacity (continued) An increase in hot gas temperature t h of 0 K reduces valve capacity approx. 2% and vice versa. Hot gas capacity G h kg/s EVR 2 EVR EVR 0 EVR 5 EVR 22 EVR 2 EVR EVR 0 EVR 5 EVR 22 Hot gas temperature th C +90 Hot gas temperature th C +60 Condensing temperature tc C Condensing temperature tc C Hot gas capacity G h kg/s at pressure drop across valve Δp bar 0.5 2 4 5 6 7 8 0.005 0.006 0.007 0.009 0.0 0.02 0.027 0.0 0.05 0.064 0.074 0.084 0.084 0.097 69 94 2 0 79 64 0. 0.8 0.59 0.69 0.704 4 0.968. 0.007 0.009 0.0 0.02 0.04 0.06 0.07 0.04 0.049 0.088 02 6 6 4 5 67 0.05 77 0.2 0.66 5 0.524 0.598 0.79 56 0.978.55.8.528 0.0 0.0 0.0 0.06 0.09 0.022 0.049 0.057 0.066 6 7 58 5 8 08 0.05 0.59 5 0.66 98 0.599 0.704 4 0.976.5.29.525.798 2.078 0.0 0.0 0.06 0.09 0.022 0.026 0.055 0.067 0.078 58 85 7 08 44 0.46 6 88 5 99 0.586 0.677 6 0.956.06..562.728 2.08 2.44 0.02 0.04 0.07 0.02 0.024 0.029 0.058 0.072 0.086 9 72 05 82 26 69 0.65 52 0.59 8 0.542 0.647 0.75 86.056.68.446.72.825 2.26 2.69 0.02 0.05 0.08 0.02 0.025 0.0 0.059 0.075 0.092 4 79 8 84 6 87 0.68 72 0.574 42 0.566 0.689 0.722 0.925.25.79.509.87.84 2.58 2.87 0.02 0.05 0.09 0.02 0.026 0.02 0.059 0.077 0.095 4 82 27 84 9 98 0.68 78 0.597 42 0.574 0.76 0.722 0.98.69 0.02 0.05 0.09 0.02 0.026 0.0 0.059 0.077 0.097 4 82 84 9 0.04 0.68 78 0.608 42 0.574 0.722 0.722 0.98.92 R 22 0.02 0.05 0.02 0.02 0.026 0.0 0.059 0.077 0.098 4 82 2 84 9 0.05 0.68 78 0.6 42 0.574 0.7 0.722 0.98.97.5.909.947.955 2.9 2.98.04.055 Hot gas capacity G h kg/s at pressure drop across valve Δp bar 0.5 2 4 5 6 7 8 0.005 0.006 0.007 0.008 0.009 0.0 0.024 0.028 0.02 0.057 0.066 0.076 0.074 0.087 49 74 79 09 4 92 0.4 0.9 78 0.556 0.64 0.747 7.002 0.007 0.008 0.009 0.0 0.0 0.06 0.02 0.08 0.045 0.075 0.09 07 9 4 99 8 8 9 86 0.6 0.9 67 0.549 0.68 0.76 97 0.998.92.402 0.008 0.0 0.02 0.0 0.06 0.02 0.04 0.049 0.059 0.094 7 4 24 54 85 47 0.07 0.7 96 0.68 44 86 0.602 0.725 0.79 0.994.97.24.55.87 0.008 0.0 0.04 0.04 0.08 0.02 0.04 0.055 0.068 0.098 6 29 7 2 58 0.4 2 0. 09 0.508 0.506 0.668 26.09.54.29.704 2.7 0.008 0.02 0.05 0.04 0.08 0.025 0.04 0.056 0.072 0.098 2 7 29 67 2 58 0.47 47 0. 6 0.56 0.506 0.679 76 26.08.42.29.7 2.27 0.02 0.05 0.08 0.025 0.056 0.07 2 72 67 25 0.47 52 6 0.542 0.679 85.08.446.7 2.259 0.02 0.05 0.05 0.05 0.08 0.025 0.025 0.025 0.056 0.07 0.07 0.07 2 72 72 72 67 25 25 25 0.47 52 52 52 6 0.542 0.542 0.542 0.679 85 85 85.08.446.446.446.7 2.259 2.259 R4a Danfoss A/S, 02-2006 DKRCCPDBB0A202-520H275 7

Capacity (continued) Hot gas capacity G h kg/s EVR 2 EVR EVR 0 EVR 5 EVR 22 Hot gas temperature th C +60 Condensing temperature tc C Hot gas capacity G h kg/s at pressure drop across valve Δp bar 0.5 2 4 5 6 7 8 0.007 0.008 0.009 0.0 0.0 0.05 0.04 0.08 0.04 0.08 0.09 02 05 2 5 9 7 52 87 0.24 68 0.529 0.672 0.765 62.05.95.48 0.009 0.0 0.02 0.06 0.08 0.02 0.047 0.054 0.06 27 4 46 67 89 9 0. 0.75 0.48 5 0.57 0.65 0.74 0.9.069.98.454 57.87 0.02 0.04 0.06 0.02 0.024 0.028 0.062 0.072 0.082 48 7 94 95 24 25 0.9 5 0.5 68 0.54 0.62 0.76 8.0.245.46 2.946 2.245 2.55 0.04 0.07 0.09 0.024 0.029 0.02 0.072 0.085 0.097 7 24 5 0.0 48 0.526 0.606 0.58 0.6 0.727 78.02.88.42 86.99 2.28 2.65.0 0.06 0.09 0.02 0.026 0.0 0.07 0.077 0.09 08 8 2 57 4 89 0.9 8 0.58 0.677 0.576 0.696 2 0.942.6.26.59.854 2.6 2.406 2.897.84 0.06 0.02 0.024 0.026 0.0 0.09 0.079 0.098 6 88 77 47 0.07 0.65 95 0.64 0.729 0.594 0.77 75 0.969.20.4.58.964 2.4 2.47.068.65 R404A/R507 0.06 0.02 0.025 0.027 0.05 0.04 0.08 0 22 9 4 88 49 0.6 0.8 0.5 0.62 0.76 0.6 0.758 0.92 0.978.29.49.58 2.022 2.4 2.47.6.80 0.06 0.02 0.025 0.027 0.05 0.04 0.08 0 26 9 4 0. 49 0.7 0.9 0.5 0.6 0.785 0.6 0.76 0.942 0.978.24.59.58 2.025 2.5 2.47.66.926 0.06 0.02 0.025 0.027 0.05 0.04 0.08 02 28 9 4 0.0 49 0.2 0.99 0.5 0.69 0.799 0.6 0.767 0.959 0.978.25.566.58 2.025 2.557 2.47.66.995 R407C Hot gas temperature th C Condensing temperature tc C Hot gas capacity G h kg/s at pressure drop across valve Δp bar 0.5 2 4 5 6 7 8 EVR 2 0.0054 0.0065 0.0076 0.0076 0.0097 0.008 0.008 0.08 0.040 0.08 0.040 0.07 0.00 0.05 0.084 0.02 0.065 0.098 0.02 0.065 0.0209 0.02 0.065 0.0209 0.02 0.065 0.022 EVR 0.00 0.0 0.0 0.0 0.05 0.07 0.07 0.02 0.024 0.02 0.024 0.028 0.022 0.026 0.02 0.022 0.028 0.04 0.022 0.029 0.06 0.022 0.029 0.07 0.022 0.029 0.07 0.029 0.0 0.08 0.040 0.046 0.05 0.05 0.062 0.07 0.06 0.07 0.085 0.06 0.078 0.094 0.065 0.08 0 0.065 0.085 05 0.065 0.085 08 0.065 0.085 09 EVR 0 0.069 0.08 0.09 0.095 25 25 48 7 4 72 02 52 87 2 54 97 4 55 02 52 55 02 56 55 02 58 EVR 5 +90 0.09 05 9 8 8 25 45 65 49 88 0.29 65 94 25 0.29 0.88 48 89 27 66 0.77 5 0.52 98 46 9 0.98 9 0.588 02 6 0.6 05 0.59 0.6 04 65 0. 08 0.5 0.66 04 65 0.7 08 0.5 0.675 04 65 0.9 08 0.5 0.678 EVR 22 9 0.0 85 99 0.46 0.95 0.95 65 0.58 52 0.544 0.69 77 0.59 0.705 86 0.62 0.758 9 0.67 0.795 9 0.67 0 9 0.67 4 0.57 65 89 0.566 0.646 0.647 0.76 79 0.78 89.042 0.779 0.966.5 0.794.08.28 0.04.298 0.04.2 0.04.29 0.582 0.669 0.76 0.798 0.924.056.054.242.45.206.45.70.27.576.878.297 6 2.02 99 2.9 2.6 2.7 An increase in hot gas temperature t h of 0 K reduces valve capacity approx. 2% and vice versa. 0.9.045.88.247.445 5 47.942 2.244.884 2.267 2.66.989 2.46 2.95 2.027 2.594.57 2.656..78.9 8 DKRCCPDBB0A202-520H275 Danfoss A/S, 0-2006

Design / Function EVR 2 (NC) EVR 0 (NC) EVR 0 (NO) (NC) and 40 (NC) 4. Coil 6. Armature 8. Valve plate / Pilot valve plate 20. Earth terminal 24. Connection for flexible steel hose 28. Gasket 29. Pilot orifice 0. O-ring. Piston ring 6. DIN plug 7. DIN socket (to DIN 4650) 40. Protective cap/terminal box 4. Valve cover 44. O-ring 45. Valve cover gasket 49. Valve body 50. Gasket 5. Threaded plug 5. Manual operation spindle 7. Equalization hole 74. Main channel 75. Pilot channel 76. Compression spring 80. Diaphragm/Servo piston 8. Valve seat 84. Main valve plate 90. Mounting hole EVR solenoid valves are designed on two different principles:. Direct operation 2. Servo operation. Direct operation EVR 2 and are direct operated. The valves open direct for full flow when the armature (6) moves up into the magnetic field of the coil. This means that the valves operate with a min. differential pressure of 0 bar. The teflon valve plate (8) is fitted direct on the armature (6). Inlet pressure acts from above on the armature and the valve plate. Thus, inlet pressure, spring force and the weight of the armature act to close the valve when the coil is currentless. 2. Servo operation 22 are servo operated with a "floating" diaphragm (80). The pilot orifice (29) of stainless steel is placed in the centre of the diaphragm. The teflon pilot valve plate (8) is fitted direct to the armature (6). When the coil is currentless, the main orifice and pilot orifice are closed. The pilot orifice and main orifice are held closed by the weight of the armature, the armature spring force and the differential pressure between inlet and outlet sides. When current is applied to the coil the armature is drawn up into the magnetic field and opens the pilot orifice. This relieves the pressure above the diaphragm, i.e. the space above the diaphragm becomes connected to the outlet side of the valve. The differential pressure between inlet and outlet sides then presses the diaphragm away from the main orifice and opens it for full flow. Therefore a certain minimum differential pressure is necessary to open the valve and keep it open. For 22 valves this differential pressure is 0.05 bar. When current is switched off, the pilot orifice closes. Via the equalization holes (7) in the diaphragm, the pressure above the diaphragm then rises to the same value as the inlet pressure and the diaphragm closes the main orifice., 2 and 40 are servo operated piston valves. The valves are closed with currentless coil. The servo piston (80) with main valve plate (84) closes against the valve seat (8) by means of the differential pressure between inlet and outlet side of the valve, the force of the compression spring (76) and possibly the piston weight. When current to the coil is switched on, the pilot orifice (29) opens. This relieves the pressure on the piston spring side of the valve. The differential pressure will then open the valve. The minimum differential pressure needed for full opening of the valves is bar. EVR (NO) has the opposite function to EVR (NC), i.e. it is open with de-energised coil. EVR (NO) is available with servo operation only. Danfoss A/S, 02-2006 DKRCCPDBB0A202-520H275 9

Material specifications EVR 2 to 25 Solenoid valves Standard No. Description Material Analysis Mat.no. W.no. DIN EN Valve body EVR 2 to 25 Brass CuZn40Pb2 CW67N 2.0402 7672-265 EVR 2 to Stainless steel X5 CrNi8-0.40 0088 2 Cover to 22 Brass CuZn40Pb2 CW67N 2.0402 7672-265 Cast iron EN-GJS-400-8-LT EN-JS025 56 Armature tube EVR 2 to 25 Stainless steel X2 CrNi9-.406 0088 4 Armature tube nut Stainless steel X8 CrNiS 8-9.405 0088 5 Gasket EVR 2 to 25 Rubber Cr 6 Gasket Al. gasket Al 99.5.0255 020 7 Solder tube Copper SF-Cu CW024A 2.0090 787 2449 8 Screws EVR 2 to 25 Stainless steel A2-70 506 9 Spindle for man. operat. Stainless steel X8 CrNiS 8-9.405 0088 0 Gasket Rubber Cr to 40 Solenoid valves Standard No. Description Material Analysis Mat.no. W.no. DIN EN Valve body /40 Cast Iron EN-GJS-400-8-LT EN-JS025 56 2 Cover /40 Brass CuZn40Pb2 CW67N 2.0402 265 Armature tube /40 Stainless steel X2 CrNi9-.406 0088 4 Armature tube nut /40 Stainless steel X8 CrNiS 8-9.405 0088 5 Gasket /40 Rubber Cr 6 Gasket /40 Al. gasket Al 99.5.0255 020 7 Solder tube /40 Copper SF.Cu CW024A 2.0090 787 2449 8 Screws /40 Stainless steel A2-70 506 9 Spindle for. man. operation /40 Stainless steel X8 CrNiS 8-9.405 0088 20 DKRCCPDBB0A202-520H275 Danfoss A/S, 0-2006

Dimensions and weights EVR (NC) 2 5 and 5 (NO), flare connection Weight of coil 0 W: approx. 0. kg 2 and 20 W: approx. 0.5 kg With cable connection coil With DIN plugs coil With terminal box coil Connection NV L 5 max. Weight H Flare H 2 H H 4 L L 2 L L 4 B B max. with 0 W 2/20 W coil in. mm mm mm mm mm mm mm mm mm mm mm mm mm mm kg EVR 2 / 4 6 4 7 9 75 45 54 75 85 68 0.5 EVR / 4 6 4 7 9 75 45 54 75 85 68 0.5 / 8 0 4 7 9 75 45 54 75 85 68 0.5 / 8 0 4 78 0 82 45 54 4 75 85 6 68 0.6 / 2 2 4 78 0 88 45 54 4 75 85 6 68 0.6 EVR 0 / 2 2 6 79 0 45 54 6 75 85 46 68 5 / 8 6 6 79 0 45 54 6 75 85 46 68 EVR 5 5 / 8 6 9 86 49 45 54 24 75 85 56 68.0 Danfoss A/S, 02-2006 DKRCCPDBB0A202-520H275 2

Dimensions and weights (continued) EVR (NC) 2 22 and 22 (NO), solder connection Weight of coil 0 W: approx. 0. kg 2 and 20 W: approx. 0.5 kg With cable connection coil With DIN plugs coil With terminal box coil Connection L 5 max. Weight H Solder H 2 H H 4 L L 2 L L 4 B B max. with coil 0 W 2/20 W in. mm mm mm mm mm mm mm mm mm mm mm mm mm kg EVR 2 / 4 6 4 7 9 02 7 45 54 75 85 68 0.5 EVR / 4 6 4 7 9 02 7 45 54 75 85 68 0.6 / 8 0 4 7 9 7 9 45 54 75 85 68 0.6 / 8 0 4 78 0 9 45 54 75 85 6 68 0.6 / 2 2 4 78 0 27 0 45 54 75 85 6 68 0.6 EVR 0 / 2 2 6 79 27 0 45 54 75 85 46 68 0.7 5 / 8 6 6 79 60 2 45 54 75 85 46 68 0.7 EVR 5 5 / 8 6 9 86 49 76 2 45 54 75 85 56 68.0 7 / 8 22 9 86 76 7 45 54 75 85 56 68.0 7 / 8 22 20 90 5 9 7 45 54 75 85 72 68.5 / 8 28 20 90 24 22 45 54 75 85 72 68.5 EVR 22 / 8 5 20 90 28 25 45 54 75 85 72 68.5 22 DKRCCPDBB0A202-520H275 Danfoss A/S, 0-2006

Dimensions and weights (continued) EVR (NC) 25, 2 og 40, solder connection and 40 terminal box and 40 with terminal box coil Weight of coil 0 W: approx. 0. kg 2 and 20 W: approx. 0.5 kg Coil with cable Coil with DIN plugs Connection Solder H H 2 H H 4 L L 2 cable connection Coil with L Coil with DIN connection L 4 Coil with terminal box L 5 max. 0 W 2/20 W in. mm mm mm mm mm mm mm mm mm mm mm mm mm kg / 8 28 8 8 72 256 22 45 54 75 85 95 68.0 / 8 5 8 8 72 28 25 45 54 75 85 95 68. / 8 5 47 5 28 25 45 54 75 85 80 68 4.5 5 / 8 42 47 5 28 29 45 54 75 85 80 68 4.6 5 / 8 42 47 5 28 29 45 54 75 85 80 68 4.6 2 / 8 54 47 5 28 4 45 54 75 85 80 68 4.6 B B max. Weight with coil EVR (NC) 5 and 20, flange connection Coil with cable Coil with DIN plugs Weight of coil 0 W: approx. 0. kg 2 and 20 W: approx. 0.5 kg With terminal box coil Weight of flange set For EVR 5: 0.6 kg For : 0.9 kg H H 2 H H 4 L L L 2 connection Coil with cable L Coil with DIN connection L 4 Coil with terminal box L 5 max. B B max. 0 W 2/20 W mm mm mm mm mm mm mm mm mm mm mm mm mm kg EVR 5 9 86 9 49 25 68 45 54 75 85 80 68.2 20 90 2 5 55 85 45 54 75 85 96 68.7 Weight with coil excl. flanges Danfoss A/S, 02-2006 DKRCCPDBB0A202-520H275 2

24 DKRCCPDBB0A202-520H275 Danfoss A/S, 0-2006