Design and Analysis of a Novel Cage Wheel with Hydraulically Actuated Links

Similar documents
Structural Analysis of Differential Gearbox

PIONEER RESEARCH & DEVELOPMENT GROUP

Static Structural and Thermal Analysis of Aluminum Alloy Piston For Design Optimization Using FEA Kashyap Vyas 1 Milan Pandya 2

Design, Analysis & Balancing of 5 Cylinder Engine Crankshaft

Design and Analysis of Pressure Die Casting Die for Side Differential Cover of Mini truck

Increase Factor of Safety of Go-Kart Chassis during Front Impact Analysis

Static And Modal Analysis of Tractor Power Take Off (PTO) Gearbox Housing

Fatigue Life Estimation of Chassis Frame FESM Bracket for Commercial Vehicle

Structural Analysis of Student Formula Race Car Chassis

STRESS AND THERMAL ANALYSIS OF CLUTCH PLATE

NUMERICAL ANALYSIS OF IMPACT BETWEEN SHUNTING LOCOMOTIVE AND SELECTED ROAD VEHICLE

MIFACE INVESTIGATION: #01MI015

Modeling and Analysis of Tractor Trolley Axle Using Ansys

VP 4600 EQUAL-WHEELED TRACTORS ISM - VRM - ARM ENGLISH

Design and Simulation of Go Kart Chassis

Design and Analysis of Mini Dumper

OPTIMIZATION & ANANLYSIS OF A HEAVY VEHICAL CHASSIS USING COMPOSITE MATERIALS

Design, Fabrication, and Testing of a Hay Bale Trailer

Design, Analysis& Optimization of Truck chassis- Rail & Cross member

SUMMARY AND CONCLUSIONS

ISSN: Page 4

Design And Analysis Of Two Wheeler Front Wheel Under Critical Load Conditions

Design and Analysis of Three Wheeled Dual Steering Vehicle

Load Analysis and Multi Body Dynamics Analysis of Connecting Rod in Single Cylinder 4 Stroke Engine

Design of Boom Attachment in Backhoe Loader to Excavate Inaccessible Location

Design and Optimisation of Roll Cage of a Single Seated ATV

COMPARATIVE ANALYSIS OF CRANKSHAFT IN SINGLE CYLINDER PETROL ENGINE CRANKSHAFT BY NUMERICAL AND ANALYTICAL METHOD

Design and Front Impact Analysis of Rollcage

Modeling and Analysis of Two Wheeler Connecting Rod by Using Ansys

B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY

International Journal of Advance Engineering and Research Development

STRUCTURAL ANALYSIS OF REAR AXLE CASING OF TRACTOR

Analysis Of Gearbox Casing Using FEA

Design, Modelling & Analysis of Double Wishbone Suspension System

Design Improvement in Kingpin Stub Axle Assembly Using FEA

LECTURE-4 TRACTORS- TYPES AND UTILITIES

Restructuring of an Air Classifier Rotor by Finite Element Analysis

DESIGN AND ANALYSIS OF PUSH ROD ROCKER ARM SUSPENSION USING MONO SPRING

Design of Back stopper Mechanism for Automobiles

Static And Free Vibration Analysis Of A Car Bonnet

Address for Correspondence

ISSN: [Raghunandan* et al., 5(11): November, 2016] Impact Factor: 4.116

Fatigue life evaluation of an Automobile Front axle

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP ( 1

DESIGNING AND ANALYSING STAIR CASE LIFT SYSTEM

International Engineering Research Journal Analysis of HCV Chassis using FEA

Vinayak R.Tayade 1, Prof. A. V. Patil 2. Abstract

Design and Stress Analysis of Crankshaft for Single Cylinder 4-Stroke Diesel Engine

2. Write the expression for estimation of the natural frequency of free torsional vibration of a shaft. (N/D 15)

Design and Vibrational Analysis of Flexible Coupling (Pin-type)

INTRODUCTION. Research & Reviews: Journal of Engineering and Technology. Research Article

LESSON Transmission of Power Introduction

EFFECT OF TYRE OVERLOAD AND INFLATION PRESSURE ON ROLLING LOSS & FUEL CONSUMPTION OF AUTOMOBILES CARS

DESIGN AND DEVELOPMENT OF IC ENGINE GO-KART

ISSN: [ICEMESM-18] Impact Factor: 5.164

Heat treatment Elimination in Forged steel Crankshaft of Two-stage. compressor.

Design and Analysis of Front Lower Control Arm by Using Topology Optimization

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852

Stress Analysis of Piston at Different Pressure Load

VEHICLE ANTI-ROLL BAR ANALYZED USING FEA TOOL ANSYS

DESIGN AND ANALYSIS OF LEAF SPRING

ISSN: International Journal of Advanced Research in Science, Engineering and Technology. Vol. 3, Issue 7, July 2016

DESIGN AND ANALYSIS OF DIFFERENTIAL GEAR BOX IN AUTOMOBILES

ANALYSIS AND OPTIMIZATION OF CONNECTING ROD USING ALFASiC COMPOSITES

Analysis of Multistage Linkage Based Eclipse Gearbox for Wind Mill Applications

Design and Analysis of Connecting Rod for High- Speed Application in I.C Engine

Low-torque Deep-groove Ball Bearings for Transmissions

Design and Analysis of suspension system components

Semi-Active Suspension for an Automobile

EXAMPLES GEARS. page 1

Structural Analysis of Pick-Up Truck Chassis using Fem

INVESTIGATION ON THREE-WAY DUMPING MECHANISM OF A TWO- WHEEL TRACTOR TROLLEY

Structural performance improvement of passenger seat using FEA for AIS 023 compliance

Weight reduction of Steering Knuckle by Optimization Method

Design and Analysis of Go-kart Chassis

MAHINDRA wd (92HP) TRACTORS TOUGH AND RELAIABLE MOST POWERFUL TRACTOR IN ITS CATEGORY

Structural Analysis of a Ceramic Coated Diesel Engine Piston Using Finite Element Method

Stress Analysis in Pulley of Stacker-Reclaimer by Using Fem Vs Analytical

Keywords: Von Mises, Piston, Thermal Analysis, Pressure, CATIAV5R20, ANSYS14 I. INTRODUCTION

Non-Linear Implicit Analysis of Roll over Protective Structure OSHA STANDARD (PART )

COMPARISON OF ANALYTICAL & FEA OF CONTACT ANALYSIS OF SPUR GEAR DRIVE

ISSN: [Patil et al., 5(10): October, 2016] Impact Factor: 4.116

Keywords: Stability bar, torsional angle, stiffness etc.

Design & Manufacturing of an Effective Steering System for a Formula Student Car

Non-Linear Simulation of Front Mudguard Assembly

Static Stress Analysis of Piston

STATIC AND FATIGUE ANALYSIS OF LEAF SPRING-AS A REVIEW

Flow Analysis of Exhaust Manifolds for Engine

2008 Tractor Operation Exam Kansas Hazardous Occupation Training

Static Analysis of Crankcase and Crankshaft of Single Cylinder Four Stroke Diesel Engine

EXTRACT of chapter XXXIV coupling devices (version of ) ANNEX XXXIV Requirements on mechanical couplings

DESIGN AND FINITE ELEMENT ANALYSIS OF UNDER FRAME ARRANGEMENT (UNIVERSAL HEADSTOCK) OF DUAL COUPLER FOR RAILWAY COACHES

FINITE ELEMENT SIMULATION OF SHOT PEENING AND STRESS PEEN FORMING

Design of High Pressure Double Acting Cylinder for Hydraulic Press Brake

MODIFICATION OF SLIDER CRANK MECHANISM AND STUDY OF THE CURVES ASSOCIATED WITH IT

BIMEE-007 B.Tech. MECHANICAL ENGINEERING (BTMEVI) Term-End Examination December, 2013

ANALYSIS OF EXISTING TROLLEY AXLE USING ANSYS

Design and Analysis of Steering Knuckle Component

Design, Construction and Testing of an Electric Powered Toggle Jack Mechanism

ADVANTAGES OF AMERICAN HIGHWAY PRODUCTS AHP TYPE 1 EXPANDABLE MANHOLE RISER

Transcription:

Design and Analysis of a Novel Cage Wheel with Hydraulically Actuated Links M.Vijay Krishna M.Tech.Student Dept. of Mechanical Engg. Sasi Institute of Tech. and Engg. Tadepalligudem Andhra Pradesh, India R. B. Choudary Professor Dept. of Mechanical Engg. Sasi Institute of Tech. & Engg. Tadepalligudem, Andhra Pradesh, India Abstract- A wide variety of cage wheels are in use in wet land cultivation. However, these wheels cause severe damage to bitumen roads during transit. The present work illustrates a humble attempt to develop an alternate design for the cage wheel. The proposed hydraulic cage wheel with a central ring is proposed which eliminates line contact with road surface and causes a area contact there by reducing the load acting on the roads and hence the associated damage. The proposed design lays path for the reduction in damage to roads. Tractor cage wheels can be classified into two categories based on the method of attachment. They are: * Fixed tractor cage wheel or half cage wheels (Fig. 1a) * Detachable tractor cage wheel or full conventional cage wheel (Fig. 1b). I. INTRODUCTION The agricultural tractor is one class of mobile machines that makes use of traction process. The word 'traction' and name 'tractor' come from the word 'draw' or 'pull'. So a tractor is basically a machine for pulling; other mobile machines such as locomotives are in the same class. Vehicles like road trucks and even motor cars, which are essentially vehicles for carrying loads, also involve the traction process. The tractor is also in the class of machines that involves operation under what are known as 'off-road' conditions. Others in this class include machines used in earth moving, mining and military work, also four-wheel drive motor vehicles for cross - country operation [1]. Tractor is used for many different tasks. As it is a versatile machine, operators sometimes stretch the use of the tractor beyond what the machine can safely do. In the process accidents occur. Nearly 50% of tractor fatalities come from tractor overturns. No other machine is more identified with the hazards of farming as the tractor. Two types of wheels are used in a tractor operation Pneumatic wheel and cage wheel. Cage wheel is extensively used in cultivation of paddy and wheat. It is used to mix the black soil properly while preparing the land for crop plantation. The tractor cage wheels are made up of heavy-duty steel angle bars. They are suitable for fixing on all types of tractors due to their versatile design. The cage wheels are also used for breaking down big boulders into small pieces. (a) (b) Fig. 1 Half & full cage wheels Generally different manufacturing companies produce different sizes of conventional cage wheels. They are made without any specific design and have no standard dimensions. The conventional cage wheel have two adverse effects. They are: Upseting down (revolt of tractor itself) Damage to road. When a tractor gets stuck during puddling, its wheels go deeper into the wet soil. A driver generally accelerates to come out of it. Due to this a large amount of torque will be developed which in turn acts on the tractor itself causing upsetting. Upsetting ( revolt of tractor itself) Rear-axle torque involves energy transfer between the tractor engine and the rear axle of tractors. Engaging the clutch of a tractor results in a twisting force, called torque, to the rear axle. This torque is then transferred to the tractor wheels. Under normal circumstances the rear axle (and wheels) should rotate and the tractor will move ahead. In lay terms, the rear axle is said to be rotating about the tractor chassis. If the rear axle should be unable to rotate, the tractor chassis rotates about the axle. This reverse rotation results in the front-end of the tractor lifting off the ground until the tractor's CG passes the rear stability baseline (Fig. 2). At this point the tractor will continue rearward from its own weight until it crashes into the ground or other obstacle. The most common examples of this happening are when the rear tractor wheels are frozen to the ground, stuck in a mud hole, or blocked from rotating by the operator. 619

Fig. 2 Center of gravity of tractor II. MATERIALS AND MODELING A. Specifications The dimensions of Mahindra Tractor (475) wheel are considered for design calculations: Total weight of the tractor, W=2440kg Radius of front wheel, R f =254.6mm Radius of rare wheel, R r =355.6mm Difference of radius of front and rare wheels, =102mm B. Calculations A tractor may upset down due to rear axle reaction torque before an operator realizes that the revolt is imminent. The CG of a tractor is found closer to the rear axle than the front axle. Because of this, a tractor may only have to rise to about 75 degrees from a level surface before its CG passes the rear stability baseline and continues on over. This position is commonly called the point of no return (Fig. 3). Fig. 5 Location of CG with tractor in raised position Fig. 3 Rear rollover Research has shown that a tractor may reach this position in 3/4 of a second, and that it may take an operator longer than this to successfully stop the rearward motion. There are many tractor operating situations where there is even less than 3/4 of a second to recognize and successfully react to an impending rear overturn. For example, when a tractor is in a ditch, or is traveling up a steep incline, the distance between the tractor s CG and rear stability baseline is narrowed. If excessive rear axle torque is applied, the tractor will reach the point of no return more quickly. Figure 4 illustrates this situation. Damages to Roads Fig.4 Location of CG in horizontal position Often, the drivers prefer to fix cage wheels to the tractor at home and travel to the fields. This causes permanent damage to roads. On such occations, the drivers are booked by transport and police officers for trespassing on the National and State highways. Vehicles with caged wheels cut roads causing Rs.10cr. loss. Fig. 6 Geometry of position of centre of gravity The force acting at front and rear wheels are determined by considering static equilibrium condition of the tractor (Fig. 5). The two conditions needed to be satisfied for static equilibrium position are: 1. The total weight of the vehicle should be equal to sum of upward reaction forces viz. reaction forces at front and rear wheels. 2. Clockwise moment should be equal to anti clockwise moment. Applying the above conditions, the reaction forces at rear and front wheel are determined G= Center of Gravity Y g= location of the centre of gravity in the vertical X= wheel base between the front and rear axles X r= distance of center of gravity from rare wheel X f= distance of center of gravity from front wheel Y = Position the center of the front wheel from the ground..(1) For most common rear wheel drive tractors Xr is approximately 30 % of X.(2).(3) 620

..(4) This attachable disc is at a distance of 20 cm from inner wheel. Table 2 Material Properties Material Malleable Cast Iron Yield strength 2.75742e+008 N/m^2 Tensile strength 4.13613e+008 N/m^2 Elastic modulus 1.9e+011 N/m^2 Poisson's ratio 0.27 Mass density 7300 kg/m^3 Shear modulus 8.6e+010 N/m^2 Location of the centre of gravity in the vertical Table 1 Calculation of Torque III. Y Y g X r T (N-mm) 1000 49 21 2.56x10 5 2000 48.4 17 2.62x10 5 3000 47.5 16.2 2.63x10 5 4000 47.5 15.5 2.64x10 5 5000 47.5 15.4 2.64x10 5 6000 47.48 15.3 2.64x10 5 7000 47.42 15.2 2.64x10 5 8000 47.37 15.1 2.64x10 5 9000 47.34 15.0 2.64x10 5 ANALYSIS OF CONVENTIONAL CAGE WHEEL In the present study an existing conventional cage wheel (Mahindra) is selected and its dimensions are noted down. The possible loads acting and the location of loads are noted. Cage wheel is modeled using solid works. The theoretically arrived torque values are applied on the conventional and proposed cage wheel models. The specifications are For inner wheel, R o= 56cm, R i=51cm For outer wheel, r o=46 cm, r i=41 cm Distance between inner and outer wheels=54 cm Thickness of each ring=3 cm Number of links=15 Length of each link=55 cm Attachable disc: D o'=40cm D i'=14cm t=5cm Fig. 7 Conventional cage wheel modeled in solid works The next step of analysis is to create meshing for created model. For the finite element analysis loads are applied on the conventional cage wheel. The following figure shows equivalent stress (von Mises Stress), displacement and strain on the cage wheel when loads are applied and the maximum and minimum stresses are shown in table 3. Table 3 Von Mises Stress for conventional cage wheel Stress1 VON: von Mises Stress 902.04 N/m^2 17550 7.14031e+007 N/m^2 17078 621

Table 4 Resultant for conventional CW Table 6 Von Mises Stress for Proposed cage wheel 1 URES: Resultant 0 mm 1118 1.7128 6 mm 70540 Stress1 VON: von Mises Stress 6.45854 N/m^2 87487 6.45854 N/m^2 23159 Table 5 Equivalent Strain for conventional CW Strain1 ESTRN: Equivalent Strain 8.8242e-009 32936 0.0001549 32404 Table 7 Resultant for Proposed CW Displacem ent1 URES: Resultant 0 mm 3127 17.712 7 mm 53626 IV ANALYSIS OF MODIFIED CAGE WHEEL The proposed cage wheel consists of 15 ribs on either side of a central ring. The ribs are activated by links which are pivoted with ribs and hydraulic system. The new cage wheel is designed with the same dimensions as that of conventional one Table 8 Equivalent Strain for Proposed CW Strain1 ESTRN: Equivalent Strain 2.35847e- 011 29840 0.00121121 18427. Fig.7 Proposed cage wheel modeled in Solid Works 622

V. RESULTS Table 9 The Von Mises stresses, deformation (displacements) and strain obtained in the analysis for both conventional and proposed cage wheels. Description Conventional cage wheel Modified cage wheel Von Mises Stress (N/m^2) Strain Min 902.04 6.45854 Max 7.14031e+007 6.45854 Min 0 0 Max 1.71286 17.7127 Min 8.8242e-009 2.35847e-011 Max 0.0001549 0.00121121 VI. CONCLUSION The proposed cage wheel with its central ring results less or no damage to the roads. Non availability of suitable ground for changing pneumatic wheels and fixing cage wheel forces the driver to do this at home and travel on roads with cage wheels, thus causing sever damage to the roads. When a tractor travels on a road, line contact takes place between cage wheel and road. This gives rise to a typical scratch pattern on roads. This is due to line surface contact established with the road. It can be seen that both stress and deformation values are higher in the proposed model compared to existing model. However this can be rectified by trying different cross sections for the ribs and links. REFERENCES [1] Inns, Some design and operational aspects of 3-link implement attachment systems. Agricultural Engineer, Winter, 136-144, F.M. (1985) [2] WC Harshman, AM Yoder, JW Hilton and DJ Murphy, Tractor stability, The Pennsylvania State University. Reviewed by TL Bean and D Jensen, The Ohio State University and S Steel, National Safety Council. Version 4/2004. [3] M. Driscoll, T. Harrison, J. Frommer, M. & Leigh, Tractor Rollovers, work related Agricultural fatalities in Australia. 1982-84 Scandinavian Journal of Environmental Health. 1993. 19 pp162-67. [4] S. P.E. and Johansson, Persson : A weight transfer hitch for trailed Implements. Transactions, American Society of Agricultural Engineers, 10(6), 847 849, S. (1967) 623