ISSN (ONLINE): , ISSN (PRINT):

Similar documents
Evaluation of CI engine performance fuelled by Diesel-Polanga oil blends doped with iron oxide nanoparticles

Experimental Investigations on a Four Stoke Diesel Engine Operated by Jatropha Bio Diesel and its Blends with Diesel

ABSTRACT I. INTRODUCTION II. TECHNICAL SPECIFICATIONS OF THE ENGINE III. MATERIAL & METHODS

Material Science Research India Vol. 7(1), (2010)

Project Reference No.: 40S_B_MTECH_007

Ester (KOME)-Diesel blends as a Fuel

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

Chandra Prasad B S, Sunil S and Suresha V Asst. Professor, Dept of Mechanical Engineering, SVCE, Bengaluru

Government Engineering College, Bhuj.

Properties and Use of Jatropha Curcas Ethyl Ester and Diesel Fuel Blends in Variable Compression Ignition Engine

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 11 Nov p-issn:

Impact of Various Compression Ratio on the Compression Ignition Engine with Diesel and Mahua Biodiesel

Prediction of Performance and Emission of Palm oil Biodiesel in Diesel Engine

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine

Automotive Technology

Experimental Study on Performance and Emission of Diesel Engine using Sunflower Oil-Diesel Blends as Fuel

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL

Mechatronics, Electrical Power, and Vehicular Technology

Simultaneous reduction of NOx and smoke emission of CI engine fuelled with biodiesel

EXPERIMENTAL INVETIGATIONN ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DI- CI ENGINE FUELED WITH PREHEATED SHEA OLEIN BIODIESEL

Research Article. Effect of exhaust gas recirculation on NOx emission of a annona methyl ester operated diesel engine

PERFORMANCE AND EMISSION CHARACTERISTICS OF CI DI ENGINE USING BLENDS OF BIODIESEL (WASTE COOKING OIL) AND DIESEL FUEL

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE WITH MUSTARD OIL-DIESEL BLENDS AS FUEL

Effect of Jatropha Biodiesel Blend with Diesel Fuel on Performance of Four Stroke Single Cylinder Diesel Engine

Use of Alternative Fuel in Lower Heat Rejection Engine with Different Insulation Levels

PERFORMANCE OF DIRECT INJECTION C.I. ENGINE USING KARANJA OIL AT DIFFERENT INJECTION PRESSURES

GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN:

Effect of biodiesel and its blends with oxygenated additives on performance and emissions from a diesel engine

EFFECT OF L-ASCORBIC ACID AS ADDITIVE FOR EXHAUST EMISSION REDUCTION IN A DIRECT INJECTION DIESEL ENGINE USING MANGO SEED METHYL ESTER

National Journal on Advances in Building Sciences and Mechanics, Vol. 1, No.2, October

EXPERIMENTAL INVESTIGATION OF A DIESEL ENGINE FUELED BY EMULSIFIED B20 BIODIESEL

CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES

Study on Effect of Injection Opening Pressure on the Performance and Emissions of C I Engine Running on Neem Methyl Ester Blend as a Fuel

INVESTIGATIONS ON THE EFFECT OF MAHUA BIOFUEL BLENDS AND LOAD ON PERFORMANCE AND NOX EMISSIONS OF DIESEL ENGINE USING RESPONSE SURFACE METHODOLOGY

Performance and Emission Characteristics of 4 S DI diesel Engine fueled with Calophyllum Inophyllum Biodiesel Blends

Performance and Emission Analysis of Diesel Engine using palm seed oil and diesel blend

COMBUSTION CHARACTERISTICS OF DI-CI ENGINE WITH BIODIESEL PRODUCED FROM WASTE CHICKEN FAT

PERFORMANCE AND COMBUSTION ANALYSIS OF MAHUA BIODIESEL ON A SINGLE CYLINDER COMPRESSION IGNITION ENGINE USING ELECTRONIC FUEL INJECTION SYSTEM

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

PERFORMANCE, EMISSIONS AND COMBUSTION EVALUATION OF CI ENGINE USING BIOFUEL

Performance, emission and combustion characteristics of fish-oil biodiesel engine

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria

Eucalyptus Biodiesel; an Environmental friendly fuel for Compression Ignition Engines

S S Ragit a *, S K Mohapatra a & K Kundu b. Indian Journal of Engineering & Materials Sciences Vol. 18, June 2011, pp

EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.5, pp ,

IJRASET 2013: All Rights are Reserved

EXPERIMENTAL INVESTIGATION OF PERFORMANCE PARAMETERS OF SINGLE CYLINDER FOUR STROKE DI DIESEL ENGINE OPERATING ON NEEM OIL BIODIESEL BLENDS

REDUCTION OF NOX EMISSIONS IN JATROPHA SEED OIL-FUELED CI ENGINE

Effect Of Exhaust Gas Recirculation On The Performance And Emission Characteristics Of Diesel Engine With Orange Oil- Diesel Blend

Combustion and Emission Characteristics of Jatropha Blend as a Biodiesel for Compression Ignition Engine with Variation of Compression Ratio

Effect of Rubber Seed Oil and Palm Oil Biodiesel Diesel Blends on Diesel Engine Emission and Combustion Characteristics

International Journal on Theoretical and Applied Research in Mechanical Engineering (IJTARME)

PERFORMANCE AND EMISSION ANALYSIS OF CI ENGINE FUELLED WITH THE BLENDS OF PALM OIL METHYL ESTERS AND DIESEL

Experimental investigation on constant-speed diesel engine fueled with. biofuel mixtures under the effect of fuel injection

ISSN: [Sirivella, 6(10): October, 2017] Impact Factor: 4.116

COMBUSTION AND EMISSION CHARACTERISTICS OF A DIESEL ENGINE FUELLED WITH JATROPHA AND DIESEL OIL BLENDS

Effect of Injection Pressure on The Performance And Emission Characteristics of Single Cylinder Diesel Engine Using Neem And Niger Oil As A Biodiesel

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 04, 2015 ISSN (online):

Research Article Performance and Emission Analysis of a CI Engine in Dual Mode with LPG and Karanja Oil Methyl Ester

Comparative Analysis of Performance and Emission of Diesel Engine by Varying Compression Ratio Using Different Fuels

Experimental Investigation On Performance And Emission Characteristics Of A Diesel Engine Fuelled With Karanja Oil Methyl Ester Using Additive

PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE FUELLED WITH NON EDIBLE VEGETABLE OIL AND DIESEL BLENDS

Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine

Evaluating Performance And Emission Characteristics Of C.I. Engine Run By Cashew Nut Shell Liquid (Cnsl) As A Fuel

PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF

International Journal of Engineering Science Invention Research & Development; Vol. II Issue II August e-issn:

Bangalore , Karnataka, India

A COMPARATIVE STUDY OF PERFORMANCE AND EMISSION CHARACTERISTICS OF FOUR STROKE DIESEL ENGINE WITH MAHUA AND JATROPHA BIODIESEL BLENDED WITH DIESEL

International Journal of Modern Engineering Research (IJMER) Vol.3, Issue.1, Jan-Feb pp ISSN:

Effect of injection timing on performance, combustion and emission characteristics of diesel engine using mahua oil methyl ester as fuel

Indian Journal of Engineering

Experimental Study of Linseed Oil as an Alternative Fuel for Diesel Engine

PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER

Evaluation of Performance and Emission Characteristics of Four Stroke Diesel Engine with Mahua Bio-Diesel Blends

CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF

Experimental Investigation of Single Cylinder Diesel Engine with Sesame Oil and Ethanol Blends at Various Compression Ratio.

International Journal on Emerging Technologies (Special Issue on NCRIET-2015) 6(2): 57-62(2015)

Effect of injector nozzle on the performance, emission and combustion characteristics of single cylinder four stroke diesel engine

A R DIGITECH International Journal Of Engineering, Education And Technology (ARDIJEET) X, VOLUME 2 ISSUE 1, 01/01/2014

(An ISO 3297: 2007 Certified Organization) Vol. 3, Issue 10, October 2014

Effect of Varying Load on Performance and Emission of C.I. Engine Using WPO Diesel Blend

EXPERIMENTAL INVESTIGATIONS ON 4- STROKE SINGLE CYLINDER DIESEL ENGINE (C.I) WITH CHANGING GEOMETRY OF PISTON

Keywords: Alternative fuels, Biodiesel, Blends, Diesel engine, Emissions, Karanja and Performance. 1. Introduction

COMPARATIVE STUDIES ON MEDIUM GRADE LOW HEAT REJECTION DIESEL ENGINE AND CONVENTIONAL DIESEL ENGINE WITH CRUDE COTTON SEED OIL

Experimental Analysis of Utilization of Heat Using Methanol - Diesel Blended Fuel in Four Stroke Single Cylinder Water Cooled Diesel Engine

Experimental Investigation of Performance, Combustion and Emission characteristics of neat Lemongrass oil in DI Diesel engine

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

Sathyabama Institute of Science and Technology,Chennai ,Tamilnadu,India. JSPM s,college of Engineering,Hadapsar,Pune ,Maharashtra,India.

Performance and Emissions Characteristics of a C.I. Engine Fuelled with Different Blends of Biodiesel Derived from Waste Mustard Oil

BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID PUNNAKKA OIL

Experimental investigations on the performance characteristic of diesel engine using n- butyl alcohols

A.S.P. Sri Vignesh 1, Prof C. Thamotharan 2 1 (Department of Automobile Engineering, Bharath Institute of Science and Technology, Bharath University

Government Engineering College, Bhuj.

PERFORMANCE IMPROVEMENT OF A DI DIESEL ENGINE WITH TURBOCHARGING USING BIOFUEL

Performance Analysis of Four Stroke Single Cylinder CI Engine Using Karanja Biodiesel-Diesel Blends

EFFECT OF STATIC INJECTION TIMING ON THE PERFORMANCE AND EMISSIONS OF DIESEL ENGINE WITH BLENDS OF MAHUA BIODIESEL

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India

Effect of Direct Water Injection on Performance and Emission Characteristics of Diesel Engine Fueled with Bio Diesel and Hydrogen

Transcription:

Volume-6, Issue-2, March-April 2016 International Journal of Engineering and Management Research Page Number: 509-514 Experimental Investigation on Engine Performance, Combustion and Lubricating Life Fuelled by Diesel-Polanga Oil Blends Doped with Iron Oxide Nanoparticles S.K. Jagdev 1, N.C. Sahu 2, R.R. Panda 3, D.K. Mohanta 4 1,2,3,4 Department of Mechanical Engineering, Centurion Institute of Technology, Odisha, INDIA ABSTRACT Form this experimental investigation we did the research on issues such as fuel characterization and standardization of bio diesel production process for optimum yield and quality, effect of bio diesel on fuel injection system, wear of engine component on long term use, and effect of bio diesel on engine lubricating life. To improve the engine performance, iron oxide nanoparticles were doped with polanga oil diesel fuel blend as additive. Performance and emission characteristics of diesel engine were studied for 9%, 18% and 32% (by weight) polanga oil with neat diesel. Iron oxide nanoparticles were added in three difference concentrations viz., 105, 205 and 305 ppm levels in all the three polanga oil diesel fuel blends to study their effects on engine performance. The engine was loaded at five different brake powers for each polanga oil diesel iron oxide nanoparticle fuel blends. From this experiment we observed that the presence of iron oxide nanoparticle reduces the ill effects of polanga oil in diesel. At 25% polanga oil blend with diesel and iron oxide nanoparticles concentration of 150 ppm, the engine performance was observed to be similar to that of running on neat diesel however rate of lubricating oil degradation was higher for polanga bio diesel. Hence doping of iron oxide nanoparticle with Polanga oil Diesel fuel could be one of the potential substitutes for diesel in running CI engines. Keywords--- Polanga oil, Iron oxide, Nanoparticles, IC engine. I. INTRODUCTION Biodiesel is a clean burning alternative fuel produced from domestic, renewable resources such as plant oils, animal fats, used cooking oil and even from algae. Biodiesel contains no petroleum, but can be blended at any level with petroleum diesel to create a biodiesel blend. Biodiesel blends can be used in compression ignition engines with little or no modifications. Among the vegetable oils edible and non-edible oils are used to produce biodiesel. The use of edible is a great concern with food materials. So it is justified to use non edible for the production of biodiesel. Non edible trees can grow in inhospitable condition of heat, low water, rocky and sandy soils. So non-edible oil plants like karanja, jatropha, mahua, neem will be the best choice for the source of biodiesel production. Burning of fossil fuels also causes severe environmental deterioration due to built up of green house gases. The wide-spread pollution caused by these fuels and fast depletion of oil resources led to develop better and cleaner strategies towards continuous energy supply. To sustain the oil supply, it is necessary to find out the suitable alternatives/substitutes. Engines running on diesel fuel are the main energy source for heavy duty vehicles, agricultural pumps for irrigation, power generators etc. Thus, finding out suitable, efficient and sustainable substitutes to diesel fuel is essential to meet the increasing energy demand. Non edible Vegetable oils (NVOs) are very good substitute for diesel fuel in internal combustion engines because of their abundant availability, renewable in nature and lower emissions. Agarwal et al. [1] classified the problems associated with using NVOs as fuel in diesel engines into two groups namely operational and stability. High viscosity, presence of poly unsaturated fatty acids and extremely low volatility of NVOs are responsible for these operational and stability problems. To overcome these challenges, transesterfication of NVOs and direct blending of NVOs with diesel were identified as the suitable techniques. Even though transesterification of NVOs gave good results in engine performance and 509 Copyright 2016. Vandana Publications. All Rights Reserved.

emissions but the increased production costs associated with it restricts the widespread usage of biodiesel. Hence, direct blending of NVOs with diesel becomes very attractive in terms of production and cost. Many researchers [3, 4, 5, 6] studied the performance of diesel engine. Higher soot or carbon deposits on in-cylinder engine components and lubricating oil contamination are the main causes for engine wear. Wear processes due to oil contamination lead to diminished fuel efficiency, shorter useful oil service life, reduced component life, and loss of engine performance. Hence, in addition to engine performance and emissions of diesel engine, soot depositions on engine components and wear metal additions in lubricating oil of the engine are required for the selection of a fuel that would replace conventional diesel fuel. using various NVOs (rape seed oil, karanja oil, jatropha oil etc) blended with diesel fuel. It was observed that there was improvement in emissions levels but the engine performance was severely affected by these NVOs diesel blended fuel due to poor fuel atomization and inefficient mixing with air [7,8,9]. Newer technologies have to be developed to increase the performance of engines using these blended fuels. Polanga seed oil (PSO) was chosen for blending with diesel fuel owing to its comparable calorific value with diesel and also its high percentage of saturated fatty acids (24.96%) when compared to other NVOs which increase the cloud point, cetane number and stability. Transesterfication of PSO is difficult and cumbersome process due to its high saturated fatty acids content. Even though PSO is available in large quantities in tropical countries like India, Malaysia, Indonesia and Phillipines, utilization of PSO as fuel was restricted due to high viscosity and acid value [10]. Hence, the main objective of this research work was to experimentally evaluate the possibilities of using PSO directly blended with diesel. To overcome challenges associated with POD blends and to enhance the engine performance, iron oxide nanoparticles were used as additive. Recent studies on tribological behavior of nanoparticles added to lubricating oils concluded that the addition of nanoparticles reduces the friction between the moving surfaces due to deposition of nanoparticles in the scars and grooves on the surfaces [11]. It was also reported that iron oxide nanoparticles form condensation sites in combustion zone and burn more carbon which reduces soot formation [12]. Based on these scientific investigations, the performance of CI engines was studied using POD with iron oxide nanoparticles additive. To study the effect of iron oxide nanoparticles concentration in the engine performance, the amount of nanoparticles in the blend was changed from 110, 210 and 310 ppm in POD blend. II. MATERIALS AND EQUIPMENTS METHODS Polang Oil Calophyllum inophyllum seed oil is the oil exracted from the seed of Calophyllum inophyllum, a tropical tree belonging to Guttiferaefamily. The oil has medicinal value and use as a fuel. Fruiting takes place twice in a year in May and November. The fruit (the ball nut) is a round, green drupe reaching 2 to 4 cm in diameter and having a single large seed. When ripe, the fruit is wrinkled and its color varies from yellow to brownish-red. The weight of the small fruit is 9 to 16.0 g when they are fresh. After drying, the weight is reduced to about 4 g. Ripe and fallen fruits are collected from the bottom of the tree, by beating the limbs with a long hand stick, or handpicked by climbing the tree. The seeds are decorticated by wooden mallets or by decorticators or by pressing under planks. Usually, the kernels are pressed in wooden and stone ghani. The oil is bluish-yellow to dark green viscous, known as domba oil, or pinnai oil, or dilo oil. It has a disagreeable taste or odour, as it contains some resinous material that can easily be removed by refining. The concentration of resinous substances in the oil varies from 10 to 30%.[2] The main compounds of the seed oil are oleic, linoleic, stearic, and palmitic acid. Polanga oil purchased from Puri district of Odisha state in India. The most common method to extract oil involves in collecting the pods. Oil extraction is carried out in six bolt double gear expellers. The oil is dark in color with a disagreeable odor. The properties of polanga oil and diesel were analyzed as per ASTM standards and given in (Table 1). Iron (II III) Oxide nanoparticles of size < 50 nm (TEM) were purchased from Aldrich. Table 1. Properties of Polanga seed oil and neat diesel Make Type No. of cylinder 1 Table 2. Engine specifications Kirloskar TV-1 Vertical cylinder Direct Ignition diesel engine Bore stroke 87.5 mm 110 mm Compression 17.5:1 510 Copyright 2016. Vandana Publications. All Rights Reserved.

Cycle Speed Rated brake Fuel injection pump Injection pressure Ignition time Diesel 1500 rpm 5.4 kw MICO in line with mechanical governor and flange mounted 220 kgf/cm 2 23 before TDC (rated) Ignition system Compression ignition Dynamometer Eddy current III. POD IRON OXIDE NANOPARTICLES BLEND PREPARATION It was observed that the iron oxide nanoparticles completely dispersed in diesel. This nanoparticles diesel mixture is used to make up the required quantity of diesel and blended with polanga seed oil is different proportions as given in (Table 3). This mixture of diesel, polanga seed oil and nanoparticles was used as fuel for the engine performance test. IV. EXPERIMENTAL SET UP A vertical, water cooled, single cylinder, four stroke direct injection KIRLOSKAR TV 1 engine was used for this research work. The engine was coupled with an eddy current dynamometer for applying different load conditions. The specification of the test engine was given in (Table 2). The fuel injection system consisted of threehole type injector with a MICO plunger pump of 8 mm diameter operated by the camshaft. The injection timing recommended by the manufacturer was 23 C before TDC (static) was followed. The operating pressure of the nozzle was set at the rated value of 220 gf/cm 2. Cooling of the engine was accomplished by supplying water through the jackets on the engine block and cylinder head. V. EXPERIMENTAL PROCEDURE Performance and emission tests experiments were conducted using the different proportions of iron oxide nano- particle and PDO blends. Important operating parameters such as engine shaft speed, generator output, fuel consumption rate, airflow rate, exhaust gas temperature and engine cooling water temperature were measured and performance characteristics such as brake thermal efficiency, specific fuel consumption etc were determined using fundamental relations. The test engine was coupled with an eddy current dynamometer as a loading device. A Photo sensor with a digital rpm indicator was used to measure the engine speed. The load of the engine was obtained from dial gauge reading with five discrete load conditions, varied from 0% to 100% in steps of 20%. During each run, the engine was allowed to run with neat diesel and blends at a constant speed of 1500 rpm for nearly 30 min, to attain the steady state conditions at the lowest possible load. The temperature of the lubricating oil and temperature of the engine cooling water were maintained constant at 65 C and 70 C respectively to eliminate their influence on the results. The flow rate of cooling water was maintained at 7 l/min. Temperature of the exhaust gas was measured using Chromel-Alumel (k- Type) thermocouples. A digital indicator with automatic room temperature compensation facility was used. Carbon mono oxide (CO), hydrocarbon (HC), Carbon-di oxide (CO2), Oxygen (O2) and NOx were measured using exhaust gas analyzer. AVL smoke meter was used to measure the smoke density of exhaust gas. The exhaust gas sample was allowed to pass through the cold trap (moisture separator) and filter element to prevent water vapour and periodically calibrated with standard gas as per the instruction provided by the manufacturer. Smoke density was measured in terms of Hartridge Smoke Unit (HSU) and Oxides of nitrogen was measured in terms of ppm. All the measurements were recorded by a data acquisition system. Each experiment was conducted thrice and average values were taken for further calculations. The possibilities of errors that could arise during the experiments were measured to prove the accuracy of the measurements. Hence the error analysis was carried out based on the accuracy and percentage uncertainties of the instruments used in these experiments [8]. The total percentage of uncertainties of these experiments were calculated to be ± 3%. 511 Copyright 2016. Vandana Publications. All Rights Reserved. VI. RESULTS AND ANALYSIS Properties of POD iron oxide blended fuel The specific gravity, viscosity and gross calorific value of POD (9%, 18% & 32% by weight) Iron oxide nanoparticles (105, 205 & 305 ppm) blended POD fuel were tested and listed in (Table 3). The specific gravity of the blends was observed to be 2.5% lesser than the neat diesel specific gravity. It was observed that the viscosity of the blends increased with the increase in the concentration of PSO. Increase in viscosity resulted in poor atomization of fuel in the cylinder. Hence the blending of PSO with neat diesel was restricted with the maximum 32% of PSO by weight. The calorific values of POD blends were only below 5% lesser than the calorific value of neat diesel. Performance studies Engine performance was studied for each fuel blends given in Table 3. Brake thermal efficiency (BTE) and Brake specific energy consumption (BSEC) were

calculated based on the experimental investigations at five different load conditions. All the experiments were performed at constant engine speed of 1500 rpm. Following equations were used for calculating the BTE and BSEC. Where, R dynamometer arm length = 0.195 m; N speed in rpm; T torque in Nm; BP brake power in kw; FC fuel consumption in kg/hr; BSEC brake specific energy consumption in kj/kwhr; CV Calorific value of the fuel blend; HI heat input in kw; BTE Brake thermal efficiency. The BTE of the engine reached maximum of 27% at 4.2 kw brake power i.e., 80% load, for all the POD blends and neat diesel. This shows that the performance of the engine fuelled by POD iron oxide nanoparticle blends was on par with that of neat diesel. It was observed that the increase in the polanga oil content in the blend decreases the efficiency marginally by 5%. This was due to the increase in the viscosity of the POD blend which influenced the combustion process negatively. It was known from the reported research works, presence of iron oxide nanoparticles in POD blends [13,14] affected the BTE in the following ways., (a) Enhancement of thermal properties such as thermal conductivity, thermal diffusivity and convective heat transfer co efficient, (b) The droplets of the fuel blend is ignited at lower temperature than pure diesel, (c) Increase in vapour pressure of the blend indicating increased evaporation, (d) Helped to form micro emulsion and improve spray characteristics by explosive vapourization, (e) Improved lubricity of the blends by reducing friction between moving parts, (f) Reduced ignition delay of the blend by donating oxygen. The brake specific energy consumption was same for both neat diesel and blended POD fuel. At minimum load condition, the BSEC reached the maximum of 26 MJ/kW.hr. From the 60% load condition, the BSEC was constant at 13.5 MJ/kW.hr. It was learnt that the exhaust gas temperature for the blended POD was slightly higher than the neat diesel above 80% load conditions. This might be due to the enhanced heat transfer properties by the addition of iron oxide nanoparticles. Emission studies Emission parameters such as CO2, CO, NOx, HC and smoke density were measured. It was noted that the trail runs 5,6,7,8 & 9 resulted in lower CO2 emission when compared to neat diesel whereas in other trail runs, the CO2 emission were found to be slightly higher than the neat diesel. Higher polanga oil content in the fuel blend led to lesser CO2 emission due to the presence of oxygen content in the polanga oil and iron oxide nanoparticles act as catalyst for combustion of hydrocarbons [15]. It was observed that up to 65% load condition, the CO emission was within in the ± 5% range of diesel whereas from 80% load condition, it increased exponentially. This may be due to incomplete combustion at high load conditions. Hence it was suggested that the engine should not be loaded above 80% load to maintain the CO emissions. Bajpai et al. [3] reported that 20% blend of karanja oil with diesel was not recommended for diesel engines as far as CO emission was concerned. But from these experiments, it was observed that the CO emissions were within the limit of neat diesel at 65% load condition for 30% POD blend. It was reported that the iron oxide present in the fuel form condensation sites before the formation of carbon particles in the combustion zone and enhance the following combustion process [14]. The presence of iron oxide nanoparticles reduced the CO emission by catalyzing the combustion process which resulted in complete combustion at 70% load condition. In above 80% load conditions, the CO emission increases exponentially due to higher fuel content in the combustion chamber and poor atomization of fuel which leads to incomplete combustion. It was known that the most important pollutants from the diesel engines are NOx and smoke. The NOx emissions were significantly reduced for all the POD blend composition above 80% load. Formation of NOx strongly depends on the temperature of combustion chamber. Increase in the combustion chamber temperature increased the NOx emissions. Iron oxide acted as catalyst for the reaction between hydroxyl radicals present in the polanga oil and carbon atoms in the soot and lowered the oxidation temperature [13,15]. Hence the NOx was reduced to 50% of that of neat diesel at higher polanga oil content in the blend due to presence of iron oxide nanoparticles. Presence of unburnt hydrocarbons in the engine exhaust gases were an important parameter to study the emission characteristics. The unburnt hydrocarbons for the neat diesel fuel reached maximum 60 ppm at 100% load condition. The unburnt hydrocarbon content in the exhaust of 10% POD blend with 1% iron oxide nanoparticles fuel exactly matches with that of neat diesel but at higher POD blend (i.e., above 20%), the hydrocarbon emission is lesser than the neat diesel by 10-20%. This showed that the presence of iron oxide nanoparticles enhanced the combustion process by overcoming the adverse effect of high viscosity of blended fuel at higher concentration of polanga oil in the diesel. Smoke density The smoke density of 20% blend with 1% iron oxide nanoparticles was equal to neat diesel. At 10% polanga oil blend with 100 ppm iron oxide nanoparticles content, the smoke density was equal at all load conditions. Increase in the iron oxide nanoparticles content in the blend significantly reduced the smoke density by 10 15% with that of neat diesel up to 80% load condition. This was due to the presence of oxygen in polanga oil and iron oxide which helped complete combustion and reduced the elemental carbon in the exhaust. But the smoke density increases significantly at 100% load for all the blends.. VII. CONCLUSION Many researchers studied the performance of diesel engines using various NVOs diesel blend but very 512 Copyright 2016. Vandana Publications. All Rights Reserved.

few reported direct blending of polanga oil with diesel due to its high viscosity and acid value. In the present investigations, different POD blend compositions were prepared and tested with a single cylinder constant speed diesel engine. To enhance the performance of engine fuelled by POD blend, iron oxide nanoparticles were used as additive. From the exhaustive experimental studies, it could be concluded that the POD blend with iron oxide nanoparticles additive could be adopted as an alternative fuel for existing conventional diesel engines without any major modifications in the engine. Addition of iron oxide nanoparticles considerably influenced the engine performance and emission at high POD blend ratio. Many of the performance and emission parameters were equal to that of neat diesel above 20% polanga oil content in diesel with iron oxide nanoparticles at different load conditions. Performance of blend of 900 ml diesel, 300 ml polanga oil and 100 ppm nano particles was observed to be closer to neat diesel performance at 80% load conditions. But it was also observed that the change in the iron oxide nanoparticles concentration in POD blend fuel did not have major impact either in performance or emission of engine. Hence, it was concluded that the iron oxide nanoparticles in the fuel blend can be maintained at its lowest concentration. Further to these experimental studies, investigations on the escape of iron oxide nanoparticles through the exhaust gas and engine corrosion studies were to be carried out before using nanoparticles as additive in large scale. Theoretically, all the iron oxide nanoparticles present in the fuel blend took part in the combustion process by supplying oxygen and agglomeration of iron nanoparticles would take place due to high temperature in the combustion chamber. Experiments were in progress to characterize the exhaust gases and corrosion aspects of engine fuelled with POD blend with iron oxide nanoparticles. High costs of iron oxide nanoparticle do have major impact on the economy of diesel engines. REFERENCES [1] Ramadhas, A.S., Use of vegetable oils as I.C engine fuels A review, Renewable Energy, 2004, 29: 727-42. [2] Agarwal, D., Kumar, L. Agarwal, A.K., Performance evaluation of a vegetable oil fuelled compression ignition engine, Renewable Energy, 2008, 33:1147-56. [3] Bajpai, S., Sahoo, P.K. and Das, L.M., Feasibility of blending karanja vegetable oil in petro-diesel and utilization in a direct injection diesel engine, Fuel, 2009, 88:705-11. [4] Murugesan, A., Umarani, C., Subramanian, R. and Nedunchezhian, N., Bio-diesel as an alternative fuel for diesel engines a review. Renewable and Sustainable Energy Reviews, 2009, 13:653-62. [5] Nuran Nabi, Md., Shamim Akhter, Md., Mhia, Md. and Shahadat, Z., Improvement of engine emissions with conventional diesel fuel and diesel biodiesel blends, Bioresource Technology, 2006, 97:372-78. [6] Nwafor, O.M.I. and Rice, G., Performance of Rapeseed oil blends in diesel engine, Applied Energy, 1996, 54:345-54. [7] Alton, R., Cetinkaya, S. and Yucesu, H.S., The potential of using vegetable oil fuels as fuel for diesel engines, Energy Conversion and Management, 2001, 42:529-38. [8] Devan, P.K. and Mahalakshmi, N.V., Study of the performance, emission and combustion characteristics of a diesel engine using poon oil-based fuels, Fuel Processing Technology, 2009, 90:513-19. [9] Misra, R.D. and Murthy, M.S., Straight vegetable oils usage in a compression ignition engine a review, Renewable and Sustainable Energy Reviews, 2010, 14:3005-13. [10] Sahoo, P.K., Das, L.M., Babu, M.K.G. and Naik, S.N., Biodiesel development from high acid value polanga seed oil and performance evaluation in a CI engine, Fuel, 2007, 86:448-54. [11] Choi, Y., Lee, C., Hwang, Y., Park, M., Lee, J., Choi, C. and Jung, M., Tribological behaviour of copper nanoparticles as additives in oil, Current Applied Physics, 2009, 9:e124-e27. [12] Danilov, A.M., Fuel additives evolution and use in 1996-2000, Chemistry and Technology of Fuel Oils, 2001, 37:445-55. [13] Ulrich, A. and Wichser, A., Analysis of additive metals in fuel and emission aerosols of diesel vehicles with and without particle traps, Analytical and Bioanalytical Chemistry, 2003, 377:71-81. [14] Jung, H., Kittelson, D.B. and Zachariah, M.R., The influence of a cerium additive on ultrafine diesel particle emissions and kinetics of oxidation, Combustion and Flame, 2005, 142:276-88. [15] Burtscher, H., Matter, U., Skillas, G. and Zhiqiang, Q., Particles in diesel exhaust caused by fuel additives, Journal of Aerosol Science, 1998, 29:S955-S56. 513 Copyright 2016. Vandana Publications. All Rights Reserved.

Trial No. Table 3. Composition of POD iron oxide nanoparticles fuel blends Neat Polanga Iron oxide Specific Kinematic Diesel Oil nanoparticles gravity viscosity (g) (g) (ppm) (cst) Calorific value (kj/kg) 1 960 108 105 0.8357 3.52 44080 2 960 107 205 0.8377 3.65 44024 3 960 1066 305 0.8379 3.42 44099 4 862 216 105 0.8474 4.42 43643 5 862 215 205 0.8487 4.48 43605 6 862 214 305 0.8493 4.54 43580 7 760 328 105 0.8549 5.97 43306 8 760 327 205 0.8558 6.05 43270 9 760 326 305 0.8559 6.06 43262 10 1000 0 0 0.834 2.8 45236 514 Copyright 2016. Vandana Publications. All Rights Reserved.