Performance and Emission Test of Several Blends of Waste Plastic Oil with Diesel and Ethanol on Four Stroke Twin Cylinder Diesel Engine

Similar documents
(Department of Automobile Engineering, Bharath Institute of Science and Technology, Bharath University Selaiyur, Chennai - 73, Tamil Nadu, India)

Effect of Varying Load on Performance and Emission of C.I. Engine Using WPO Diesel Blend

A.S.P. Sri Vignesh 1, Prof C. Thamotharan 2 1 (Department of Automobile Engineering, Bharath Institute of Science and Technology, Bharath University

Review Paper Waste plastic Pyrolysis oil Alternative Fuel for CI Engine A Review

Prediction of Performance and Emission of Palm oil Biodiesel in Diesel Engine

Performance and Emission Analysis of Diesel Engine using palm seed oil and diesel blend

Experimental Investigations on a Four Stoke Diesel Engine Operated by Jatropha Bio Diesel and its Blends with Diesel

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL

PERFORMANCE OF DIRECT INJECTION C.I. ENGINE USING KARANJA OIL AT DIFFERENT INJECTION PRESSURES

Project Reference No.: 40S_B_MTECH_007

Performance Characteristics of Ethanol Derived From Food Waste As A Fuel in Diesel Engine

GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN:

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System

PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER

EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL

Research Article. Effect of exhaust gas recirculation on NOx emission of a annona methyl ester operated diesel engine

PERFORMANCE IMPROVEMENT OF A DI DIESEL ENGINE WITH TURBOCHARGING USING BIOFUEL

EXPERIMENTAL INVETIGATIONN ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DI- CI ENGINE FUELED WITH PREHEATED SHEA OLEIN BIODIESEL

Combustion and Emission Characteristics of Jatropha Blend as a Biodiesel for Compression Ignition Engine with Variation of Compression Ratio

EXPERIMENTAL STUDY ON PERFORMANCE OF DIESEL ENGINE USING BIO-DIESEL

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends

Performance and Emission Characteristics of Direct Injection Diesel Engine Running On Canola Oil / Diesel Fuel Blend

ABSTRACT I. INTRODUCTION II. TECHNICAL SPECIFICATIONS OF THE ENGINE III. MATERIAL & METHODS

Material Science Research India Vol. 7(1), (2010)

Automotive Technology

Investigation on the Performance and Emissions of Aloevera Blends with EGR System

Experimental Investigation of Emission Reduction by Blending Methanol, Ethanol and Biodiesel with diesel on C.I. Engine

Performance, Combustion and Emission Characteristics of Corn oil blended with Diesel

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

National Journal on Advances in Building Sciences and Mechanics, Vol. 1, No.2, October

AN INVESTIGATION INTO HOW DIFFERENT BLENDS OF BIO-DIESEL AT A RANGE OF TEMPERATURES AFFECT ENGINE HORSEPOWER, TORQUE AND EMISSIONS

INVESTIGATION OF CI DIESEL ENGINE EMISSION CONTROL AND PERFORMANCE PARAMETERS USING BIODIESEL WITH YSZ COATED PISTON CROWN

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 11 Nov p-issn:

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.5, pp ,

Evaluation of Performance and Emission Characteristics of Four Stroke Diesel Engine with Mahua Bio-Diesel Blends

PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL

Experimental investigation on constant-speed diesel engine fueled with. biofuel mixtures under the effect of fuel injection

International Journal on Theoretical and Applied Research in Mechanical Engineering (IJTARME)

EFFECT OF STEAM INJECTION ON NO X EMISSIONS AND PERFORMANCE OF A SINGLE CYLINDER DIESEL ENGINE FUELLED WITH SOY METHYL ESTER

Inturi Vamsi et al. Int. Journal of Engineering Research and Applications ISSN : , Vol. 5, Issue 5, ( Part -4) May 2015, pp.

EXPERIMENTAL INVESTIGATION OF A DIESEL ENGINE FUELED BY EMULSIFIED B20 BIODIESEL

V.Venkatakranthi Teja. N S Raju Institute of Technology (NSRIT), Sontyam, Visakhapatnam, Andhra Pradesh , India.

EXPERIMENTAL ANALYSIS ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH NEEM OIL AND NANO POWDER

Performance Analysis of Four Stroke Single Cylinder CI Engine Using Karanja Biodiesel-Diesel Blends

Effect of Jatropha Biodiesel Blend with Diesel Fuel on Performance of Four Stroke Single Cylinder Diesel Engine

STUDY ON ENTREPRENEURIAL OPPORTUNITIES IN BIODIESEL PRODUCTION FROM WASTE COCONUT OIL AND ITS UTILIZATION IN DIESEL ENGINE

Assistant Professor, Dept. of Mechanical Engg., Shri Ram College of Engineering & Management, Banmore, Gwalior (M.P) 2

Chandra Prasad B S, Sunil S and Suresha V Asst. Professor, Dept of Mechanical Engineering, SVCE, Bengaluru

Experimental Investigation of Performance and Emission Characteristics of Simarouba Biodiesel and Its Blends on LHR Engine

Rubber Seed Oil as an Alternative Fuel for CI Engine: Review

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine

Comparative Analysis of Performance and Emission Charactristics of Neem Oil Using 3 And 4 Holes Injection Nozzle on DI Diesel Engine

American International Journal of Research in Science, Technology, Engineering & Mathematics

Operational Characteristics of Diesel Engine Run by Ester of Sunflower Oil and Compare with Diesel Fuel Operation

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF BTE AND NOX IN A DIRECT INJECTION VCR DIESEL ENGINE RUNNING WITH RICE BRAN METHYL ESTER

PERFORMANCE AND ANALYSIS OF DIESEL ENGINE USING CHICKEN OIL WITH DIESEL AS A BIOFUEL

Experimental Investigation of a Diesel Engine fueled by emulsified B20 biodiesel

[Amar*, 4(9): September, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

Emission Characteristics of Rice Bran Oil Biodiesel as an Alternative in Single Cylinder CI Engine with DI Ethyl Ether Blends

EFFECT OF FUMIGATED BIODIESEL ON THE PERFORMANCE AND EMISSION CHARACTERISTICS OF A SINGLE CYLINDER DIESEL ENGINE

Preparation of Biodiesel from Chicken Feather oil and Performance analysis on VCR Diesel Engine Equipped with EGR and Smoke Analyser

EXPERIMENTAL INVESTIGATION OF PERFORMANCE ANALYSIS ON VCR DI DIESEL ENGINE OPERATED ON MULTI BLEND BIODIESEL

Vivek Pandey 1, V.K. Gupta 2 1,2 Department of Mechanical Engineering, College of Technology, GBPUA&T, Pantnagar, India

Performance and Emission Characteristics of 4 S DI diesel Engine fueled with Calophyllum Inophyllum Biodiesel Blends

Case Study of Exhaust Gas Recirculation on Engine Performance

EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST

Sathyabama Institute of Science and Technology,Chennai ,Tamilnadu,India. JSPM s,college of Engineering,Hadapsar,Pune ,Maharashtra,India.

PERFORMANCE AND EMISSION ANALYSIS OF CI ENGINE FUELLED WITH THE BLENDS OF PALM OIL METHYL ESTERS AND DIESEL

Evaluation Of Mahua Oil Prepared By Two Step Transesterification For Performance And Emission Characteristics

PERFORMANCE AND EMISSION ANALYSIS ON CI ENGINE USING SOAPNUT OIL AS BIOFUEL

Ester (KOME)-Diesel blends as a Fuel

National Conference on Advances in Mechanical Engineering Science (NCAMES-2016)

EFFECT OF EMULSIFIER ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING PALM BIODIESEL

S S Ragit a *, S K Mohapatra a & K Kundu b. Indian Journal of Engineering & Materials Sciences Vol. 18, June 2011, pp

Experimental Investigations on the Performance and Emission Characteristics of a Diesel Engine Fuelled with Plastic Pyrolysis Oil Diesel Blends

Investigation of Single Cylinder Diesel Engine Using Bio Diesel from Marine Algae

EXPERIMENTAL INVESTIGATION OF PERFORMANCE PARAMETERS OF SINGLE CYLINDER FOUR STROKE DI DIESEL ENGINE OPERATING ON NEEM OIL BIODIESEL BLENDS

Properties and Use of Jatropha Curcas Ethyl Ester and Diesel Fuel Blends in Variable Compression Ignition Engine

Performance Enhancement & Emission Reduction of Single Cylinder S.I. Engine using Tri Fuels -An Experimental Investigation

Experimental Analysis of Utilization of Heat Using Methanol - Diesel Blended Fuel in Four Stroke Single Cylinder Water Cooled Diesel Engine

ISSN: [Sirivella, 6(10): October, 2017] Impact Factor: 4.116

Impact of Various Compression Ratio on the Compression Ignition Engine with Diesel and Mahua Biodiesel

Evaluating Performance And Emission Characteristics Of C.I. Engine Run By Cashew Nut Shell Liquid (Cnsl) As A Fuel

ANALYSIS OF EXHAUST GAS RECIRCULATION (EGR) SYSTEM

Conversion of Naturally Aspirated Genset Engine to Meet III A Norms for Tractor Application by Using Turbocharger

4. With a neat sketch explain in detail about the different types of fuel injection system used in SI engines. (May 2016)

Comparison of Performance of Castor and Mustard Oil with Diesel in a Single and Twin Cylinder Kirsloskar Diesel Engine

ENVO DIESEL TEST ON AUTOMOTIVE ENGINE AN ANALYSIS OF ITS PERFORMANCE AND EMISSIONS RESULTS

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL

Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine

PERFORMANCE AND EMISSION CHARACTERISTICS OF CI DI ENGINE USING BLENDS OF BIODIESEL (WASTE COOKING OIL) AND DIESEL FUEL

EFFECT OF L-ASCORBIC ACID AS ADDITIVE FOR EXHAUST EMISSION REDUCTION IN A DIRECT INJECTION DIESEL ENGINE USING MANGO SEED METHYL ESTER

Performance and Emission Characteristics of a DI Diesel Engine Fuelled with Cashew Nut Shell Liquid (CNSL)-Diesel Blends

Research Article Performance and Emission Analysis of a CI Engine in Dual Mode with LPG and Karanja Oil Methyl Ester

Performance and Emission Analysis of C.I. Engine using Biodiesels and its Blends

Study of Performance and Emission Characteristics of a Two Stroke Si Engine Operated with Gasoline Manifold Injectionand Carburetion

Experimental Study of Linseed Oil as an Alternative Fuel for Diesel Engine

EFFECT OF BUTANOL-DIESEL BLENDS IN A COMPRESSION IGNITION ENGINE TO REDUCE EMISSION

Simultaneous reduction of NOx and smoke emission of CI engine fuelled with biodiesel

Transcription:

IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 232-334X, Volume 11, Issue 2 Ver. I (Mar- Apr. 214), PP 47-51 Performance and Emission Test of Several Blends of Waste Plastic Oil with and Ethanol on Four Stroke Twin Cylinder Engine Mr Kaustav Mukherjee, Prof C.Thamotharan Bharath Institute of Science and Technology, Bharath University, Selaiyur, Chennai-73, Tamil Nadu, India. Abstract: Fossil fuels are non- renewable source of energy. It is difficult to predict its availability in future. It casts a shadow of uncertainty of its supply, the immediate effect of its scarcity is rising price and its adverse impact on the growing economies like India. India imports 8% of total demand of the Petroleum products. Therefore, sourcing a sustainable energy and environment friendly alternative is needed to be developed instead of using fossil fuels. Recently waste plastics are receiving renewed interest as an alternative to fossil fuel. Waste plastics are indispensable materials in the modern life and its application in the industrial field is continuously increasing. Conversion of waste plastic to energy is one of the recent trends in minimizing not only the waste disposal but also as an alternative fuel for internal combustion engine. In this paper waste plastic oil and its blends with and Ethanol is introduced as alternative fuel. I have conducted an experimental research on this alternative fuel on various operational parameters i.e. Engine Performance and emission test with blends like D1,,,. Keywords: Waste Plastic oil,, Ethanol. I. Introduction With time passing by, the fossil fuel reserves are depleting at a faster rate, causing continuous increase in price of petroleum products all over the world. The high price of petroleum products is a big concern for Indian economy. India imports on an average 8% of total demand of crude oil. It is one of the main reasons of GDP expense. Therefore an alternative cheaper fuel is required to fulfil the needs of common man and at the same time it will save precious foreign exchange. Alternative source of fuel lies in plastic. In India 56 lakh tonnes of plastics are generated each year and only 6% of it is recycled. Safe method of disposing the waste plastic has not yet been implemented here, and dumping of waste plastic underground is hazardous to the environment. But we can use it as an alternative source of fuel for gasoline and diesel. This will save the environment from hazardous effect as well as to boosting the Indian economy. Previously, many researches were done on bio Ethanol, bio-diesel, bio-gas, waste oil recycling and di-methyl ether. All of them showed encouragement results. However, the drive for search of a new source of alternative fuel, we have performed the engine performance test by using Waste Plastic oil++ethanol of various blends viz.,,. We found that the blends of & Waste Plastic Oil & Ethanol gives nearer values to fuel in the Kirloskar engine, without any further modification in the engine itself. II. Transesterification And Pyrolysis Process Trans esterification is the process of exchanging the organic group R // of an ester with the organic group R / of an alcohol. These reactions are truly catalysed by the addition of an acid or base catalyst. In this process the carbonyl carbon of the starting ester (RCOOR / ) undergoes nucleophylic attack by the incoming alkaloid (R 2 O - ) to give a tetrahedral intermediate, which either reverts to the starting material or proceed to the transesterification product (RCOOR 2 ). Figure 1 Nowadays, sophisticated technologies are available for plastic waste management. Pyrolysis is one such technology used to produce useful products like industrial diesel, gaseous fuel, carbon black etc. Pyrolysis is the thermal degradation of waste in oxygen starved environment in which oxygen content is low for gasification to take place. Pyrolysis liquefaction is a non-combustible heat treatment that catalytically decomposes waste material by applying heat directly or indirectly to the waste material in an oxygen free environment. It is an endothermic reaction which requires an input of energy that is typically applied indirectly through the walls of 47 Page

Performance and Emission Test of Several Blends of Waste Plastic Oil with and Ethanol on the reactor in which the waste material is fed into. Pyrolysis liquefaction occurs under pressure and at operating temperatures above 43 o C. Figure 2 PROPERTIES OF WATSE PLASTIC OIL AND DIESEL Properties WPO Ethanol Density (Kg/m 2 ) 793 85 789. Pour Point ( o C) -4 3-15 Sulphur Content (%) <.2 <.35 -------- Carbon residue (%).1 % wt.2% wt -------- Fire point ( o C) 45 56 Flash pont ( o C) 4 5 -------- Cetane number 51 55 16.6 C Kinematic viscosity 4C 2.149 3.5 2. (csr) Calorific value (kj/kg) 418 42 297 Ash content (%) <1.1.45.2 Table 1 III. Experimental Setup The experimental setup consists of a diesel engine and a gas analyser. The engine used in the experiment is a constant speed Kirloskar engine, four stroke twin cylinder, direct injection vertical diesel engine. The engine is water cooled. The load applied on the engine is by means of electric loading device. The engine is mounted on concrete bed with suitable connections for water cooling and lubrication. The outlet temperature of water from engine is maintained at 5 o C by adjusting the flow of the coolant. The schematic arrangement of experimental setup is shown in figure. Figure 3 48 Page

Sfc Mfc Performance and Emission Test of Several Blends of Waste Plastic Oil with and Ethanol on 1.1 Engine Specification Engine Manufacturer Bore & Stroke Number of Cylinder 2 Compression Ratio 17.5:1 Speed Cubic Capacity Method of cooling Fuel timing Clearance volume Rated power Nozzle opening pressure Table 2 Kirloskar oil Ltd 87.5*11(mm) 18 rpm.661 litres Water cooled 27 o by spill (btde) 37.8 cc 8 hp 2 bars IV. Result And Discussion The comparison of performance and emission characteristics of CI engine using Waste Plastic Oil with and Ethanol blends is charted. The graphs are plotted for the following characteristics. Load Vs. Mfc Load Vs. Sfc Load Vs. B th ϰ Load Vs. NOx Load Vs. CO 1.2 Load Vs. Mfc The mass fuel consumption of biodiesel is marginally higher than that of. has slight better fuel efficiency. The graph shows that values are very close to that of diesel. 2 1.5 1.5 Load Vs Mfc 25 5 75 1 Load (Kg) Figure 4 1.3 Load Vs. Sfc The specific fuel consumption for diesel is lower than other bio diesel blends. Hence the fuel efficiency of diesel is slightly better than biodiesel blends. But is very close to. 3 Load Vs Sfc 2 1 25 5 75 1 Load(kg) Figure 5 1.4 Load Vs. Brake Thermal Efficiency shows a better brake thermal efficiency than biodiesel blends. But values are very close to that of. 49 Page

Nox Brake Thermal Efficiency Performance and Emission Test of Several Blends of Waste Plastic Oil with and Ethanol on 15 1 5 Load Vs Bth ϰ Load (Kg) Figure 6 V. Emission Characterstics The emissions of Internal Combustion Engine are a major concern to air pollution. The regulated pollutants are Carbon Mono-oxide (CO),Mono-Nitrogen Oxides(NOx) and unburned fuel or partly oxidised Hydro Carbons. 1.5 Mono Nitrogen Oxides (NOx) As per experimental study of WPO & & Ethanol blends in CI engine, it indicates that the concentration of NOx varies from.26g/km at low load to.41g/km at full load for fuel. For it varies from.26g/km at low load to.4g/km at full load. For it varies from.27g/km at low load to.39g/km at full load. For it varies from.25g/km at low load to.41g/km at full load. Because of high heat release the NOx content increases at full load because of higher aromatic content fuel with ring structure. Load Vs Nox.5.4.3.2.1 25 5 75 1 Load (kg) Figure 7 1.6 Carbon mono-oxide (CO) Nowadays the CI engines operate with lean mixtures and hence the Co emission is low. CO is toxic in nature and must be controlled. The concentration of CO varies from.51g/km to.71g/km at low load to full load for fuel. For it varies from.52g/km to.69g/km at low load to full load. For it varies from.51g/km to.7g/km at low to full load. For B 6 it shows.52g/km to.69g/km at low to full load. From the above experiment it is concluded that the emission of WPO biodiesel is well under control and it is similar to that of. 5 Page

CO Performance and Emission Test of Several Blends of Waste Plastic Oil with and Ethanol on.8.7.6.5.4.3.2.1 Load Vs CO 25 5 75 1 Load (kg) Figure 8 VI. Conclusion After conducting the experiment on Waste Plastic Oil with & Ethanol it is concluded that the WPO blends represent a fairly good alternative fuel for. As the natural resources are depleting fast, WPO blend of oil can be used in future for vehicular movement. Further, it is concluded that has characteristics as near to diesel. The emissions are very near to that of. It indicates that WPO oil is not at all hazardous to environment. It can be considered as neat as gasoline and diesel. If Government of India provides some subsidy for production of this bio diesel, then it will attract investment in its production. The low cost of this fuel will drive up the economy at a faster rate in one hand and at the same time it will reduce the dependence on importation of diesel/petrol oil. Generation of employment in producing bio diesel and assuring clean environment will be an added advantage. NOMENCLATURE CI CO Co 2 NOx WPO Sfc Mfc Compression Ignition Carbon Mono-oxide Carbon di-oxide Mono nitrogen Oxides Waste Plastic Oil Specific fuel consumption Mass fuel consumption Table 3 References [1] Heywood JB, Internal Combustion engine fundamentals, McGraw Hill Publication, http://www.mcgraw-hill.com (1988). [2] Williams PT and Williams EA, Interaction of Plastics in mixed plastic pyrolysis, Journal of Energy and fuels, 13 188-196 (199). [3] Walendzienwski Jerzy, Engine fuel derived from waste plastics by thermal treatment, Journal of Fuel, 81 473-481 (22). [4] S.Murugan, M C Ramaswamy and G Nagrajan, Assessment of Pyrolysis oil as an energy source for engines. Anna University, Chennai, India. [5] Sutton D, Rush M and Richard P, Engine Performance and Emission using different fuel/ additives combustion, SAE Technical Paper 88635, (1988). [6] Bertolic, Del Glacomo N, combustion improvements by the use of oxygenated synthetic fuels, SAE Paper No 972972. [7] R D Mishra, M S Murthy, Performance emission and combustion evaluation of soapnut oil diesel blends in a compression ignition engine. Mechanical Engineering Department, NIT, Silchar, India, (211). [8] http://www.pcd.go.th/info_serv/waste_wastethai.htm. Waste plastic in Thailand, Pollution control department, Thailand. [9] Agarwal Avinash Kumar, Biofuel application as fuel internal combustion engines, Journal of energy and combustion Science, 33 233-77 (27). [1] V ganeshan, Internal Combustion Engines, (24). [11] Alan C Hasen, Qin Zhang, Peter WL Lyne, Ethanol fuel blend University of Illionis, (24). 51 Page