Long-term planning in aerospace technology

Similar documents
Powering a better world: Rolls-Royce and the environment

Engine Industry Management Group EIMG. The European Aero-engine Community. Riga, 20 April 2005

Pioneering intelligent innovation

Innovation Takes Off. Not legally binding

Environmentally friendly aero-engines for the 21st century Dr. Norbert Arndt, Managing Director Engineering Rolls-Royce Deutschland

What does the future bring?

Whole Engine Integration

The Future of Engine Technology

FUEL BURN REDUCTION. Fuel consumption improvement 20 % 5 % 20 to 30% 1 Direction Technique YD 20 juin first generation

Corso di Motori Aeronautici

Dave Bone. DREAM Project Coordinator

Past, present and future sustaining the traditions of Sir Henry Royce

AT A GLANCE GRID /2014

FORD AND AZURE DYNAMICS COLLABORATE ON TRANSIT CONNECT ELECTRIC FOR EUROPE

Emissions Mitigation Concepts

Climate change challenge

Project Title: Benefits: Value: 26 million Duration: 30 months. Partners: ACTIVE Advanced Combustion Turbocharged Inline Variable Valvetrain Engine.

ENGINE Demonstration Programmes in Clean Sky & Clean Sky 2

Efficiency from a new perspective Let it flow.

Clean Sky Programme. JTI Workshop, Vienna 3 rd of February, Helmut Schwarze, Project Officer CSJU Andrzej Podsadowski, Project Officer CSJU

To Our Business Partners

LIFTING OFF WITH LEADING-EDGE INSPECTION. MTU Aero Engines turns to PolyWorks Inspector to optimize its inspection processes

TAKE OFF Informationsveranstaltung zu Ausschreibungen nationaler und europäischer Luftfahrtforschungsprogramme Clean Sky

TraXon Hybrid Makes Long-Distance Traffic Even More Economical

Innovation Takes Off. Not legally binding

Aviation Fuels & Additives

Aviation Fuels & Additives

Respecting the Rules Better Road Safety Enforcement in the European Union. ACEA s Response

Thank you for this opportunity to present what we have been working on to develop a long term and enduring strategy to you and get guidance.

Dave Bone. DREAM Project Coordinator

Welcome to GKN Aerospace. 23 rd January 2014

Investor Update - Paris Defence Aerospace Axel Arendt

NEWAC Overall Specification, Assessment and Concept Optimization

TP400-D6 Turboprop A European Collaboration Programme

Statement Dr. Norbert Reithofer Chairman of the Board of Management of BMW AG Conference Call Interim Report to 30 June August 2013, 10:00 a.m.

65 Buckingham Gate London SW1E 6AT. United Kingdom. EADS EADS Innovation Works UK Filton, Bristol BS99 7AR. United Kingdom

VoltAir All-electric Transport Concept Platform

Fuel Cell Application in a New Configured Aircraft PUBLISHABLE REPORT

HARAS High Availability Redundant Actuation Systems

The Research Framework Programmes of Europe

METHANOL AS A MARINE FUEL A SAFE, COST EFFECTIVE, CLEAN-BURNING, WIDELY AVAILABLE MARINE FUEL FOR TODAY AND THE FUTURE

Investing in Technology for a greener future

F.P.7 Knowledge for Growth The Concept and Structure of Aeronautics and Air Transport

The SGT5-8000H proven in commercial operation

neuron An efficient European cooperation scheme

Fuel Borne Catalysts

The topic of exhaust emission regulation and reduction is extremely complex. In order to comply with the permissible emission values, increasingly

Your Quality Assured DOA Specialists

India-EU and Member States Partnership for a Strategic Roadmap in Research and Innovation

Aerospace Propulsion Systems

Weight-Saving ZF Technology for the Chassis

D. A. Davidson 7 th Annual Aerospace & Industrials 1-1 Conference Boston, Mass Standex Engineering Technologies Group.

Overview of BAE Systems Regional Aircraft

Faurecia Emissions Control Technologies Worldwide Leadership, Global Expertise. Shanghai (Minbei) R&D center (China) / Press Kit, April 12, 2011

HORIZON 2020 The European Union's programme for Research and Innovation Open to the world!

Propeller Blade Bearings for Aircraft Open Rotor Engine

Pioneering MTU C&I diesel engines for U.S. EPA Tier 4

SUBSIDIARY BODY FOR SCIENTIFIC AND TECHNOLOGICAL ADVICE Fourteenth session Bonn, July 2001 Item 3 (b) of the provisional agenda

Transitioning to low carbon / low fossil fuels and energy sources for road transport

ZF shows the latest innovations of the wind industry at the Hanover Fair 2015

Mahindra REVA case study

New Automotive Innovation and Growth Team (NAIGT)

THE AIRBUS / ENGINE & NACELLE MANUFACTURERS RELATIONSHIP : TOWARDS A MORE INTEGRATED, ENVIRONMENTALLY FRIENDLY ENGINEERING DESIGN

New Aero Engine Core Concepts

1 Rolls-Royce Deutschland, Dahlewitz, Germany 2 Turbomeca, Pau, France 3 SNECMA, Villaroche, France 4 Rolls-Royce, Derby, United Kingdom

Single-Cylinder Research Engines

The Prospects for the Development of Jet Biofuels in China. Professor Xingwu, Zheng Civil Aviation University of China

Dual-Fuel TM Technology

17-IAGT-104 Siemens introduces the SGT-A45 mobile unit: superior performance with trusted technology

Closed Size: 194x197mm Open Size: 388x197mm SOLAR DECATHLON MIDDLE EAST DUBAI The Solar Decathlon Middle East s Organising Partners

Aviation and the Environment

Type Acceptance Report

Safety and Green Vehicle Performance Rating

Lean Burn Technology at Rolls-Royce

Clean Sky Challenges and perspectives

GIBRALTAR ERDF OPERATIONAL PROGRAMME POST ADOPTION STATEMENT

Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU) Frequently Asked Questions

SIXTH FRAMEWORK PROGRAMME PRIORITY 4 AERONAUTICS AND SPACE SPECIFIC TARGETED RESEARCH PROJECT TLC

Turbocharging: Key technology for high-performance engines

Volkswagen s strategic realignment is delivering

LESJÖFORS. Spring manufacturing since 1852.

Warring Neilsen Corporate Affairs Manager Elgas


Keynote from Andreas Renschler, CEO Volkswagen Truck & Bus GmbH and Yoshio Shimo, President & CEO Hino Motors Ltd.

THE POWER TO LEAD CAT INDUSTRIAL ENGINES WITH ACERT TECHNOLOGY

From aviation pioneer to partner in the global engine community

Proportion of the vehicle fleet meeting certain emission standards

PRESS RELEASE. Significant fuel savings and rapid payback shown for rail flywheel hybrid technology. 16 June 2015

Singapore and Manila March Successful Deployment of Low Emission Vehicles Industry Viewpoint

Experimental Verification of Low Emission Combustor Technology at DLR

Road tests and vehicle testing. Our services Experience Competence

Number one in Germany Partners down the road Leaders in engineering and service

ZF TRW Highlights Why Automated Driving Starts with Safety at the Tokyo Motor Show

Operational eco-efficiency in Refineries

UfM Ministerial Declaration on Energy

Phil Swash. CEO European Aerospace & Special Products Group. April 2012

3. The contribution of plug-in vehicles to decarbonising transport

Royal Aeronautical Society. Sustainable Aviation Wellington, 28 March th Annual Symposium. New Zealand Division

The future of Aviation and the Environment: Advanced Technologies and Innovation

Rhode Island Division of Public Utilities and Carriers & Office of Energy Resources. Power Sector Transformation

Transcription:

DR MIKE HOWSE OBE FREng DIRECTOR ENGINEERING AND TECHNOLOGY, ROLLS-ROYCE PLC Long-term planning in aerospace technology 30 Few businesses have to plan their future development over such long time scales as the aerospace industry. Rolls-Royce has looked closely at the planning of its future strategy. Here Dr Mike Howse describes its approach. In industries with a very long view such as aerospace, acquiring the right technologies at the right time is a business skill of vital importance to all the companies involved. Customers requirements change markedly over time according to market demands, corporate social responsibility in terms of the environment, and the increasingly stringent statutory requirements laid down by national and international legislation. Long-term investment and longrange planning are vital, so Rolls-Royce has mapped out its research strategy, grouping technology acquisition within three broad time bands up to around five years, around ten years, and up to 20 years and beyond. This it calls its Vision 5, Vision 10 and Vision 20 programmes. The short term Vision 5 includes near-term development such as that under way on the Trent 900 programme for the Airbus A380, but also embodies the

on which the company collaborates with General Electric. Figure 1 Advanced aerodynamic 'swept' fan blades are now going into service with Rolls- Royce Trent 500 and 900 engines improvement of existing products by incorporating new but proven technologies into them. An example is the insertion of the Trent highpressure/combustion module into the RB211 engine to enhance fuel efficiency and lower emissions. A strategy of putting technologies on the shelf, available for use in new products, has already proved highly effective. It is a fundamental pillar in the Derwent Process, which Rolls-Royce applies when introducing all new products. Technologies finding their way onto the shelf also carry the benefit of potential dual use. While developed for a particular purpose, a technology used initially in a civil engine may have equal or wider potential application in defence products or vice versa. Economies of scale accrue from concentrating on technologies offering the broadest overall benefits. Such an example would be the wide-chord fan blade, pioneered on the civil range of RB211 and Trent engines, but now applied to the latest military products including the fan for the powerful engine used in the Joint Strike Fighter, The medium term Vision 10 technologies are those being validated for use in tomorrow s engine products such as metal matrix composites in compressor discs, which offer large weight savings, and which are already being manufactured and tested. An important part of the approach is to have a range of technology demonstration programmes aimed at delivering these packages of technology: it is a low-risk approach that leads to products with marketleading performance, reliability and cost benefits. Much Vision 10 effort is geared towards fuel efficiency, environmental improvements and life-cycle costs gains that will result in a more competitive, and acceptable, product for the broader market. Rolls-Royce has declared targets to reduce fuel burn by 10%, reduce oxides of nitrogen (NOX) by 50% of the current legislative standard and reduce noise by 10 db (effectively halving today s levels) by 2010. This is ambitious when the aviation industry has already made such giant strides in reducing emission and noise levels since the jet age dawned little more than half a century ago. Engines are 70% more efficient, proportionally four times quieter and cleaner than they were then. To make Figure 2 ANTLE Combustor (advanced near-term low emissions) is the next generation of aero engine combustors further step-change improvements, the whole industry has to meet the challenges together. This collaborative approach has already begun in some areas. Reducing emissions Future emissions improvements will be developed and generated through the international ANTLE demonstrator (Advanced Near-Term Low Emissions) programme, supported by European Union funding, co-funded by industry and led by Rolls-Royce. This fullengine demonstrator will look at a wide variety of areas within the engine, mitigating risks associated with new technology acquisition. ANTLE will include further combustion technology Figure 3 Part of the ANTLE programme, specifically the manufacturing trials for a high-pressure (HP) compressor blisk (bladed disc) 31

Rools Royce Advert from issue 11 page 46 Full Page Ad Page 32

research, continuing the development of staged combustor systems. The approach uses a direct injection, leanburn single annular configuration, which delivers staged combustion but optimises the use of cooling air. The system is designed to more than double the air going into the primary zone of the combustor, resulting in reduced peak temperatures that will reduce NOX to 40% of current regulations. Reducing noise Noise-reduction initiatives have been undertaken with airframe and engine partners. These include SILENCE(R), a joint programme with Airbus, SNECMA and MTU. SILENCE(R) incorporates a negatively scarfed intake, optimised acoustic liners, nozzle-lip treatment, and designs of fan, turbine and outlet guide vane profiled for low noise. Many of these technologies will be progressively proven in ground-based tests on rigs, and on ANTLE, based on the Trent 500 engine. Others will ultimately be proven in a flight test programme. Figure 4 Some of the research team at the Southampton University Noise Technology Centre, one of 20 Rolls-Royce UTCs in Europe Testing on a program with Boeing has been undertaken with modified engine exhaust nozzles and an advanced acoustic lining within the intake cowl. Static testing at the Rolls- Royce Hucknall facility proved successful and flight testing on a Boeing 777 showed significant reductions, exceeding expectations. Other technologies More electric technologies provide potentially increased functionality with reduced mechanical complexity, giving significant cost, weight and reliability benefits. Cabin air would be provided by a dedicated electrical system, replacing the engine bleed off-take. Conventional lubrication systems would be discarded in favour of oil-less magnetic bearings. These, together with a generator mounted directly onto the fan shaft to provide power for aircraft systems, encourage researchers to believe an airframe-integrated system could make significant reductions in fuel consumption. Further weight could be saved by avoiding the need for a separate emergency generator system and by moving to a distributed control Keep it quiet! Within its Vision10 and Vision20 programmes, Rolls- Royce is involved in various research programmes into reducing noise and emissions from air travel. In the noise arena, SILENCE(R) is being run as a European collaborative programme comprising Airbus, SNECMA and MTU, as well as Rolls-Royce, among its partners. Launched in 2001, it is the third integration phase of the European aircraft noise reduction campaign, and is expected to be complete in around 2005. SILENCE(R) incorporates a number of novel features, notably a negatively scarfed intake to direct noise upwards, plus hot stream liners, nozzle lip treatment and optimised acoustic liners. Technologies such as low noise fans and vanes will be validated in rigs and demonstration vehicles such as ANTLE (see the main text), while other technologies including liners and treated nozzles would be validated in flight aircraft. Complementary research has been conducted with Boeing which involved modifying a Trent 800 engine with a package of technologies including modified nozzles and advanced acoustic linings over an increased area of the intake cowl. Static testing took place at Rolls-Royce s Hucknall specialist test facility in Nottinghamshire in 1999, followed by flight testing on a Boeing 777 in 2001. Targets originally set for the flight test were reductions in jet noise of 3 db and fan noise of 7 db. In fact, the results were 4 db and 13 db, respectively, demonstrating the level of improvements that are possible. Such programmes are further supported by work undertaken by the company s dedicated University Technology Centre at Southampton University s worldrenowned Institute of Sound & Vibration Research (ISVR) and its own group of specialist engineers who are leading experts in this field. 33

system, incorporating local intelligent devices, coupled through digital technology to pylon-mounted systems away from the engine itself. This technology area is another equally applicable to military aircraft systems or marine applications, where electric systems would facilitate advances in ship design by allowing more flexibility in locating the gas turbine generators, leading to reduced cost and noise, and improved manoeuvrability. Indeed, more electric ship demonstrators are already well on the way. For full more electric benefits, aircraft design will need to incorporate the same principles. The Power Optimised Aircraft (POA) programme, launched earlier this year, aims to maximise gains in fuel burn, air quality and reduced or eliminated subsystems. This will include a specific engine demonstration of the latest electrical technologies. Underpinning all Vision 10 and Vision 20 programmes is the industry-wide planning that decides in which direction the business is moving. Senior Rolls- Royce research staff have to establish the shape and size of the foundation both within the company and through its external links for acquiring the technologies and processes required to achieve those broader business goals. The long term Vision 20 embodies a range of technologies aimed at the future generation of products in a 20-year timeframe. They are at the strategic research stage emerging or as yet unproven but the product-focused approach promotes the development of specific technologies through the company s extensive research base. Much of this technology will be applied right across the company s portfolio, including marine and energy as well as civil and defence aerospace products. Vision 20 goals will need to dovetail with broader European initiatives such as those being pursed by the Advisory Council for Aeronautic Research in Europe (ACARE), in which Rolls-Royce is participating. ACARE s own 2020 Vision programme foresees cutting by half the current perceived average noise levels, reducing carbon dioxide by 50%, and reducing NOX (classed as one of the key greenhouse gases promoted by aerospace activity) by a massive 80%. The realisation of these goals will come only through a collaborative approach, with aircraft makers, airlines, air traffic management and the engine manufacturers all playing their part. Meeting such targets is likely to be mandatory as the broader community sets legislation for greener and more environmentally acceptable products. 34 Figure 5 The Rolls-Royce LiftFan for Joint Strike Fighter being installed into Lockheed Martin's X-35B flight demonstrator aircraft Collaborative research There is in place a strong global network of collaborative research links and in the UK there are 19 University Technology Centres (UTCs) conducting fundamental research, working to specific Rolls-Royce goals on long-term funded contracts. These contracts address engineering subjects as varied as vibration, noise, transmission systems, power engineering, combustion, control systems, aerothermal, performance, materials damping, advanced materials and manufacturing technology. UTCs are

funded over several years, have an academic director, research fellows and assistants, and a co-ordinator from Rolls-Royce who sets and reinforces the goals of the research being undertaken. The business focus thereby remains very sharp, and mutual industry/academic benefits are more concrete. The first international UTC in Europe was recently launched at Chalmers University at Gothenburg in Sweden, studying hydrodynamics in support of the marine business in which Rolls-Royce is a world leader. The company has forged longstanding engineering links with ten other major institutes in Scandinavia and Germany. Collaborative research into areas such as turbomachinery and high-temperature materials is also conducted with some of North America s foremost academic centres of technological excellence including Purdue (where the first USTC was established this year), MIT, Georgia Tech, Stanford and Penn State. In Asia, several institutes in China, Japan and Singapore are working collaboratively in combustion, powerplant integration, diagnostic and new material disciplines. This structured, product-focused Vision for the future means Rolls- Royce can continue to offer marketleading products with the latest technology, introduced at minimum risk, ensuring the company and the UK engineering base have a strong future. Dr Mike Howse is the Director of Engineering and Technology Civil Aerospace at Rolls Royce overseeing the wide range of in-service engines and the introduction of new Trent and other variants. He has worked for the company for over 30 years and is also a visiting professor at Cranfield University. He was awarded the OBE for services to aerospace. technology communications innovationsdesign economics transport Would you like your IT article letters to appear in INFRASTRUCTURE business Ingenia? opinions manufacturing Widely read by professional engineers across all disciplines, Ingenia also numbers business leaders and MPs amongst its readers. We aim to inform and stimulate opinion-formers both within and outside the engineering profession. Proposals and suggestions for articles covering any topic within engineering are welcomed. Ingenia also welcomes letters to the editor in response to previously published articles or on any engineering topic of general interest. technologycommunications innovationsdesign economics transport IT letters INFRASTRUCTUR business E opinions manufacturing A copy of the guidelines for authors is available on request or from The Royal Academy of Engineering website. e-mail: @raeng.co.uk www.raeng.co.uk 35