Controlled Time of Arrival (CTA) Feasibility Analysis

Similar documents
Fuel Saving by Gradual Climb Procedure. Ryota Mori (Electronic Navigation Research Institute)

FLIGHT PLANNING EXAM 4 WORKING

Fuel Saving by Gradual Climb Procedure

Progress to NextGen. Avoided Delay Metric. Federal Aviation Administration

Clean Sky - Systems for Green Operation & links with SESAR

AERO2K. Aviation Emissions Inventory for 2002 and Chris Eyers EC-AERODAYS, Vienna June Emissions from Aviation

4th EUROCONTROL Innovative Research workshop Day II December 2005, the 7th Performance Parameters Of Speed Control & Potential Of Lateral Offset

Self Managing Conflict Resolution for Autonomous Taxiing Tugs: An Initial Survey

Generic MEP Aircraft Example of a possible way!

PRODUCT CODE Av3 FLIGHT PLANNING EXAM 2 WORKING. by Rob Avery

FUEL CONSERVATION. WG4 Workshop Aviation Operational Measures for Fuel & Emissions Reductions. Philippe Fonta AIRBUS

Ensuring increased runway throughput with advanced parallel runway operations and enhanced wake turbulence categories operations

Contextual note SESAR Solution description form for deployment planning

Approche novatrice pour la conception et l exploitation d avions écologiques, sous incertitudes.

ATPL Workbook. ATPL Advanced Aerodynamics, Performance and Systems Knowledge (Aeroplane)

Climb, Cruise and Descent Speed Reduction for. Airborne Delay without Extra Fuel

OPTIMAL MISSION ANALYSIS ACCOUNTING FOR ENGINE AGING AND EMISSIONS

Answer Key. Page 1 of 10

Environmental analysis of aircraft flight trajectories based on predictions and ATTAS fly-over noise measurements

Effective: CAIRNS (YBCS) REVISED ILS RWY 15 PROCEDURES

Aviation and the Environment

This Flight Planning Guide is published for the purpose of providing specific information for evaluating the performance of the Cessna Corvalis TT.

ACAS X Next Generation Collision Avoidance

from Optimal Cruise Speed and Altitude Jonathan Lovegren R. John Hansman Tom Reynolds Massachusetts Institute of Technology

Reducing Aircraft Ground Emissions

Advanced Emission Model AEM

The validation of HUMS engine data

Airport Information. Details for IFAISTOS. State/Province

Fuel Efficiency The Industry, IATA and You

SILENT SUPERSONIC TECHNOLOGY DEMONSTRATION PROGRAM

Airport Information. Details for ARISTARCHOS OF SAMOS. State/Province

1978: DC8 Portland. Dr. Frank Caron, 2008, v0.4, 1 Accidents and serious incidents

Constraints in aviation infrastructure and surface aircraft emissions

AIRCRAFT FAMILIARIZATION. Some questions may not apply to the aircraft you are flying.

Runway Scheduling Limits Summer 2019

ESTIMATING TAKEOFF THRUST FROM SURVEILLANCE TRACK DATA

Cessna 152 Checklist

FLYING CAR NANODEGREE SYLLABUS

Flight Test Evaluation of C-130H Aircraft Performance with NP2000 Propellers

Doncaster Sheffield Airport Airspace Change Proposal for the Introduction of RNAV (GNSS) Departure and Approach Procedures ANNEX E TO PART B

The European Tilt Rotor-Status of ERICA Design and Test Activities. Madrid, 31 March 2011

Locomotive Allocation for Toll NZ

THE CHART IS MODIFIED FOR SIMULATION USE. DO NOT USE FOR REAL WORLD NAVIGATION N VATSIM HONG KONG

Welcome to the Airbus A380 Basic Manual for Virtual Air Cadet Airlines.

Consumer Choice Modeling

Heli Traffic 2009 User s Manual

AIRPLANE PERFORMANCES

B737 Performance. Takeoff & Landing. Last Rev: 02/06/2004

Normal T/O Procedure. * * * Engine Failure on T/O * * *

Environmental issues for a supersonic business jet

FIRST FLYING TECHNIQUES COCKPIT PREPARATION STARTUP TAXI

Airport Information. Details for KING PYRROS. State/Province

THE continuous-descent approach (CDA) is one of the key

AIRCRAFT AND TECHNOLOGY CONCEPTS FOR AN N+3 SUBSONIC TRANSPORT. Elena de la Rosa Blanco May 27, 2010

Design and Simulation of New Versions of Tube Launched UAV

IN-FLIGHT CHECK LIST B-17 Technical Session for Flight Engineers 11/18/2017 (with REVISION)

Detect & Avoid. UAV Integration in the Lower Airspace Traffic. Cyril Allignol, Nicolas Barnier, Nicolas Durand & Éric Blond. ICRAT June 22, 2016

David s Flight Simulator Operations Manual

Japan s Action Plan to Reduce Greenhouse Gas Emissions from Aviation

What do autonomous vehicles mean to traffic congestion and crash? Network traffic flow modeling and simulation for autonomous vehicles

Shu Ting Goh, Research Fellow, ECE, NUS S. A. (Reza) Zekavat, Professor, ECE, MTU (Visiting Prof. WPI)

Efficiency of Semi-Autonomous Platooning Vehicles in High-Capacity Bus Services

Habitat Associations of Seabirds and Marine Debris in the North East Pacific at Multiple Spatial Scales

pilots checklist C - 172

The role of rail in a transport system to limit the impact of global warming

Checklist Robin DR40

AIRPROX REPORT No

March 22nd, 2017 SGO Consortium. Systems for Green Operations Clean Sky Final Event

AIRLINE TRANSPORT PILOTS LICENSE ( FLIGHT PERFORMANCE AND PLANNING)

PRECISION APPROACH PNF

Airborne Collision Avoidance System X U

Developing a Platoon-Wide Eco-Cooperative Adaptive Cruise Control (CACC) System

Environmentally Focused Aircraft: Regional Aircraft Study

PRECISION APPROACH PNF

REPORT A-008/2008 DATA SUMMARY

Coupled Aero-Structural Modelling and Optimisation of Deployable Mars Aero-Decelerators

Annual Report Summary Green Regional Aircraft (GRA) The Green Regional Aircraft ITD

Innovating the future of disaster relief

I. DISPATCH PLANNING & AIRCRAFT EXTERIOR CHECK

Analysts/Fund Managers Visit 19 April Autonomous Systems and Future Capability Mark Kane

AI RSERVI CES AUSTRALI A

At all times use approved company publications and aircraft manufacturer manuals as sole reference for procedures and data!

Airport Information. Details for TURKMENBASHI. Terminal Chart Change Notices. TURKMENBASHI State/Province

JeppView for Windows. List of pages in this Trip Kit. Trip Kit Index

Innovative Airside Simulation using PTV Vissim

ANERS 2011 October Marseille, France

Test Flying should only be performed by a pilot who is licensed, rated and experienced on the aircraft type.

A Personalized Highway Driving Assistance System

Electric Flight Potential and Limitations

Hybrid Wind Solar Generator

Highly Augmented Flight Controls

Effect of ZFW / ZFWCG on Aircraft Operations

RESULTS OF PHYSICAL WORKSHOP 1 st Australian Runway and Roads Friction Testing Workshop

Minor engine repairs are available.

JeppView for Windows. jep=jeppesen. Airport Information For LGKF Printed on 11 Dec 2017 Page 1. General Information. Runway Information

Climate change challenge

VEHICLE AUTOMATION. CHALLENGES AND POTENTIAL FOR FUTURE MOBILITY.

Word Count: 4283 words + 6 figure(s) + 4 table(s) = 6783 words

Modeling Multi-Objective Optimization Algorithms for Autonomous Vehicles to Enhance Safety and Energy Efficiency

Structure Design. May Korea Aerospace Industries, Ltd.

Transcription:

Controlled Time of Arrival (CTA) Feasibility Analysis David De Smedt Eurocontrol Greg McDonald, Jesper Bronsvoort Airservices Australia ATM Seminar 2013, Chicago U.S.A.

Drivers for RTA The SESAR ATM Master Plan states that Step 1, Timebased Operations, is the building block for the implementation of the SESAR Concept and is focused on flight efficiency, predictability and the environment. NextGen Implementation Plan 2012 states that Enhancements to the navigation capabilities of aircraft, RNAV/RNP with Time of Arrival Control (TOAC) in the descent phase, will begin to increase benefits of trajectory operations through the adaptability of the aircraft trajectory to enable operational predictability and arrival accuracy of aircraft

Context of the Paper? The aircraft can accurately achieve a time Stockholm RTA trials 2006 et al. Aircraft separation infringement risk at 5% Controlled Time of Arrival Spacing Analysis 2011. But does RTA approach work for a sequence?

Standard Arrivals to Melbourne Structured Terminal Area Each of the arrival paths to Melbourne is a published procedure issued by ATC and entered to the FMS prior to Top Of Descent If the cruise sequencing has been done correctly, the aircraft flies the STAR path to the threshold uninterrupted.

Normally Ops are Multiple Runway Strong Northerly on August 8 th 2012 Demanded Single Runway Ops No. of operations per hour YMML R34-08 August 2012 45 No. of operations / hour 40 35 30 25 20 15 10 5 0 07-08-12 14:00 07-08-12 18:00 07-08-12 22:00 08-08-12 02:00 08-08-12 06:00 08-08-12 10:00 08-08-12 14:00 UTC Arrivals Departures All

Enroute Autonomously Achieve the AMAN Delay 3 20 VOZ310 27 40 0 0 VHTJJ 34 36 1 3 VHOGL 34 34 25 42 27 EA363 10 7 35 27 VHMZU 2 1 33 27 KD566 4 2 Sequence Number Landing Runway Callsign Total Delay Delay Achieved 1 3 VHZXA 16 30-2 0 VHTJF 16 28 WENDY All Runways 31 27 KD452 3 3 20 29 27 EA056 0 0 00:18:03 ARBEY All Runways

Latitude Latitude -34 HORIZONTAL VIEW VERTICAL VIEW First Hour Traffic Actual Trajectories 450 VOZ866 QFA451-35 VOZ278 VOZ868 400 JST971 JST451 350-36 VOZ1377 VOZ1331 300 QFA476 JST949-37 ARBEY LIZZI QFA457 250 VOZ870 BADGR MAS129-38 200 WENDY QFA692 WAREN QFA631 UAE407 150-39 VOZ874 QFA459 100 QFA833-40 VOZ342 QFA694 50 TGW623-41 RXA3683 0 139 140 141 142 143 144 145 146 147 148 149 150 0 50 100 150 200 250 300 Longitude Distance Go (NM) HORIZONTAL VIEW VERTICAL VIEW Second Hour Traffic Actual Trajectories -34 450-35 -36-37 ARBEY LIZZI BADGR -38 WENDY WAREN -39-40 -41 139 140 141 142 143 144 145 146 147 148 149 150 Longitude RXA3683 JST479 TFX152 VOZ236 QFA455 QFA463 VOZ878 QFA635 JST525 SQC7297 JST712 VOZ746 QFA483 CSN343 VOZ882 RBA53 TGW631 QFA465 VOZ346 QFA768 QFA134 QFA467 QTR030 Flight Level Flight Level 400 350 300 250 200 150 100 50 0 0 50 100 150 200 250 300 Distance to Go (NM) VOZ866 QFA451 VOZ278 VOZ868 JST971 JST451 VOZ1377 VOZ1331 QFA476 JST949 QFA457 VOZ870 MAS129 QFA692 QFA631 UAE407 VOZ874 QFA459 QFA833 VOZ342 QFA694 TGW623 RXA3683 RXA3683 JST479 TFX152 VOZ236 QFA455 QFA463 VOZ878 QFA635 JST525 SQC7297 JST712 VOZ746 QFA483 CSN343 VOZ882 RBA53 TGW631 QFA465 VOZ346 QFA768 QFA134 QFA467 QTR030

Would the RTA Solution Work? Assumptions Same traffic but different profiles Aircraft to meet actual landing times No lateral delay 200nm sequencing horizon

Hand to David to explain his magic

Research Questions 1. Does the assumed 200NM sequence horizon provide enough control authority for the FMS to use the RTA function? 2. What is the impact of airborne RTA control on legacy arrival manager systems on the ground? 3. Can the traditional first-come-first-served methodology still be applied? 4. How many conflicts do occur when CTAs are used in an arrival flow? 5. Can the application of CTA successfully resolve a sequence for an actual traffic scenario without controller intervention?

Fast-time simulation model BADA 3.7 aerodynamic data Enhanced Trajectory Predictor Modeling of wind gradient Modeling of turns Modeling of non-isa temperature profiles Altitude based wind and temp. model Modeling of Vertical Speed and/or Flight Path Angle Modeling of Altitude and Speed Constraints Using real speed envelopes from Flight Crew Operating manuals

Simulation scenarios 1. Baseline scenario recorded arrival flows into Melbourne airport within 200NM during 2 hour medium to high density operation 2. CTA scenario initial conditions from baseline scenario landing times of baseline applied as CTA no lateral patch stretching 3. CTA + modified sequence scenario: same as CTA scenario freely allocation of landing slots to arriving aircraft

Linear holding 1/3 Cruise Step descent at low speed Path stretching

Linear holding 2/3 Additional time compared to 1h of cruise at FL370 400 350 +5' 300 250 FL 200 150 +30' 1h 100 50 0 200 250 300 350 400 450 500 TAS (kts)

Linear holding 3/3 % fuel flow increase compared to minimum fuel flow for flight at green dot speed Source: Getting to grips with fuel economy, Issue 3, July 2004, Airbus

Latitude HORIZONTAL VIEW -34-35 -36-37 -38-39 -40-41 Results baseline 1 ARBEY LIZZI BADGR WENDY WAREN 139 140 141 142 143 144 145 146 147 148 149 150 Longitude VOZ866 QFA451 VOZ278 VOZ868 JST971 JST451 VOZ1377 VOZ1331 QFA476 JST949 QFA457 VOZ870 MAS129 QFA692 QFA631 UAE407 VOZ874 QFA459 QFA833 VOZ342 QFA694 TGW623 RXA3683

Flight Level 450 400 350 300 250 200 150 100 50 0 Results baseline 1 VERTICAL VIEW 0 50 100 150 200 250 300 Distance to Go (NM) VOZ866 QFA451 VOZ278 VOZ868 JST971 JST451 VOZ1377 VOZ1331 QFA476 JST949 QFA457 VOZ870 MAS129 QFA692 QFA631 UAE407 VOZ874 QFA459 QFA833 VOZ342 QFA694 TGW623 RXA3683

Latitude HORIZONTAL VIEW -34-35 -36-37 -38-39 -40-41 Results CTA 1 ARBEY LIZZI BADGR WENDY WAREN 139 140 141 142 143 144 145 146 147 148 149 150 Longitude VOZ866 QFA451 VOZ278 VOZ868 JST971 JST451 VOZ1377 VOZ1331 QFA476 JST949 QFA457 VOZ870 MAS129 QFA692 QFA631 UAE407 VOZ874 QFA459 QFA833 VOZ342 QFA694 TGW623 RXA3683

Flight Level 450 400 350 300 250 200 150 100 50 0 Results CTA 1 VERTICAL VIEW 0 50 100 150 200 250 300 Distance to Go (NM) VOZ866 QFA451 VOZ278 VOZ868 JST971 JST451 VOZ1377 VOZ1331 QFA476 JST949 QFA457 VOZ870 MAS129 QFA692 QFA631 UAE407 VOZ874 QFA459 QFA833 VOZ342 QFA694 TGW623 RXA3683

Results CTA + mod. seq. 1 HORIZONTAL VIEW Latitude -34-35 -36-37 -38-39 -40-41 ARBEY LIZZI BADGR WENDY WAREN 139 140 141 142 143 144 145 146 147 148 149 150 Longitude VOZ866 VOZ868 VOZ278 QFA451 JST971 VOZ1377 VOZ1331 QFA476 JST451 JST949 MAS129 VOZ870 QFA692 UAE407 QFA457 QFA631 QFA459 VOZ874 QFA833 QFA694 VOZ342 TGW623 RXA3683

Results CTA + mod. seq. 1 VERTICAL VIEW Flight Level 450 400 350 300 250 200 150 100 50 0 0 50 100 150 200 250 300 Distance to Go (NM) VOZ866 VOZ868 VOZ278 QFA451 JST971 VOZ1377 VOZ1331 QFA476 JST451 JST949 MAS129 VOZ870 QFA692 UAE407 QFA457 QFA631 QFA459 VOZ874 QFA833 QFA694 VOZ342 TGW623 RXA3683

Latitude HORIZONTAL VIEW -34-35 -36-37 -38-39 -40-41 Results baseline 2 ARBEY LIZZI BADGR WENDY WAREN 139 140 141 142 143 144 145 146 147 148 149 150 Longitude RXA3683 JST479 TFX152 VOZ236 QFA455 QFA463 VOZ878 QFA635 JST525 SQC7297 JST712 VOZ746 QFA483 CSN343 VOZ882 RBA53 TGW631 QFA465 VOZ346 QFA768 QFA134 QFA467 QTR030

Flight Level 450 400 350 300 250 200 150 100 50 0 Results baseline 2 VERTICAL VIEW 0 50 100 150 200 250 300 Distance to Go (NM) RXA3683 JST479 TFX152 VOZ236 QFA455 QFA463 VOZ878 QFA635 JST525 SQC7297 JST712 VOZ746 QFA483 CSN343 VOZ882 RBA53 TGW631 QFA465 VOZ346 QFA768 QFA134 QFA467 QTR030

Latitude HORIZONTAL VIEW -34-35 -36-37 -38-39 -40-41 Results CTA 2 ARBEY LIZZI BADGR WENDY WAREN 139 140 141 142 143 144 145 146 147 148 149 150 Longitude RXA3683 JST479 TFX152 VOZ236 QFA455 QFA463 VOZ878 QFA635 JST525 SQC7297 JST712 VOZ746 QFA483 CSN343 VOZ882 RBA53 TGW631 QFA465 VOZ346 QFA768 QFA134 QFA467 QTR030

Flight Level 450 400 350 300 250 200 150 100 50 0 Results CTA 2 VERTICAL VIEW 0 50 100 150 200 250 300 Distance to Go (NM) RXA3683 JST479 TFX152 VOZ236 QFA455 QFA463 VOZ878 QFA635 JST525 SQC7297 JST712 VOZ746 QFA483 CSN343 VOZ882 RBA53 TGW631 QFA465 VOZ346 QFA768 QFA134 QFA467 QTR030

Results CTA + mod. seq. 2 HORIZONTAL VIEW Latitude -34-35 -36-37 -38-39 -40-41 ARBEY LIZZI BADGR WENDY WAREN 139 140 141 142 143 144 145 146 147 148 149 150 Longitude RXA3683 VOZ236 JST479 QFA455 TFX152 QFA463 VOZ878 SQC7297 QFA635 JST525 VOZ746 JST712 CSN343 RBA53 VOZ882 QFA483 TGW631 QFA465 VOZ346 QFA768 QFA134 QFA467 QTR030

Results CTA + mod. seq. 2 VERTICAL VIEW Flight Level 450 400 350 300 250 200 150 100 50 0 0 50 100 150 200 250 300 Distance to Go (NM) RXA3683 VOZ236 JST479 QFA455 TFX152 QFA463 VOZ878 SQC7297 QFA635 JST525 VOZ746 JST712 CSN343 RBA53 VOZ882 QFA483 TGW631 QFA465 VOZ346 QFA768 QFA134 QFA467 QTR030

Video baseline 1

Video CTA + mod. seq. 1

Effect of ETA window Full speed window defining real earliest-latest time window or real ETA min-max Reduced speed window defining reliable ETA min-max

Quantification of results 1/2

Quantification of results 2/2 Dev = Max(0, CTA ETA max ) X = CTA ETA ETA max min ETA min CTA reliable ETA window CTA real ETA window CTA + mod. seq. real ETA window Dev 01:19:45 00:39:16 00:10:12 AVG X 1.21 0.94 0.82 STD X 0.71 0.48 0.21

Simulation conditions: Conclusions 1/3 Single RWY operation in Melbourne Real traffic sequence (45 aircraft during 2 hours) Recorded positions and times at 200NM from Melbourne during 2 hours Using CTA and a modified sequence yielded: Distance reduction of 484 NM (5%) Fuel consumption reduction of 1317 kg (3%) Fuel consumption reduction of 29 kg per aircraft

Operational implications: Conclusions 2/3 Application of CTA with modified arrival sequence produced a more efficient and orderly flow of traffic, BUT RTA based speed control is unlikely to be sufficient to solve a sequence of arriving aircraft in a high density scenario Horizon of 200NM did not provide enough speed control authority for all aircraft Preconditioning (extended horizon) ATC coordination! Alternatively combined measures (speed control and linear holding or path stretching) first-come, first-serve optimized CTA sequence Reduced ETA window aggravated situation

Conclusions 3/3 Overall: Airborne RTA is one building block in the total solution to Trajectory Based Ops Combined Air and Ground systems approach Mixed mode environment

Questions