ROBATIC ROBA -quick ROBA -takt. Reliable coupling and braking.

Similar documents
Installation and Operational Instructions for ROBATIC -clutch Types _.0 and _.0 Sizes 3 7

Installation and Operational Instructions for ROBATIC -clutch Type and Type Sizes 3 9

ROBATIC, ROBA -quick ROBA -takt

Installation and Operating Instructions for ROBA-stop -Positioning Brake Type 80_.41_._ Sizes 3 11

ROBA -topstop. Brake systems for gravity loaded axes. ROBA-stop

your reliable partner ROBA-stop K.800.V09.EN

Electromagnetic clutches and brakes INTORQ and INTORQ

Installation and Operating Instructions for ROBA-stop -silenzio Type 896._3_. Sizes

Electromagnetic clutch-brake combinations INTORQ

Installation and Operating Instructions for ROBA-stop -silenzio Type 896. _. Sizes

Standard with cone bushing. Backlash-free Safety Clutch

Installation and Operational Instructions for ROBA-stop -tacho brake Type 83_.41_._ and ROBA-stop -tacho peak load brake Type _.

COMBIBOX. Program Schedule. Design. COMBIBOX clutch-brake-combination type 10 / 09 / 06. Attachments

The controllableollable Torque Limiting Clutch for

your reliable partner ROBA-stop -M K.891.V17.EN

Installation and Operational Instructions for ROBA-stop Holding Brake Type _._

Installation and Operating Instructions for ROBA -ES couplings Type 940. _. _ Sizes 14-48

COMBIBOX. Program Schedule. with an energised to engage single sided clutch without brake... COMBIBOX 09

COMBIBOX Program Schedule. Design. COMBIBOX Clutch-brake-combination type 10 / 09 / 06. Attachments input

Torque Limiter with overload and load separation functions for

Stromag Dessau. safety in motion PRODUCT CATALOGUE. NFF4F-LS Brake. for Slow-Running High Torque Drivelines, in harsh environment

your reliable partner ROBA-stop -M Electromagnetic safety brakes C US LR K.891.V16.EN

your reliable partner ROBA-stop -silenzio K.896.V16.EN

Installation and Operational Instructions for ROBA-stop -M Brake Type 891. _. _ Sizes 2 500

Installation and Operational Instructions for ROBA -D Couplings Type 91_. _

BoWex FLE-PA. BoWex FLE-PAC. KTR-N Sheet: Edition: EN 1 of BoWex FLE-PA / FLE-PAC Operating/Assembly instructions

Installation and Operational Instructions for ROBA-stop -silenzio Type 896. _. Sizes

Installation and Operating Instructions for ROBA -takt Switch Gear Type

Translation of the Original Operational Instructions B.8.8.EN. ROBA -topstop Type 899. _. Sizes

your reliable partner ROBA -topstop K.899.V14.EN

ROBA-stop -silenzio. Stage and Elevator Brakes

Installation and operational instructions for ROBA-stop -M Brake Type 891. _. _ Sizes 2 500

Electromagnetic tooth clutch Type 546

MADE IN GERMANY. Electromagnetic Technology

! CAUTION! Damages on the machine possible.

RIGIFLEX -N RADEX -N. Steel laminae coupling. Steel laminae coupling. You will find continuously updated data in our online catalogue at

your reliable partner ROBA-stop -silenzio Stage and Elevator Brakes C US LR K.896.V14.EN

Installation and Operating Instructions for ROBA-stop -silenzio Type 896. _. Sizes

Installation and Operational Instructions for EAS - HTL housed overload clutch Sizes 01 3 Type 490._24.0

Lenze. Drives with worm gearboxes 52.

COMBISTOP NEW. Spring applied brakes

Motor mounted Brakes. Safety. Made in Germany.

Permanent magnet brakes. Safety from the market leader. PM Line High Torque Line

MADE IN GERMANY. Electromagnetic Technology

Please read these Operational Instructions carefully and follow them accordingly!

For advanced drive technology CLAMPEX. Shaft-Hub-Connection. KTR Precision Joints CLAMPEX

Electrically Released Brakes ERS VAR11-01 FT = 4100 N

KEB-sähkömagneettiset jarrut ja kytkimet

ATC / ATB Series AT Clutches and Brakes

setting the standard BFK468 spring-applied brake The Performance Standard 100-2,400 Nm

Accessories smart additions for efficiency and intelligent performance

Armature Actuated Brakes RoHS Compliant- meets the requirements of the Restriction of Hazardous Substances Directive

W22 Brake Motor Three-phase Electric Motor

ATC / ATB Series AT Clutches and Brakes

For advanced drive technology CLAMPEX. Shaft-hub-connection. KTR Precision joints CLAMPEX

Performance Plus: Spiral Bevel Series

Electromagnetic single disc clutches E210 and E220

Mönninghoff electromagnetic tooth clutches

Installation and Operating Instructions for EAS -NC clutch Type 45_. _. _ Sizes 02 and 03

Description Symbol Definition or explanation Rated torque T KN Torque that can continuously be transmitted over the entire permissible speed range

Shaft Couplings Flange-Couplings Rigid Shaft Couplings Flexible Couplings

Electromagnetically actuated clutches and brakes

Installation and Operational Instructions for EAS -Compact overload clutch, Type 49_. 4._ Sizes 4 and 5

LIGHTWEIGHT AND COMPACT. SERIES SL Nm. single-position multi-position. THE ultimate COUPLING from Nm

Brakes ELECTROMAGNETIC. KNOTT Electromagnetic Single Disc Brakes TYPE EAA, EAR

TORQLIGHT SAFETY COUPLINGS

Selection Tool. on the Internet at in the section MÄDLER -Tools. Other sizes and designs on request. Connecting Shafts Page 766

OPERATION AND CONSTRUCTION-AIRFLEX MAGNETIC CLUTCH

DC Single-Acting High Performance Solenoids

MAGNETTECHNIQUE. More than 30 years experience in the field of Electromagnetic technology. KEB Germany. KEB China. KEB America.

D58 Series Brake Instructions

Highest Performance: SPH Series

setting the standard Electromagnetic clutches and brakes INTORQ und Nm

! C A U T I O N! Damages on the machine possible.

BRAKE MOTORS. 1. Brake motors TECHNICAL CATALOGUE. M Series / Standard / IEC

KTR Torque Limiters Overload Protection Systems

Flexible Couplings 44

Brakes. KNOTT Electromagnetic Release Spring-Applied Dual-Surface Fail-Safe Brakes TYPE ERA, ERB, ERC ELECTROMAGNETIC

Flexible Couplings N-BIPEX Series

Electromagnetic brake systems for hoists

Jaw Couplings REK DCO

Please read these Operational Instructions carefully and follow them accordingly!

TORSIONALLY RIGID COUPLING

Installation and Operational Instructions for ROBA -DS couplings Type 95. _ (disk pack HT) Sizes

Spring-applied brake INTORQ BFK458

CKR Compact Modules with Ball Rail Guides and Toothed Belt Drive. The Drive and Control Company

General Purpose Cast Iron Motors

Dr. TRETTER AG. Tolerance Rings. safe cost-effective fast assembly

DATAFLEX 42/1000 Torque Measuring Shaft Operating/Assembly instructions DATAFLEX

Magnetic particle clutches and brakes

TYPE 2 poles 4 poles 6 poles 8 poles 2 / 4 poles 4 / 8 poles 2 / 8 poles 4 / 16 poles

Installation and Operational Instructions for EAS -Compact overload clutch Type 49_. 4._ Sizes 01 to 3

DC motors. G-motion. CTi Automation - Phone: Fax: Web:

ROTARY TABLES SERIE TC TECHNOLOGY THAT INSPIRES

Power Jacks have taken time, engineering excellence and the best people to produce the ultra compact Neeter Drive gearbox.

Characteristics of model K brake

Precision Modules PSK

5-Phase Stepper Motor

Installation and Operational Instructions for EAS -smartic synchronous clutch Type 48_. 5._ Sizes 01 2

Brakes. KNOTT Electromagnetic Release Spring-Applied Dual-Surface Spring applied Brakes ELECTROMAGNETIC

Transcription:

Reliable coupling and braking Equipment Technology Packaging Machinery Conveyors and Materials Handling Equipment Door drives Indexing tables ROBATIC ROBA -quick ROBA -takt www.mayr.de Electromagnetic Clutches and Brakes, Clutch Brake Units High torque capacity Low wear Easy assembly and maintenance Compact construction K.500.V02.GB

Your advantages when using Electromagnetic ROBATIC -Clutches, ROBA -quick Brakes and ROBA -takt Clutch Brake Units Easy integration into your machine: The optimised magnetic circuit minimises the magnetic stray flux. The high density and torque security based on it allow compact dimensions and an easy integration in your construction. High reliability and operational security: The switching behaviour is constant during the whole service life. Therefore, the positioning accuracy and reliability of the clutches or brakes respectively and herewith operational security of your machine are increased. Less operating expenses and maintenance charges: The large friction surface and the smooth switching behaviour increase the wear resistance, therefore, the clutches and brakes are maintenance-free until the friction faces are worn down. Increase of the productivity: Short switching times allow high switching frequency and increase the productivity of your machine. Quality, Experience, Competence mayr Power Transmission have applied the highest technical and innovative standard for decades. The foundation for this success are the skills, productivity and quality consciousness of all mayr employees. The DIN ISO 9001 certification achieved confirms the high demands we set to experience, together with total our engineering integrity, and quality manufacturing processes. mayr Power Transmission offers you a comprehensive depth of management to ensure your confidence, and many years expertise, gained in both mechanical and electrical, confirms our position as leaders in this field. All products are subject to comprehensive inspections and tests regarding loads. Only after having passed the strongest long-time tests and when they fully meet all the technical requirements and proof their reliability they are included in our delivery programme. 2

ROBATIC Electromagnetic Clutch! Vorsicht Caution Important Wichtig Manufacturer s declaration mayr -clutches and mayr -brakes are to be seen as an option or component for installation into machines or equipment according to the machinery directive. The machinery must not be put into service until the machinery into which it is to be incorporated has been declared in conformity with the provisions of the applicable EC-directives. The product corresponds to the low-voltage directive 73/23/EEC. Note: There are no emissions from the listed single components within the meaning of the EMC-directive, however, increased interference levels can occur when working components are operated outside their specification limits as for example rectifiers and clutches or brakes. Therefore, the installation and operating instructions must be read carefully and the EMC-directives are to be observed. Safety regulations Attention! Hazardous conditions when contacting hot connections and components. Only qualified and well-trained specialists should work on the units to avoid any personal injury or damage to machinery. Please observe! The indication of the catalogue as well as the installation and operating instructions must be read carefully and all safety regulations observed before design, installation, initial start-up or maintenance of the units. Inappropriate application of the technical data cause losses and material damages, for which no liability is assumed. Therefore please observe! Correct supply connection according to Type tag. Assembly, maintenance or repair must not be made when the unit is energised. Electrical leads must not be under tension when connected. Check current carrying components regarding damage before an in initial start-up. - Current carrying components must not be in contact with water. Necessary protective measures to be undertaken by the user: Cover all moving parts to prevent personnel injury as squeezing and seizing. Attach a conductive connection between magnetic part and electrical conductor (PE) of the fixed installation (protection class I) to prevent electrical shock. Protection against high inductive cut-off peaks by fitting spark quenching units. Protection against dangerously hot temperatures at the magnetic part by attachment of a cover. Standards and Instructions mayr -clutches and mayr -brakes correspond to the national standard DIN VDE 0580/7/2000, according to the low voltage directive 73/23/EEC. Device protection class I. Protection IP 00 mechanical design (armature disc, rotor, friction lining, incl. magnetic coil) Protection IP 54 electric design (magnetic coil, encapsulated or injection-moulded and connecting cable) Thermal class F up to 155 C for magnetic coil encapsulated with moulding compound Thermal class B up to 130 C for magnetic coil plasticextrusion-coated Ambient temperature up to +35 C Definition of terms The torque (nominal torque) (= switching torque) is the torque acting on the shafting with a slipping clutch or brake. The transmittable torque is the largest torque with which the closed clutch or brake can be loaded without an occurrence of slipping. At a rated-load operating temperature the permanent temperature is achieved. This temperature is the amount from the determined over-temperature and the reference temperature. Protection class I is not only based on the basis isolation, but that all conductive magnetic parts must be connected with the protective conductor of the fixed installation. In this case, if the basis isolation fails, no contact voltage can remain existing. The relative switch-on duration is the ratio of switch-on duration to the cycle duration in percentage (% switch-on duration). Description of the unit The catalogue values are reference values, which can deviate in individual cases. When selecting the clutch or brake, mounting situation, torque fluctuations, permissible friction work, behaviour during run-in, wear and ambient conditions are to be carefully checked and agreed with the unit manufacturer. The mounting and connecting dimensions at the site of installation must match to the size of the units. The clutches and brakes are designed for a dry running. They achieve the catalogue-torque, when the friction linings are run-in. Normally these are approx. 100 switchings with a dynamic operation. In a new condition approx. 50 % of the catalogue-torque (Mü) is transmitted. Clutches or brakes used statically or quasi-statically (i.e. small friction work) do not achieve the torque (Mü) indicated in the Tables. This case is given if the clutch or brake falls below the speed or friction work (Qa) indicated in Table 1. Should oil, grease or similar materials come in contact with the friction surfaces the torque could be reduced drastically. When switching off the units voltage peaks can occur due to the mutual inductance of the magnetic coils which can cause a damage of the units in the extreme case. Therefore, the overvoltage is to be damped by a protective wiring. The surfaces of the clutches and brakes are protected against corrosion. Provide additional necessary safety measures against corrosion, if they are used under extreme ambient conditions or in the open with direct atmospheric influence. The connecting cables or wires of the clutches and brakes have a sheathing on silicone basis, which is not resistant to all materials. The compatibility is to be examined when contacting chemical materials. The clutches and brakes are designed for a relative switch-on duration of 100 %. Size Friction work Qa Clutch or brake speed n min [J] [rpm] Table 1 3 16 300 4 29 250 5 55 200 6 105 160 7 200 130 8 380 120 9 600 100 3

Table of contents ROBATIC Electromagnetic Energise to engage Pole face clutches Pages 5 to 8 ROBA -quick Electromagnetic Energise to engage Pole face brakes Pages 19 to 27 ROBA -takt Clutch Brake Module Clutch Brake Units Pages 28 to 36 4

ROBATIC Electromagnetic Clutch Constant switching performance throughout the total service life High torque security due to an optimised magnetic field and the new design of the ROBATIC -clutch. Therefore, higher capacities due to few magnetic field losses. Half the wear due to large friction surfaces and smooth switching behaviour the ROBATIC -clutch has a higher wear resistance (approx. 100 %). Low noise Short switching times/ high switching frequencies Correct function until end of wear Large permissible shaft diameters due to large internal diameters of the magnetic coil bodies. 5

ROBATIC Electromagnetic Clutch 7 1 2 4 6 Function ROBATIC -clutches are energise to engage, electromagnetic pole face units. If a DC voltage is applied to the magnetic coil (1) a magnetic field is formed, the armature disc (3) is attracted to the rotor (2) and friction lining (4). The torque is transmitted via a friction connection. The torque is transmitted from the drive element (6) via the armature disc (3) and the rotor (2) to the output shaft (7). After having de-energised the coil, the membrane spring (5) draws back the armature disc (3) to the drive element (e.g. belt pulley), and the torque is then disconnected. 3 5 6

ROBATIC summary of components ROBATIC -standard Page 8 ROBATIC small mounting diameter Page 11 ROBATIC with bearing supported coil carrier Page 13 ROBATIC with bearing supported output flange Page 14 Technical explanations Page 15 Electrical accessories Page 37 7

ROBATIC Electromagnetic Clutch Standard Sizes 3 7 Type 500.20_.0 cable length: 400 mm displaced to bores by 45 Technical data and dimensions Type 500.200.0 Standard mains ~ rectifier Type 500.201.0 Standard with flange hub Nominal Max. Electrical Mass moment of inertia I own [10-4 kgm 2 ] Weight G [kg] torque Speed Power M 2 n P 20 Rotor 2) Armature Flange hub 2) Without With Size [Nm] [rpm] [W] disc +armature disc accessories flange hub 3 10 8600 18 2 0,76 1,02 0,68 0,75 4 20 7000 26 5,14 1,92 2,75 1 1,31 5 45 6100 37 13,25 6,86 8,63 2,15 2,35 6 80 5800 53 29,85 17,56 24,66 3,48 4,03 7 160 4500 79 86,75 52,86 70,63 6,6 7,5 Preferred Preferred Permissible bores bores shaft misalignment Size a b D D 1 D 2 d min d max d H7 d 1min d 1max d 1 H7 G g V V 1 3 0,2 4,5 73,5 80 70 9 25 10, 15 9 20 17, 20 36 29,5 0,05 0,1 4 0,2 4 92 100 88 11 35 17, 20 13 30 20, 25 49 44 0,05 0,15 5 0,2 5,5 115 125 110 13 42 20, 25, 30 15 35 1) 25, 30 57,5 47 0,05 0,15 6 0,3 5,5 140 150 140 13 55 25, 30, 35 20 45 30, 40 74 66 0,05 0,15 7 0,3 7,5 177 190 170 20 65 30, 40, 50 23 60 40, 50 95 84 0,1 0,2 Size H h9 K k L L 1 L 2 I I 1 I 2 M M 1 O s s 1 t t 1 W Z H8 z 3 80 3 x 4,6 1,7 28,1 24 20 20,5 3,5 16 60 72 48,1 4 x 4,8 3 x M4 3,9 5 5 42 3,5 4 100 3 x 6,4 1,7 31,2 26,5 22 22 4,3 17 76 90 53,2 4 x 5,7 3 x M5 4,5 6,9 5 52 4,5 5 125 3 x 7,0 2,5 36,1 30 28 25 5,2 22 95 112 64,1 4 x 6,8 3 x M6 5,9 8,7 6 62 5 6 150 3 x 10,4 2,8 40,9 33,5 32 27,5 6 25 120 137 72,9 4 x 6,8 3 x M8 7,1 6,6 8 80 6 7 190 3 x 10,2 2,7 46,2 37,5 36 31,5 7 27 150 175 82,2 4 x 9,2 3 x M8 8,3 10,1 8 100 6 1) Up to Ø 32 keyway to DIN 6885/1, above Ø 32 keyway to DIN 6885/3 Standard voltages 24 VDC; 104 VDC. 2) With max. bore Permissible voltage tolerances to IEC 38 +/-10 %. Order example: We reserve the right to make dimensional and design alterations. To be included when ordering, size type voltage bore bore please state: [V DC] Ø d H7 H7 Ø d 1 order number: 500.20_.0 8 3 7 without accessories.....0 flange hub............1 Example: Order number 6/500.201.0/24/35/40 according to size (only with flange hub) according to size 24; 104 V-coils

ROBATIC Electromagnetic Clutch Standard Sizes 8 9 Type 500.100 500.102 Type 500.100 Standard Type 500.102 Standard with connecting terminal Technical data and dimensions Nominal Max. Electrical Mass moment of inertia I own [10-4 kgm 2 ] Weight G [kg] torque speed M 2 n P 20 Rotor 2) Armature Flange hub 2) Without Size [Nm] [rpm] [W] disc +armature disc accessories 8 320 3000 61 165 81 107 10,1 9 640 2200 82 450 315 381 20,5 Preferred Permissible bores shaft misalignment Size a b D D 1 d min d max d H7 F 3) G V V 1 8 0,5 8 193 200 24 70 40, 50, 60-91 0,1 0,2 9 0,5 9 251 251 34 80 50, 60, 70-111 0,1 0,25 Size H h9 K k L I I 1 I 4 i M M 1 N s s 1 t t 1 Z H8 z 8 230 3 x 11 2 55,1 44 40 5 8 158 215 93,9 4 x 9 3 x M10 10,6 8,5 100 4 9 290 4 x 20 4,2 63,9 51 47 6 9,5 210 270 116,8 4 x 11 4 x M12 12,4 11,8 125 4 2) With max. bore Standard voltage 24 VDC. 3) Piloting for RS-ball according to order, in series no step turning is provided. Permissible voltage tolerances to IEC 38 +/-10 %. We reserve the right to make dimensional and design alterations. Order example: To be included when ordering, size type voltage bore H7 3) please state: [V DC] Ø d order number: 500.10_ 8 9 cable...0 terminal...2 Example: Order number 8/500.100/24/40 according to size 24 V-coil 9

ROBATIC Electromagnetic Clutch Standard Sizes 8 9 Type 500.11_ Type 500.110 Standard with flange hub Technical data and dimensions Nominal Max. Electrical Mass moment of inertia I own [10-4 kgm 2 ] Weight G [kg] torque speed M 2 n Typ P 20 Rotor 2) Flange hub 2) Without With Size [Nm] [rpm] 500 [W] +armature disc accessories flange hub 8 320 3000 61 165 107 10,1 13 9 640 2200 82 450 381 20,5 25 Preferred Preferred Permissible bores bores shaft misalignment Size a b D D 1 D 2 d min d max d H7 H7 d 1min d 1max d 1 F 3) g V V 1 8 0,5 8 193 200 185 24 70 40, 50, 60 24 60 40, 50-84 0,1 0,2 9 0,5 9 251 251 242 34 80 50, 60, 70 27 80 50, 60-104 0,1 0,25 Size H h9 K k L 2 I I 1 I 2 I 4 M 1 N O s W Z H8 z 8 230 3 x 11 2 45,3 44 40 36,3 5 215 93,9 100,4 4 x 9 15 100 4 9 290 4 x 20 4,2 53,9 51 47 42,9 6 270 116,8 117,8 4 x 11 20 125 4 2) With max. bore Standard voltage 24 VDC. 3) Piloting for RS-ball according to order, in series no step turning is provided. Permissible voltage tolerances to IEC 38 +/-10 %. We reserve the right to make dimensional and design alterations. Order example: To be included when ordering, size type voltage bore bore please state: [V DC] Ø d H7 H7 Ø d 1 order number: 500.11_ 10 8 9 cable...0 terminal...2 Example: Order number 8/500.110/24/40/40 according to size according to size 24 V-coil

ROBATIC Electromagnetic Clutch Small mounting diameter Sizes 3 7 Type 500.21_.0 Type 500.210.0 Small mounting diameter Type 500.211.0 Small mounting diameter with flange hub Technical data and dimensions Nominal Max. Electrical Mass moment of inertia I own [10-4 kgm 2 ] Weight G [kg] torque speed M 2 n P 20 Rotor 2) Armature Flange hub 2) Without With Size [Nm] [rpm] [W] disc +armature disc accessories flange hub 3 10 8600 18 2,2 0,7 0,8 0,65 0,7 4 20 7000 26 5,3 1,79 1,97 1,1 1,16 5 45 6100 37 13,47 6,28 7,19 2,1 2,25 6 80 5800 53 32,31 15,77 17,45 3,4 3,6 7 160 4500 79 90,13 48,1 55,2 6,4 6,95 Preferred Preferred Permissible bores bores shaft misalignment Size a b D D 1 D 2 d min d max d H7 H7 d 1min d 1max d 1 G g V V 1 3 0,2 4,5 73,5 80 54 9 20 10, 15 8 17 10, 15 36 27 0,05 0,1 4 0,2 4 92 100 70 11 28 17, 20 9 20 17, 20 49 29,5 0,05 0,15 5 0,2 5,5 115 125 88 13 35 20, 25, 30 13 30 20, 25 57,5 44 0,05 0,15 6 0,3 5,5 140 150 110 13 42 25, 30, 35 15 35 1) 25, 30 74 47 0,05 0,15 7 0,3 7,5 177 190 140 20 55 30, 40, 50 20 45 30, 40 95 66 0,1 0,2 Size H h9 K k L L 1 L 2 I I 1 I 2 M M 1 O s s 1 t t 1 W Z H8 z 3 80 3 x 4,3 1,5 28,1 24 15 22 3,5 11,5 46 72 43,1 4 x 4,5 3 x M3 3,9 4,0 5 35 2 4 100 3 x 4,6 1,7 31,1 26,5 20 24 4,3 16 60 90 51,1 4 x 5,7 3 x M4 4,4 5,0 5 42 2,5 5 125 3 x 6,4 1,5 36,1 30 22 27 5,2 17 76 112 58,1 4 x 6,8 3 x M5 5,9 6,8 6 52 3 6 150 3 x 7 2,2 40,8 33,5 28 30 6 22 95 137 68,8 4 x 6,8 3 x M6 7,0 8,5 8 62 3,5 7 190 3 x 10,4 2,7 45,9 37,5 32 34 7 25 120 175 77,9 4 x 9,2 3 x M8 8,1 8,4 8 80 3,5 1) Up to Ø 32 keyway to DIN 6885/1, above Ø 32 keyway to DIN 6885/3 Standard voltages 24 VDC; 104 VDC. 2) With max. bore Permissible voltage tolerances to IEC 38 +/-10 %. We reserve the right to make dimensional and design alterations. Order example: To be included when ordering, size type voltage bore bore please state: [V DC] Ø d H7 H7 Ø d 1 order number: cable length: 400 mm displaced to bores by 45 500.21_.0 rectifier mains ~ 3 7 without accessories...0 flange hub...1 Example: Order number 6/500.211.0/24/40/30 according to size (only with flange hub) according to size 24; 104 V-coils 11

ROBATIC Electromagnetic Clutch Small mounting diameter Sizes 8 9 Type 580.1_0 2) bore for screw DIN 6912, 7984 with spring ring DIN 7980 Type 580.100 Coil carrier with small hole circle Type 580.110 Coil carrier with small hole circle and flange hub Technical data and dimensions Nominal Max. Electrical Mass moment of inertia I own [10-4 kgm 2 ] Weight G [kg] torque speed M 2 n P 20 Rotor 1) Armature Flange hub 1) Without With Size [Nm] [rpm] [W] disc +armature disc accessories flange hub 8 320 3000 74 165 81 107 10,1 13 9 640 2200 77 450 315 381 20,5 23,5 Preferred Preferred Permissible bores bores shaft misalignment Size a b D D 1 D 2 d min d max d H7 H7 d 1min d 1max d 1 G g V V 1 8 0,5 3 193 200 185 24 70 40, 50, 60 24 60 40, 50 91 84 0,1 0,2 9 0,5 3 251 251 242 34 80 50, 60, 70 27 80 50, 60 111 104 0,1 0,25 Size K k L L 2 I I 1 I 2 M M 2 8 3 x 11 2 55,1 45,3 44 40 36,3 158 184 9 4 x 20 4,2 63,9 53,9 51 47 42,9 210 235 Size N O S S 1 s 1 t 1 W Z H8 z 8 93,9 100,4 13,5 3 x 8,4 3 x M10 8,5 15 100 4 9 116,8 117,8 13,5 3 x 8,4 4 x M12 11,8 20 125 4 1) With max. bore Standard voltage 24 VDC. 2) Piloting for RS-ball according to order, in series no step turning is provided. Permissible voltage tolerances to IEC 38 +/-10 %. We reserve the right to make dimensional and design alterations. Order example: To be included when ordering, size type voltage bore bore please state: [V DC] Ø d H7 H7 Ø d 1 order number: 580.1_0 12 8 9 without accessories...0 with flange hub...1 Example: Order number 8/580.110/24/40/40 according to size (only with flange hub) according to size 24 V-coil

ROBATIC Electromagnetic Clutch With coil carrier in bearing Sizes 3 9 Type 540.100 540.102 groove for friction support permissible shaft misalignment Type 540.100 With coil carrier in bearing Type 540.102 With coil carrier in bearing and terminal Technical data and dimensions Nominal Max. Electrical Mass moment of inertia Weight torque speed I own [10-4 kgm 2 ] G [kg] Armature Rotor 2) Without With Pilot Preferred disc accessories flange bores bores M 2 n P 20 hub Size [Nm] [rpm] [W] a D D 1 d 2 d 2 max H7 d 2 3 10 8000 18 0,35 1,37 0,732 0,782 0,2 64,5 70 7 20 1) 10, 15 4 20 6000 19 1,05 3,35 1,22 1,29 0,2 81,5 87 8 25 1) 17, 20 5 45 5000 28 2,97 9,36 1,85 2,01 0,2 99 106 12 30 20, 25, 30 6 80 4200 38 7,04 20,8 3,16 3,38 0,3 118 125 12 40 20, 25, 30 7 160 3600 46 14 54,4 5,54 6,11 0,3 151 157 19 50 25, 30, 40 8 320 3000 61 81 178,0 11,6 12,86 0,5 193 200 22 60 40, 45, 50 9 640 2200 82 315 462,0 22,2 23,93 0,5 251 251 30 65 40, 50, 60 Size G K k L I 6 M n 1 O 1 P p s 1 t t 1 U u V Y Y 1 3 29,5 3 x 4,3 0,8 28 40 46 9 44 70 64 3 x M3 3,8 4,1 6 2 0,05 45 30 4 30,5 3 x 4,6 1,7 31 43,5 60 9 48 79,7 72 3 x M4 4,3 5,0 8 2,5 0,05 45 30 5 45,5 3 x 5,8 1,0 35,9 49 76 10 54,9 98,2 85 3 x M5 5,7 6,9 8 2,5 0,05 30 22,5 6 48 3 x 7 1,0 40,5 55 95 10,5 62,0 115,4 105 3 x M6 6,7 6,7 10 2,5 0,05 30 22,5 7 69 3 x 9,4 2,0 46,5 61,5 120 12 70,5 150,4 120 3 x M8 8,7 8,2 12 3 0,1 30 15 8 91 3 x 11,5 2,0 55,4 74 158 13 85,1 189,4 145 3 x M10 10,6 8,5 14 4,5 0,1 30 15 9 111 4 x 20 4,2 63,9 81 210 15,5 93,9 235,8 150 4 x M12 12,4 11,8 14 6 0,1 30 15 1) With max. bore keyway to DIN 6885/3 Standard voltage 24 VDC. 2) With max. bore Permissible voltage tolerances to IEC 38 +/-10 %. We reserve the right to make dimensional and design alterations. Order example: To be included when ordering, size type voltage bore H7 please state: [V DC] Ød 2 order number: 540.1 3 9 without accessories... 0 flange hub... 1 cable... 0 terminal... 2 Example: Order number 5/540.100/24/20 according to size 24 V-coil 13

ROBATIC Electromagnetic Clutch With flange in bearing 3) Sizes 3 9 Type 540.14_ groove for key x groove for friction support Type 540.140 With flange in bearing Technical data and dimensions Nominal Max. Electrical Max. Max. Mass moment of inertia Weight torque speed admissible admissible I own [10-4 kgm 2 ] with max. M 2 P 20 friction friction Rotor Armature bore work with P Rperm with max. disc + Type an unique bore driving 540.140 switching W Rperm Type flange Size [Nm] [rpm] [W] [J] [ sec] J 540.140 [kg] a D 1 D 3 d 3 d 4max 3 10 8000 18 3,8x10 3 67 1,59 1,97 1,2 0,2 70 71 16 15 4 20 6000 19 6,2x10 3 89 3,82 4,06 1,85 0,2 87 82 20 19 1) 5 45 5000 28 9x10 3 110 10,24 9,95 2,95 0,2 106 102 26 24 6 80 4200 38 15x10 3 125 23,22 22,93 4,7 0,3 125 122 26 6) /37 7) 33 7 160 3600 46 25x10 3 167 62,05 50,53 8,25 0,3 157 156 37 8) /47 9) _ 11) 46 8 320 3000 61 42x10 3 222 197,66 174,83 16,6 0,5 200 199 37 8) /47 9) /59 11) 58 9 640 2200 82 65x10 3 280 497 533,7 29,2 0,5 251 250 47 10) /67 11) /_ 12) 65 Size e h6 L L 7 I 3 I 8 M 3 n 1 n 3 O 5 P p s 2 U u W 1 X x Y 1 Y 2 3 56 28 25,8 35 21,5 66 9 16 70 70 64 3xM4 6 2 17,5 6x6x16 3,5 75 90 4 64 31 29,7 45 4) /35 5) 24 75 9 17 78 79,7 72 3xM5 8 2,5 19 6x6x18 3,5 75 90 5 75 35,9 38,7 50 6) /40 7) 30 94 10 19 94 98,2 85 3xM5 8 2,5 24,5 8x7x22 4 52,5 90 6 90 40,5 43,5 60 6) /40 7) /20 9) 34 112 10,5 21,5 106 115,4 105 3xM6 10 2,5 28 10x8x25 5 52,5 90 7 110 45,5 48,9 55 8) /35 9) /_ 11) 39 145 12 24 120 150,4 120 3xM6 12 3 31 10x8x28 5 45 90 8 135 55,4 53,9 75 8) /55 9) /25 11) 44 184 13 30 140 189,4 145 3xM8 14 4,5 36 14x9x32 5,5 45 90 9 160 63,9 57,1 70 10) /40 11) /_ 12) 46 235 15,5 30 152 235,8 150 3xM8 14 6 38 16x10x36 6 45 135 1) Above Ø 18 keyway to DIN 6885/3 with 4) Above Ø d 4 to 14 9) Above Ø d 4 over 28 Standard voltage 24 VDC. d 4max - depth of hub keyway 1,2 +0,1 5) Above Ø d 4 over 14 10) Above Ø d 4 to 38 Permissible voltage tolerances to 3) 2-shaft connection on request 6) Above Ø d 4 to 19 11) Above Ø d 4 over 38 IEC 38 +/- 10 %. 7) Above Ø d 4 over 19 12) Above Ø d 4 over 55 We reserve the right to make dimensional 8) Above Ø d 4 to 28 and design alterations. Order example: To be included when ordering, size type voltage bore *counterbore please state: [V DC] Ø d 4 by choice order number: 540.14 _ AS or AÜ Key 14 3 9 cable... 0 terminal... 2 Example: Order number 5/540.140/24/24/AS AS... counterbore at coil carrier side AÜ...counterbore at flange side according to size 24 V-coil

Technical Explanations Mounting tolerances Fig. 1 Fig. 2 Table for the adjustment of the air gaps Size 3 4 5 6 7 8 9 a 0,2 +0,1 0,2 +0,15 0,2 +0,15 0,3 +0,15 0,3 +0,15 0,5 +0,15 0,5-0,05-0,05-0,05-0,05-0,05-0,1 +0,15-0,1 e 0,25 0,3 0,3 0,35 0,5 0,55 0,6 Table 1 The dimension a (Fig. 1) is to be adjusted according to the table 1. Care must be taken to ensure that the shaft is fastened axially, since, otherwise the dimension a will change and cause the rotor to brush against the armature disc or the coil carrier. The air gap e is chosen, that a banding of the rotor at the coil carrier is not possible when keeping the permissible center deviations V and V1 (see table technical data). Construction: ROBATIC -Electromagnetic clutches are manufactured to IP 54 specification and the insulation class F to 155 C for coil, moulding compound and cable as well as insulation class B 130 C for the magnet coil plastic-extrusion-coated. The friction linings are asbestos free, the surface of coil carrier, rotor and flange hub are phosphated. The armature disc is nitrited and the transmitting spring is made of stainless steel. The drive elements should be made of magnetically poor transmitting material to avoid magnetic field losses and subsequent reduction. ROBATIC clutches are used for dry running. The torque is transmitted by connection of the armature disc on the iron poles and friction lining of the rotor. When coupling two shafts the eccentricity V of the shafts according to table 2 must not be exceeded. The larger the displacement V the greater the friction surface becomes. In the case of this arrangement care must be taken that both shafts have no axial play since, otherwise, a brushing of the rotor would also be possible. The flange hub is kept axially by means of a set screw (set at 90 to the key). The V -values are indicated again in the technical data of the individual clutches. Table concerning the admissible shaft displacement Size 3 4 5 6 7 8 9 V 0,05 0,05 0,05 0,05 0,1 0,1 0,1 Table 2 Please note: The running-in instructions or min. speed are to be observed (see page 3). The friction surfaces have to be absolutely free of oil and grease, otherwise, the torque drops significantly. The air gap a (Fig. 1) has to be checked periodically. The clutch does not function correctly, if the max. working air gap is exceeded (see table 1, page 18). Assembly and maintenance should be made by well trained specialists. 15

Technical Explanations Clutch size calculation Formulae: 1. Drive torque M A = 9550 PA [Nm] n 2. Required torque M req. K M A [Nm] 3. Switchable torque of the clutch (acc. to fig. 1, page 17) M S M req. [Nm] 4. Mass moment of inertia I = I own + I add. [kgm 2 ] 5. Acceleration torque of the clutch M a = M S (+) M L [Nm] 6. Acceleration time t a = I n + t 1 cl [sec] 9,55 M a 7. Max. switching frequency per hour (dependent on time) 1 S h max = 3600 [h -1 ] t vm + (t a + t 2 cl ) 1,2 Designation P A [kw] = drive M A [Nm] = drive torque M a [Nm] = acceleration torque of the clutch M req. [Nm] = required torque M L [Nm] = load torque (+ = drop load) (- = lift load) M S [Nm] = switchable torque of the clutch (acc. to fig. 1, page 17) n [rpm] = drive speed K = safety factor > = 2 I [kgm 2 ] = mass moment of inertia I own. [kgm 2 ] = mass moment of inertia (acc. to table of dimension) I add. [kgm 2 ] = additional mass moment of inertia t a [sec] = acceleration time t vm [sec] = braking time of the machine t 1 Ku [sec] = switch-on time of the clutch acc. to table 1, } t 2 Ku [sec] = switch-off time of the clutch page 18 S h max [h -1 ] = max. switching frequency per hour (dependent on time) Q tot. [J] = total friction work (acc. to table 1, page 18) Q a [J] = total friction work per acceleration Q E [J] = perm. friction work with an unique switching acc. to table 1, } Q 1 [J/ max ] = friction work until 1 mm wear page 18 Z n = number of switchings until re-adjustment Z = number of switchings until end of wear } a [mm] = nominal air gap acc. to table 1, a n [mm] = max. working air gap page 18 8. Friction work per acceleration Q a = I n 2 M s [J] 182,4 M a 9. Examination of the selected clutch size in fig. 2 (page 17, friction diagram). Intersection friction work switching frequency must be below the friction curve! If it is above, the next size has to be selected and re-calculated from point 3 on. Q a < Q E [J] 10. Number of switchings until adjustment Z n = Q1 (a n - a) [-] Q a 11. Number of switchings until end of wear Z = Q tot [-] Q a 16

Technical Explanations Calculation example: Data Input P A = 3 kw Input speed n = 1400 rpm Load torque output M L = 15 Nm Additional mass moment of inertia I add. = 0,15 kgm 2 Braking time of the machine t v M = 1,5 [sec] 180 switchings per hour Input torque M A = 9550 PA = 9550 3 = 20,5 [Nm] n 1400 Required torque M req. = K M A = 2 20,5 = 41 [Nm] Determined clutch size (acc. to fig. 1) = size 6 M S M req. = 47 [Nm] Selected clutch = size 6 type 500.200.0 Mass moment of inertia I = I own + I add. = 0,001756 + 0,15 = 0,151756 [kgm 2 ] Acceleration torque of the clutch M a = M S M L = 47-15 = 32 [Nm] Acceleration time of the clutch I n t a = + t 1 * Cl = 0,151756 1400 + 0,15 = 0,845 [sec] 9,55 M a 9,55 32 * Switching times t 1 Cl and t 2 Cl from table 1, page 18 = without overexcitation Max. switching frequency per hour 1 S h max = 3600 t vm + (t a + t 2 * Cl ) 1,2 1 S h max = 3600 = 1392 [h -1 ] 1,5 + (0,845 + 0,060) 1,2 Friction work per acceleration Q a = I n2 M s = 0,151756 14002 47 = 2395 [J] < = Q E 182,4 M a 182,4 32 Switching frequency acc. to fig. 2 = 180 switchings per hour = permissible Q a Switching work [J] Switchable torque M S [Nm] Switchable torque calculation example Friction diagram valid for speed = 1500 rpm Speed n [rpm] Size 9 Size 8 Size 7 Size 9 Size 8 Size 7 Size 6 Size 5 Size 4 Size 3 Fig. 1 (The point of intersection determined in fig. 2 must be located in or under the characteristic of the selected clutch) Number of switchings until adjustment Z n = Q1 (a n - a) = 57 107 (1,2-0,3) = 214196 switchings Q a 2395 Number of switchings until wear limit calculation example Size 6 Size 5 Size 4 Size 3 Z = Q tot = 100 107 = 417536 switchings Q a 2395 Switching frequency S h [h -1 ] Fig. 2 17

Technical Explanations Clutch size 3 4 5 6 7 8 9 Without t 11 cl 0,010 0,015 0,020 0,030 0,045 0,050 0,060 over- t 1 cl 0,045 0,065 0,080 0,150 0,200 0,350 0,400 Switching times Type excitation t 2 cl 0,012 0,020 0,045 0,060 0,090 0,095 0,130 500.._ [sec] With over- t 11 cl 0,003 0,005 0,007 0,010 0,015 0,020 0,035 excitation t 1 cl 0,025 0,035 0,040 0,075 0,100 0,170 0,235 Without t 11 cl 0,010 0,012 0,012 0,020 0,025 0,050 0,060 over- t 1 cl 0,050 0,072 0,112 0,160 0,200 0,350 0,460 Switching times Type excitation t 2 cl 0,014 0,020 0,030 0,050 0,075 0,095 0,130 540.._ [sec] With over- t 11 cl 0,004 0,005 0,006 0,010 0,013 0,020 0,035 excitation t 1 cl 0,024 0,035 0,056 0,080 0,100 0,170 0,235 Permissible friction work with a single switching Q E [J] 3,8 10 3 6,2 10 3 9 10 3 15 10 3 25 10 3 42 10 3 65 10 3 Friction Type work up to 500.._ 1 mm wear Type Q 1 [J/mm] 540. Total friction work Q tot [J] Type 500.._ Type 540.._ 12,5 10 7 20 10 7 33 10 7 57 10 7 100 10 7 105 10 7 170 10 7 8,8 10 7 13,4 10 7 24 10 7 36 10 7 60 10 7 105 10 7 170 10 7 12,5 10 7 25 10 7 50 10 7 100 10 7 200 10 7 185 10 7 340 10 7 8 10 7 16 10 7 35 10 7 68 10 7 135 10 7 185 10 7 340 10 7 Nominal air gap a [mm] 0,2 0,2 0,2 0,3 0,3 0,5 0,5 Max. working air gap a n [mm] 0,6 0,8 1,0 1,2 1,5 1,8 2,0 Table 1 Wear values Note Wear values can only be recommended values due to the operating parameters as for example: sliding speed, pressure or temperature. Switching times: The switching times given in table 1 have been determined by comprehensive series of tests. They are valid for switching on the D.C. side with nominal air gap and warm coil. Deviations depend on the corresponding overall situation, environmental temperatures, release path and the type of rectification with which the corresponding clutch is operated. 2 2 time 18 Excitation (voltage) Fig. 3 On Off time M 2 = nominal torque of the clutch t a = acceleration time t 1 = connection time t 3 = slipping time ML = load torque of the drive t 11 = deceleration time for connection t 2 = disconnection time

ROBA -quick Electromagnetic Brakes The positioning accuracy for the whole service life Exact positioning until limit of wear ideal for positioning operations. Large internal diameters of the magnetic coil bodies Therefore large permissible shaft diameters and few magnetic field losses. High torque security due to an optimised magnetic field and new design of the ROBA -quick. Therefore higher capacities due to few magnetic field losses. Short switching times/high switching frequency Low noise 19

ROBA -quick Electromagnetic Brakes Function ROBA -quick are energise to engage, electromagnetic pole face brakes. If a DC voltage is applied to the magnetic coil (1) a magnetic field is formed, and the armature disc (3) is attracted to the coil carrier with friction lining (4). The brake torque runs from the coil carrier (2) via friction lining (4), armature disc (3) and membrane transmitting spring (5) to the flange and the shaft. If the magnetic coil is de-energised the membrane transmitting spring (5) draws the armature disc (3) back to the flange (6). The brake is released and the shaft (7) can run freely. wear, air gap max. previous electromagnetic brakes ROBA -quick Standard Page 21 ROBA -quick Small mounting diameter Page 23 Technical explanations Page 24 Electrical accessories Page 37 adjusting interval wear, air gap max. adjusting interval number of switchings number of switchings 20

ROBA -quick Electromagnetic Brakes Standard Sizes 3 7 Type 520.200.0 520.201.0 520.202.0 cable length: 400 mm displaced to bores by 45 mains ~ Type 520.200.0 Standard rectifier Type 520.201.0 Standard with flange hub Type 520.202.0 Standard with internal hub Technical data and dimensions Nominal Max. Electrical Mass moment of Weight Pilot Preferred torque Speed inertia G [kg] bores bores I own [10-4 kgm 2 ] Flange Without With M 2 n P 20 Armature hub 2) + accesso- flange Size [Nm] [rpm] [W] disc armature disc ries hub a b D D 2 d 1 d 1max H7 d 1 3 8,5 8600 13 0,76 1,02 0,38 0,42 0,2 4,5 73,5 70 8 20 17, 20 4 17 7000 20 1,92 2,75 0,55 0,86 0,2 4 92 88 12 30 20, 25 5 45 6100 31 6,86 8,63 1,25 1,40 0,2 5,5 115 110 14 35 1) 25, 30 6 80 5800 47 17,56 24,66 1,88 2,35 0,3 5,5 140 140 19 45 30, 40 7 160 4500 71 52,86 70,63 3,5 7,5 0,3 7,5 177 170 22 60 40, 50 Size G g H h9 K k L 1 L 2 I 1 I 2 M M 1 n 2 O 1 O 2 s s 1 t t 1 V 3 36 29,5 80 3x4,6 1,6 22,1 20 3,5 16 60 72 2,6 42,1 26,1 4 x 4,8 3 x M4 3,9 5,0 0,05 4 49 44 100 3x6,4 1,7 24,7 22 4,3 17 76 90 3,2 46,7 29,7 4 x 5,7 3 x M5 4,5 6,9 0,05 5 57,5 47 125 3x 7 1,7 28,1 28 5,2 22 95 112 1,1 56,1 34,1 4 x 6,8 3 x M6 5,9 8,7 0,05 6 74 66 150 3x10,4 2,2 31,4 32 6 25 120 137 0,2 63,5 38,5 4 x 6,8 3 x M8 7,1 6,6 0,05 7 95 84 190 3x10,2 2,7 34,7 36 7 27 150 175 1,4 70,7 43,7 4 x 9,2 3 x M8 8,1 10,1 0,10 1) Up to Ø 32 keyway to DIN 6885/1, over Ø 32 keyway to DIN 6885/3 Standard voltages 24 VDC; 104 VDC. 2) With max. bore Permissible voltage tolerances to IEC 38 +/-10 %. We reserve the right to make dimensional and design alterations. Order example: To be included when ordering, size type voltage bore H7 3) please state: [V DC] Ø d 1 order number: 3 7 without accessories...0 flange hub...1 internal hub...2 3) indication only with flange hub design or internal hub. Example: Order number 5/520.202.0/24/30 520.20 _.0 according to size 24; 104 V-coils V 1 W Z H8 z 0,1 5 42 3,5 0,15 5 52 4,5 0,15 6 62 5 0,15 8 80 6 0,20 8 100 6 21

ROBA -quick Electromagnetic Brakes Standard Sizes 8 9 Type 520.100 520.110 520.120 Cable length shaft misalignment Type 520.100 Standard brake Type 520.110 Standard with flange hub Type 520.120 Standard with internal hub Technical data and dimensions Nominal Max. Electrical Mass moment of Weight torque speed inertia G [kg] Pilot Preferred I own [10-4 kgm 2 ] bores bores Flange Without With M 2 n P 20 Armature hub 2) + accesso- flange H7 Size [Nm] [rpm] [W] disc armature disc ries hub a b D D 2 d 1 d 1max d 1 f 8 320 3000 40 81 107 5,64 13,9 0,5 16 193 185 22 60 40, 50 92 9 640 2200 77 315 381 6,90 15,63 0,5 16 251 242 25 80 50, 60 112 *) observe run-in instructions or minimum speed (see page 3). Size G g H h9 K k L 2 L 6 I 2 I 4 I 7 M M 1 n 2 O 2 O 3 s s 1 t 1 V 8 91 84 230 3x11,5 2 45,3 40,1 36,3 5 30 158 215 0,8 86,4 50,1 4x9 3xM10 8,5 0,1 9 111 104 290 4x20 4,2 53,9 47,9 42,9 6 35 210 270 1,0 101,8 58,9 4x11 4xM12 11,8 0,1 V 1 W Z H8 z 0,2 15 100 4 0,25 20 125 4 2) With max. bore Standard voltage 24 VDC. Permissible voltage tolerances to IEC 38 +/-10 %. We reserve the right to make dimensional and design alterations. Order example: To be included when ordering, size type voltage bore H7 3) please state: [V DC] Ø d 1 order number: 520.1 _0 22 8 9 without accessories...0 flange hub...1 internal hub...2 3) indication only with flange hub design or internal hub. according to size 24 V-coil Example: Order number 8/520.110/24/40

ROBA -quick Electromagnetic Brakes Small mounting diameter Sizes 3 7 Type 520.210.0 520.211.0 520.212.0 cable length: 400 mm displaced to bores by 45 rectifier Type 520.210.0 Small mounting diameter mains ~ Type 520.211.0 Small mounting diameter and flange hub permissible shaft misalignment Type 520.212.0 Small mounting diameter and internal hub Technical data and dimensions Nominal Max. Electrical Mass moment of Weight torque speed inertia G [kg] Pilot Preferred I own [10-4 kgm 2 ] bores bores Flange Without With M 2 n P 20 Armature hub 2) + accesso- flange Size [Nm] [rpm] [W] disc armature disc ries hub a b D D 2 d 1 d 1 max H7 d 1 3 8,5 8600 13 0,7 0,8 0,35 0,40 0,2 4,5 73,5 54 7 17 10, 15 4 17 7000 20 1,79 1,97 0,58 0,65 0,2 4 92 70 8 20 17, 20 5 45 6100 31 6,28 7,19 1,2 1,35 0,2 5,5 115 88 12 30 20,25 6 80 5800 47 15,77 17,54 1,80 2,0 0,3 5,5 140 110 14 35 1) 25, 30 7 160 4500 71 48,1 55,2 3,3 3,85 0,3 7,5 177 140 19 45 30, 40 Size G g H h9 K k L 1 L 2 I 1 I 2 M M 1 n 2 O 1 O 2 s s 1 t t 1 V 3 36 27 80 3x4,3 1,6 22,1 15 3,5 11,5 46 72 8,5 37,1 25,6 4x4,5 3xM3 3,9 4,0 0,05 4 49 29,5 100 3x4,6 1,7 24,6 20 4,3 16 60 90 6,1 44,6 28,6 4x5,7 3xM4 4,4 5,0 0,05 5 57,5 44 125 3x6,4 2,3 28,1 22 5,2 17 76 112 7,9 50,1 33,1 4x6,8 3xM5 5,8 6,8 0,05 6 74 47 150 3x7 2,7 31,3 28 6 22 95 137 5,5 59,3 37 4x6,8 3xM6 7,0 8,5 0,05 7 95 66 190 3x10,4 2,7 34,4 32 7 25 120 175 5,7 66,5 41,5 4x9,2 3xM8 8,1 8,1 0,10 1) Up to Ø 32 keyway to DIN 6885/1, above Ø 32 keyway to DIN 6885/3 Standard voltages 24 VDC; 104 VDC. 2) With max. bore Permissible voltage tolerances to IEC 38 +/-10 %. We reserve the right to make dimensional and design alterations. Order example: To be included when ordering, size type voltage bore H7 3) please state: [V DC] Ø d 1 order number: 3 7 without accessories...0 flange hub...1 internal hub...2 3) indication only with flange hub design or internal hub. Example: Order number 5/520.212.0/24/25 520.21 _.0 according to size 24; 104 V-coils V 1 W Z H8 z 0,1 5 35 2 0,15 5 42 2,5 0,15 6 52 3 0,15 8 62 3,5 0,20 8 80 3,5 23

Technical Explanations Mounting tolerances Fig. 1 Fig. 2 Table for the adjustment of the air gaps Size 3 4 5 6 7 8 9 a 0,2 +0,1 0,2 +0,15 0,2 +0,15 0,3 +0,15 0,3 +0,15 0,5 +0,15 0,5 +0,15-0,05-0,05-0,05-0,05-0,05-0,1-0,1 Table 1 The dimension a (Fig. 1) is to be adjusted according to the table 1. Care must be taken to ensure that the shaft is fastened axially, since otherwise the dimension a will change and cause the armature disc to band against coil carrier. Construction: ROBA -quick Electromagnetic brakes are manufactured to IP 54 specification and the insulation class F to 155 C for coil, moulding compound and cables as well as insulation class B 130 C for the magnetic coil plastic extrusion-coated. The friction linings are asbestos free, the surface of coil carrier and flange hub are phosphated. The armature disc is nitrated and the membrane spring is made of stainless steel. Allowable shaft displacement Size 3 4 5 6 7 8 9 V 0,05 0,05 0,05 0,05 0,1 0,1 0,1 Table 2 Please note: The running-in instructions or min. speed are to be observed (see page 3). The friction surfaces have to be absolutely free of oil and grease as otherwise the torque drops significantly. The air gap a (Fig. 1) has to be checked periodically. The brake does not function correctly if the max. working air gap (see table 1, page 27) is exceeded. Assembly and maintenance have to be made by well-trained specialists. ROBA -quick brakes are used for dry running. The torque is transmitted by friction between armature disc and the iron poles and friction lining surface of the coil carrier. When braking the eccentricity V according to table 2 must not be exceeded. The larger the displacement V the more the torque decreases and the hotter the friction surface becomes. In the case of arrangement according to table 2 care must be taken that the coil carrier and shaft have no axial play, since otherwise a brushing of the coil carrier would be possible. The flange hub is kept axially by means of a set screw (set at 90 to the key). The V -values are indicated again in the technical data of the individual brakes. 24

Technical Explanations Brake size calculation Formulae: 1. Drive torque M A = 9550 PA [Nm] n 2. Required torque M req. K M A [Nm] 3. Switchable torque of the brake (acc. to fig. 1, page 26) M S M req. [Nm] 4. Mass moment of inertia I = I own. + I add. [kgm 2 ] 5. Deceleration torque of the brake M v = M S (+) M L [Nm] 6. Deceleration time t v = I n + t 1 Br [sec] 9,55 M v 7. Max. switching frequency per hour (dependent on time) 1 S h max = 3600 [h -1 ] t am + (t v + t 2 Br) 1,2 Designation P A [kw] = drive M A [Nm] = drive torque M req. [Nm] = required torque M L [Nm] = load torque (+ = drop load) (- = lift load) M S [Nm] = switchable torque of the brake (acc. to fig. 1, page 27) M v [Nm] = deceleration torque of the brake n [rpm] = drive speed K = safety factor clutch > = 2 I [kgm 2 ] = mass moment of inertia I own [kgm 2 ] = own mass moment of inertia (acc. to table of dimensions) I add. [kgm 2 ] = additional mass moment of inertia t v [sec] = deceleration time t am [sec] = acceleration time of the machine t 1 Br [sec] = switch-on time of the brake acc. to table 1 } t 2 Br [sec] = switch-off time of the brake page 27 S h max [h -1 ] = max. switching frequency per hour (dependent on time) Q tot. [J] = total friction work (acc. to table 1, page 27) Q v [J] = friction work per deceleration Q E [J] = perm. friction work with an unique acc. to table 1 switching} Q 1 [J/ max ] = friction work until 1 mm wear page 27 Z n = number of switchings until re-adjustment Z = number of switchings until end of wear } a [mm] = nominal air gap acc. to table 1 a n [mm] = max. working air gap page 27 8. Friction work per deceleration Q v = I n 2 M s [J] 182,4 M v 9. Examination of the selected brake size in fig. 2 (page 26, friction diagram). Intersection friction work switching frequency must be below the friction curve! If it is above, the next size has to be selected and re-calculated from point 3 on. Q v < Q E [J] 10. Number of switchings until adjustment. Z n = Q1 (a n - a) [-] Q a 11. Number of switchings until end of wear. Z = Q tot [-] Q v 25

Technical Explanations Calculation example: Data Input P A = 3 kw Input speed n = 1400 rpm Load torque output M L = 15 Nm Additional mass moment of inertia I add. = 0,15 kgm 2 Acceleration time of the machine t a M = 1,5 [sec] 350 switchings per hour Input torque M A = 9550 PA = 9550 3 = 20,5 [Nm] n 1400 Required torque M req. = K M A = 2 20,5 = 41 [Nm] Determined brake size (acc. to fig. 1) = size 6 M S M req. = 47 [Nm] Selected brake = size 6 type 500.200.0 Switchable torque M S [Nm] Switchable torque Size 9 Size 8 Size 7 Size 6 Size 5 Size 4 Size 3 Mass moment of inertia I = I own + I add. = 0,001756 + 0,15 = 0,151756 [kgm 2 ] Deceleration torque of the brake M v = M S + M L = 47 + 15 = 62 [Nm] Deceleration time of the brake I n t v = + t 1 * Br = 0,151756 1400 + 0,10 = 0,46 [sec] 9,55 M v 9,55 62 * Switching times t 1 Br and t 2 Br from table 1, page 27 = without overexcitation calculation example Friction diagram valid for speed = 1500 rpm Speed n [rpm] Fig. 1 Max. switching frequency per hour 1 S h max = 3600 t am + (t v + t 2 *Br) 1,2 1 S h max = 3600 = 1695 [h -1 ] 1,5 + (0,46 + 0,060) 1,2 Friction work per deceleration Q v = I n2 M s = 0,151756 14002 47 = 1236 [J] < = Q E 182,4 M v 182,4 62 * Switching frequency acc. to fig. 2 = 350 switchings per hour = permissible (The point of intersection determined in fig. 2 must be located in or under the characteristic of the selected brake) Number of switchings until adjustment Z n = Q1 (a n - a) = 57 107 (1,2-0,3) = 415 048 switchings Q v 1236 Q V Switching work [J] calculation example Size 9 Size 8 Size 7 Size 6 Size 5 Size 4 Size 3 26 Number of switchings until wear limit Z = Q tot = 100 107 = 809 061 switchings Q v 1236 Switching frequency S h [h -1 ] Fig. 2

Technical Explanations Brake size 3 4 5 6 7 8 9 Without t 11 Br 0,006 0,008 0,010 0,015 0,025 0,027 0,030 over- t 1 Br 0,035 0,040 0,055 0,100 0,150 0,245 0,330 Switching times Type excitation t 2 Br 0,010 0,018 0,030 0,060 0,090 0,100 0,140 520.._ [sec] With over- t 11 Br 0,002 0,003 0,004 0,006 0,008 0,010 0,015 excitation t 1 Br 0,020 0,022 0,030 0,050 0,075 0,120 0,165 Permissible friction work with a single switching Q E [J] 3,8 10 3 6,2 10 3 9 10 3 15 10 3 25 10 3 42 10 3 65 10 3 Friction work up to Type 12,5 10 7 20 10 7 33 10 7 57 10 7 100 10 7 105 10 7 170 10 7 1mm wear 520.._ Q 1 [J/mm] Total friction work Q tot [J] Type 520.._ 12,5 10 7 25 10 7 50 10 7 100 10 7 200 10 7 185 10 7 340 10 7 Nominal air gap a [mm] 0,2 0,2 0,2 0,3 0,3 0,5 0,5 Max. working air gap a n [mm] 0,6 0,8 1,0 1,2 1,5 1,8 2,0 Table 1 Wear values Note Wear values can only be recommended values due to the operating parameters as for example: sliding speed, pressure or temperature. Switching times: The switching times given in table 1 have been determined by comprehensive series of tests. They are valid for switching on the D.C. side with nominal air gap and warm coil. Deviations depend on the corresponding overall situation, environmental temperatures, release path and the type of rectification with which the corresponding clutch is operated. time t Excitation (voltage) On Off Fig. 3 time t M 2 = nominal torque of the brake t v = deceleration time t 1 = connection time t 3 = slipping time ML = load torque of the drive t 11 = deceleration time for connection t 2 = disconnection time 27

ROBA -takt Clutch-Brake Module The new clutch-brake module for positioning and cyclic operations Positioning accuracy for the whole service life High switching frequency Maintenance-free during the whole service life Less energy necessary and environment-friendly Sealed High radial shaft end loads Oversized bearings high radial loads of the input and output shafts permissible. Accurate positioning Precise switching function until the end of service life. Quiet operation Maintenance-free/ no manual adjustment Constant switching behaviour, i.e. high positioning accuracy and maintenancefree until the end of service life. No downtime because of re-adjustment. Low field losses high friction capacities Larger magnetic and friction surfaces (asbestos free) with the same dimensions due to the new technology of the clutch and brake. Optimised electromagnetic effect, i.e. low field losses, faster switching behaviour, less heat build up and, therefore, constant stopping accuracy. Individual variations Without flange With integral cast IEC-flange With hollow shaft 28 Heat dissipation Optimized heat dissipation and large cooling ribs provide for: Optimum operation temperature due to dissipation of the frictional heat. Constant characteristic operation values. Sturdy housing Consists of en bloc cast two part ribbed housing, in a flanged design with integral flanges. Large housing rigidity guarantees dimensionally stability, even with loads not caused under regular conditions (for example weight load by persons).

ROBA -takt Clutch-Brake Module Structural Components OUTPUT BRAKE INPUT CLUTCH OUTPUT INPUT without flange/ without flange/ Type-No.: 674.0_4.0 shaft shaft Page 30 without flange/ IEC-flange/ Type-No.: 674.0_ 5.0 6 shaft hollow shaft Page 31 IEC-flange/ without flange/ Type-No.: 67 5.0_4.0 6 shaft shaft Page 32 IEC-flange/ IEC-flange/ Type-No.: 67 5.0_ 5.0 6 6 shaft hollow shaft Page 33 Further structural components are available on request Technical explanations Page 34 Electronic accessories Page 37 29

ROBA -takt Type 674.0_4.0 output brake side input clutch side Technical data and dimensions Nominal torque Electrical Speed Weight Inertia I Clutch Brake Clutch Brake max. kg output [10-4 kgm 2 ] M 2 P 20 P 20 n Type Type Size [Nm] [W] [W] [rpm] 674.014.0 674.014.0 3 10 8,5 17 13 3600 3,9 2,5 4 20 17 25 23 3600 6,8 6,37 5 45 45 30 30 3600 9,9 21,5 6 80 80 44 45 3600 15,3 60,5 7 160 160 79 70 3600 27,7 138 Size A B B 1 B 2 c c 1 d k6 f H H 1 i k L L 1 I r u 3 126 75 93 114 19 37 14 1 86 63 M5 12,5 200 138 30 6,6 3 4 146 95 115 127 22 46,5 19 1 94 80 M6 16 239 157 40 9 3 5 165 110 136 156 28 57 24 1 106 90 M8 19 279 177 50 11 4 6 189 120 152 179 28 67 28 1 121 100 M10 22 323 201 60 11 4 7 230 145 175 230 33 89 38 1 142 132 M12 28 408 246 80 14 5 Standard voltages 24 VDC; 104 VDC. Permissible voltage tolerances to IEC 38 +/-10 %. We reserve the right to make dimensional and design alterations. Order example: To be included when ordering, output input voltage with please state: size type shaft shaft [V DC] switch gear Ø d k6 Ø d k6 order number: 674.0_4.0 W W see pages 37-38 30 3 7 without feet...0 with feet...1 according to table (special dimension on request) 24; 104 V-coils Example: Order number 5/674.014.0/24V/W24/W24

ROBA -takt Type 674.0.0 output brake side input clutch side Technical data and dimensions Nominal torque Electrical Speed Weight Inertia Small or IEC-dimensions Clutch Brake Clutch Brake max. [kg] I large output IEC-flange [10-4 kgm 2 ] to choice M 2 P 20 P 20 n Type Type Size [Nm] [W] [W] [rpm] 674.014.0 674.014.0 D d F8 1 b +03 +05 e 1 f 1 3 10 8,5 17 13 3600 3,9 2,5 4 20 17 25 23 3600 6,8 6,37 5 45 45 30 30 3600 9,9 21,5 6 80 80 44 45 3600 15,3 60,5 7 160 160 79 70 3600 27,7 138 IEC-small 140 11 95 115 3,5 IEC-large 160 14 110 130 4 IEC-small 160 14 110 130 4 IEC-large 200 19 130 165 4 IEC-small 200 19 130 165 4 IEC-large 200 24 130 165 4 IEC-small 200 24 130 165 4 IEC-large 250 28 180 215 4,5 IEC-small 250 28 180 215 4,5 IEC-large 300 38 230 265 4,5 Small or IEClarge dimensions IEC-flange Size to choice 1) H 1 I 1 s 1 A B B 1 c c 1 d k6 f H 1) H 2 i k L L 1 l p 3 4 5 6 7 IEC-small 70 25 9 IEC-large 80 32 9 IEC-small 80 32 9 IEC-large 100 42 11 IEC-small 100 42 11 IEC-large 100 55 11 IEC-small 100 55 11 IEC-large 125 65 14 IEC-small 125 65 14 IEC-large 150 90 14 110 75 93 19 11 14 1 86 63 M5 12,5 170 139 30 12 126 95 115 22 13,5 19 1 94 80 M6 16 199 158 40 13 140 110 136 28 18 24 1 106 90 M8 19 229 178 50 14 164 120 152 28 18 28 1 121 100 M10 22 263 202 60 14 198 145 175 33 21 38 1 142 132 M12 28 328 247 80 20 1) Note difference in height of feet on driver and driven sides Standard voltages 24 VDC; 104 VDC. Permissible voltage tolerances to IEC 38 +/-10 %. We reserve the right to make dimensional and design alterations. Order example: To be included when ordering, output input voltage with please state: size type shaft shaft [V DC] F8 switch gear Ø d k6 Ø d 1 order number: 674.0.0 W B see pages 37-38 r u 6,6 3 9 3 11 4 11 4 14 5 3 7 without feet...0 with feet...1 Example: Order number 4/674.015.0/24V/W19/B24 according to table (special dimension on request) 24; 104 V-coils clutch side: 5 IEC-flange small 6 IEC-flange large 31

ROBA -takt Type 67_.0_4.0 output brake side input clutch side Technical data and dimensions Nominal torque Electrical Speed Weight Inertia Small or IEC-dimensions Clutch Brake Clutch Brake max. [kg] I large output: IEC-flange [10-4 kgm 2 ] to M 2 P 20 P 20 n Type Type choice 1) Size [Nm] [W] [W] [rpm] 674.014.0 674.014.0 D d k6 b j6 e f H 1 3 10 8,5 17 13 3600 3,9 2,5 4 20 17 25 23 3600 6,8 6,37 5 45 45 30 30 3600 9,9 21,5 6 80 80 44 45 3600 15,3 60,5 7 160 160 79 70 3600 27,7 138 IEC-small 140 11 95 115 3 70 M4 IEC-large 160 14 110 130 3,5 80 M5 IEC-small 160 14 110 130 3,5 80 M5 IEC-large 200 19 130 165 3,5 100 M6 IEC-small 200 19 130 165 3,5 100 M6 IEC-large 200 24 130 165 3,5 100 M8 IEC-small 200 24 130 165 3,5 100 M8 IEC-large 250 28 180 215 4 125 M10 IEC-small 250 28 180 215 4 125 M10 IEC-large 300 38 230 265 4 150 M12 i Small or IEClarge dimensions IEC-flange Size to choice k L I m s A B B 1 c c 1 d 1k6 f 1 H 1) H 2 i 1 k 1 L 1 l 1 p r u 3 4 5 6 IEC-small 10 193 23 3 9 110 75 93 19 11 14 1 86 63 M5 12,5 139 30 IEC-large 12,5 200 30 3,5 9 IEC-small 12,5 229 30 3,5 9 126 95 115 22 13,5 19 1 94 80 M6 16 158 40 IEC-large 16 239 40 3,5 11 IEC-small 16 269 40 3,5 11 140 110 136 28 18 24 1 106 90 M8 19 178 50 IEC-large 19 279 50 3,5 11 IEC-small 19 313 50 3,5 11 164 120 152 28 18 28 1 121 100 M10 22 202 60 IEC-large 22 323 60 4 14 12 6,6 2,5 13 9 3 14 11 3 14 11 3 7 IEC-small 22 388 60 4 14 198 145 175 33 21 38 1 142 132 M12 28 247 80 IEC-large 28 408 80 4 14 1) Note difference in height of feet on driver and driven sides Standard voltages 24 VDC; 104 VDC. Permissible voltage tolerances to IEC 38 +/-10 %. We reserve the right to make dimensional and design alterations. Order example: To be included when ordering, output input voltage with please state: size type shaft shaft [V DC] switch gear Ø d k6 Ø d 1 k6 order number: 67_.0_ 4.0 W W see pages 37-38 20 14 4 32 3 7 brake side: IEC-flange small...5 IEC-flange large...6 without feet...0 with feet...1 Example: Order number 4/675.014.0/24V/W14/W19 according to table (special dimension on request) 24; 104 V-coils

output brake side input clutch side Type 67_.0.0 Technical data and dimensions Nominal torque Electrical Speed Weight Inertia Small or IEC-dimensions Clutch Brake Clutch Brake max. [kg] I large output IEC-flange [10-4 kgm 2 ] to M 2 P 20 P 20 n Type Type choice F8 Size [Nm] [W] [W] [rpm] 674.014.0 674.014.0 D d k6 d 1 b j6 b +0,3 +0,5 3 10 8,5 17 13 3600 3,9 2,5 4 20 17 25 23 3600 6,8 6,37 5 45 45 30 30 3600 9,9 21,5 6 80 80 44 45 3600 15,3 60,5 7 160 160 79 70 3600 27,7 138 IEC-small 140 11 11 95 95 115 IEC-large 160 14 14 110 110 130 IEC-small 160 14 14 110 110 130 IEC-large 200 19 19 130 130 165 IEC-small 200 19 19 130 130 165 IEC-large 200 24 24 130 130 165 IEC-small 200 24 24 130 130 165 IEC-large 250 28 28 180 180 215 IEC-small 250 28 28 180 180 215 IEC-large 300 38 38 230 230 265 Small or IEClarge dimensions IEC-flange Size to choice f f 1 1) H 1 i k L I I 1 m s A B B 1 c c 1 H L 1 3 4 5 6 7 IEC-small 3 3,5 70 M4 10 163 23 25 3 9 IEC-large 3,5 4 80 M5 12,5 170 30 32 3,5 9 IEC-small 3,5 4 80 M5 12,5 189 30 32 3,5 9 IEC-large 3,5 4 100 M6 16 199 40 42 3,5 11 IEC-small 3,5 4 100 M6 16 219 40 42 3,5 11 IEC-large 3,5 4 100 M8 19 229 50 55 3,5 11 IEC-small 3,5 4 100 M8 19 253 50 55 3,5 11 IEC-large 4 4,5 125 M10 22 263 60 65 4 14 IEC-small 4 4,5 125 M10 22 308 60 65 4 14 IEC-large 4 4,5 150 M12 28 328 80 90 4 14 94 75 93 19 11 86 140 106 95 115 22 13,5 94 159 115 110 136 28 18 106 179 139 120 152 28 18 121 203 166 145 175 33 21 142 248 1) Difference in height of feet depends on flange diameter Standard voltages 24 VDC; 104 VDC. Permissible voltage tolerances to IEC 38 +/-10 %. We reserve the right to make dimensional and design alterations. Order example: To be included when ordering, output input voltage with please state: size type shaft shaft [V DC] F8 switch gear Ø d k6 Ø d 1 order number: 67_.0.0 W B see pages 37-38 e p r u 12 6,6 3 13 9 3 14 11 4 14 11 4 20 14 5 3 7 brake side: IEC-flange small...5 IEC-flange large...6 without feet...0 with feet...1 Example: Order number 7/675.015.0/24V/W28/B28 according to table (special dimension on request) 24; 104 V-coils clutch side: 5 IEC-flange small 6 IEC-flange large 33

Technical Explanations Assembly Permissible shaft loads Clutch Brake Unit with flange: The shafts, locating spigots and shoulders, bolt holes, PCD s and flanges are to IEC standards. Input and output sides can be fitted with the corresponding flanges of motor, gear reducer or other elements as shown in Fig. 1 without problems. Fig. 4 The drive elements located on the shafts exert a radial load during operation which has to be absorbed by the bearings of the unit. The load is limited by the required life of the bearings and strength of the shaft, Table 1. Fig. 1 Fitting of elements: The drive elements are pushed onto the respective shafts and secured axially via an axial securing screw and washer, the shafts being drilled and tapped accordingly, as shown in Fig. 2. For the combination motor shaft - ROBA -takt hollow shaft the motor shaft must slightly be greased to prevent frictional corrosion. Extensive force or hammer blows can damage the bearings. Radial loads acting on the shaft via the drive elements must not exceed the maximum allowable values (see heading permissible shaft load ). Should both radial and axial loads be present on the shaft, the permissible loads must be determined - please contact our engineers. ROBA -takt size 3 4 5 6 7 Input shaft without IEC-flange 333 995 2150 2705 5355 Output shaft without IEC-flange 333 1105 2331 2950 6211 Output shaft small IEC-flange - - - - - Output shaft large IEC-flange 333 1105 2331 2950 6211 max. permissible radial load F max [N] Table 1 max. permissible radial load F max limited due to the strength of the shaft, application of load midway along shaft. The application of load is assumed to be midway along the shaft, determining the acceptable radial load. In case there are additional axial loads, an extensive calculation is necessary (please contact our sales offices). The acceptable radial loads mentioned in Table 2 refer to a speed n = 1500 rpm and a bearing service life L h = 10 000 hours. ROBA -takt size 3 4 5 6 7 Radial load F N [N] Input shaft without IEC-flange 436 547 681 819 1149 Output shaft without IEC-flange 788 1052 1484 1685 2861 Output shaft small IEC-flange 840 1134 1586 1785 3115 Output shaft large IEC-flange 788 1052 1484 1685 2861 Fig. 2 Table 2 acceptable radial load F N with speed n = 1500 rpm, bearing service life L h = 10 000 hours assuming load applied midway along shaft. The permissible load F can be calculated with factor k for other speeds or bearing life. The factor k is determined from Fig. 3. F = k F N < = F max [N] correction factor k [ ] bearing service life in hours F in N = Permissible radial load k = Correction factor (Fig. 3) F N in N = Acceptable radial load at n = 1500 rpm and bearing service life L h = 10 000 hours (Table 2) 34 Fig. 3 speed n [rpm] F max in N = Max. acceptable radial load, limited due to shaft strength (Table 1)

Technical Explanations ROBA -takt size calculation Formulae: M L = constant M S = constant 1. Required torque M A = 9550 PA [Nm] n M req. K M A [Nm] 2. Pre-selection of the unit size acc. to Fig. 5 page 37 M S M req. [Nm] 3. Mass moment of inertia I = I own + I add. [kgm 2 ] 4. Acceleration time (input side) (M A M S ) I n t a = + t 1 Ku [sec] 9,55 (M S (+) M L ) 5. Braking time (output side) I n t v = + t 1 Br [sec] 9,55 (M + S ( ) M L ) 6. Max. cycling frequency per hour (dependent on time) 1 S h max = 3600 [h -1 ] (t v + t a ) 1,2 + t s clutch + t s brake 7. Friction work per acceleration I n Q a = 2 M S [J] 182,4 M S (+) M L Q a < Q E [J] 8. Friction work per delay I n Q v = 2 M S [J] 182,4 M + S ( ) M L Q v < Q E [J] Calculation example: Data: Drive motor P A = 0,75 kw Drive speed n = 1400 rpm Load torque output M L = 3,0 Nm Additional mass moment of inertia I add. = 0,0042 kgm 2 3000 cycles per hour Drive torque M A = 9550 PA = 9550 0,75 = 5,1 [Nm] n 1400 Required torque M req. = K M A = 2 5,1 = 10,2 [Nm] Determined unit size (acc. to Fig. 5) = size 4 M S M req. = 11 [Nm] Mass moment of inertia I = I own + I add. = 6,37 10-4 + 0,0042 = 0,00484 [kgm 2 ] Acceleration time (input side) (M A M S ) I n t a = + *t 1 9,55 (M s ( + )M L ) 0,00484 1400 t a = + 0,065 = 0,153 sec 9,55 (11-3) 9. Examination of the selected unit size in Fig. 6 page 37 (friction diagram). Counter friction work cycling frequency must be below the friction curve! If it is above, the next size has to be selected and re-calculated from point 3 on. 10. Number of cycles until end of wear Q Z = tot [-] Q a * (Q v ) 2 *(Q a /Q v put in higher value) Wear value Note Wear values can only be recommended values due to the operating parameters as for example: sliding speed, pressure or temperature. Designation P A [kw] = drive M A [Nm] = input torque (input side) M req. [Nm] = required torque M L [Nm] = load torque (In case of a load reduce the value in the bracket) M S [Nm] = switchable torque (acc. to Fig. 5, page 37) n [rpm] = input speed (input side) K = safety factor = > 2 I [kgm 2 ] = mass moment of inertia I own [kgm 2 ] = own mass of inertia (acc. to table of dimensions) I add. [kgm 2 ] = additional mass moment of inertia t a [sec] = acceleration time (input side) t v [sec] = braking time (output side) t 1 Cl [sec] = switching time of the clutch acc. to table 3 t 1 Br [sec] = switching time of the brake } page 37 S h max [h -1 ] = max. cycling frequency per hour (dependent on time) Q tot. [J] = total friction work (acc. to table 3, page 37) Q a [J] = friction work per acceleration Q E [J] = perm. friction work with one acc. to table 3 Q v [J] = friction work per delay engagement} page 37 t s [s] = delay times Z = number of cycles until end of service life Braking time (output side) I n t v = + *t 1 9,55 (M S ( + )M L ) 0,00484 1400 t v = + 0,040 = 0,091 sec 9,55 (11 + 3) * switching times t 1 Cl and t 1 Br from Table 3 page 37 = without overexcitation Max. cycling frequency per hour 1 S h max = 3600 = (t v + t a ) 1,2 1 S h max = 3600 = 12300 h -1 (0,091 + 0,153) 1,2 Friction work per acceleration Q a = I n2 M S 0,00484 1400 2 11 = = 71,5 J Q E * 182,4 M S M L 182,4 11-3 Friction work per delay Q v = I n2 M S 0,00484 1400 2 11 = = 40,9 J Q E * 182,4 M S + M L 182,4 11 + 3 Checking of the selected unit size in the friction diagram (make up centre Q a or Q v to S h ). * The point of intersection determined in Fig. 6 must be located in or under the characteristic of the selected unit. Number of cycles until end of service life Z = Q tot = 44 107 = 3,08 10 6 cycles Q a 2 71,5 2 35

Technical Explanations Switchable torque M S [Nm] Switchable torque Clutch Brake Size 7 Size 6 Size 5 Size 4 Switchable work [L] Friction diagram The point of intersection determined in Fig. 6 must be located in or under the characteristic of the selected unit. Size 7 Size 6 Size 5 Size 4 Size 3 calculation example Valid for speed 1500 rpm Clutch calculation example Brake Size 3 Speed N [rpm] Cycling frequency [h -1 ] Fig. 5 Fig. 6 ROBA -takt size 3 4 5 6 7 Switching Without t 11 Cl 0,010 0,015 0,020 0,030 0,045 times over- t 1 Cl 0,045 0,065 0,080 0,150 0,200 [s] excitation t 11 Br 0,006 0,008 0,010 0,015 0,025 t 1 Br 0,035 0,040 0,055 0,100 0,150 t 2 Cl 0,012 0,020 0,045 0,060 0,090 t 2 Br 0,010 0,018 0,030 0,060 0,090 With over- t 11 Cl 0,003 0,005 0,007 0,010 0,015 excitation t 1 Cl 0,025 0,035 0,040 0,075 0,100 (only switch-on t 11 Br 0,002 0,003 0,004 0,006 0,008 time) t 1 Br 0,020 0,022 0,030 0,050 0,075 Recommended duration of overexcitation [ms] 0,010* 0,010* 0,010 0,015 0,020 Min. necessary With overexc. 0,020 0,025 0,030 0,080 0,120 delay time [ts] Without overexc. 0 0 0,015 0,050 0,080 Height of the overexcitation = approx. 10 x nominal voltage (current limited) Permissible friction work with an unique cycling Q E [J] 3,8 10 3 6,2 10 3 9 10 3 15 10 3 25 10 3 Total friction work Q tot. [J] 22,5 10 7 44 10 7 87 10 7 171 10 7 340 10 7 Table 3 Voltage ON Clutch OFF Brake ON Clutch Switching delay time Br Brake time t Switching delay time Cl Fig. 7 * In case of operation with overexcitation and high switching frequency (80-100 % of the diagram value), the recommended period of the overexcitation acc. to table 3 must not be exceeded. 36 Switching times: The switching times given in table 3 have been determined by comprehensive series of tests. They are valid for switching on the D.C. side with warm coil. Deviations depend on the corresponding overall situation, environmental temperatures and on the type of rectification with which the corresponding unit is operated. M 2 M L t a t v t 1 t 11 t 2 t 3 = Characteristic torque of the clutch or brake = Load torque of the drive = Acceleration time = Deceleration time = Connection time = Delay time for connection = Disconnection time = Slipping time

ROBA -takt switch gear Type 014.000.2 Application Start stop and positioning by switching and controlling of mayr clutch brake combinations and mayr ROBA -takt clutch brake units. Function The ROBA -takt switch gear operates according to the principle of pulse width modulation with a frequency of 18 khz. The corresponding coil will be energised by actuating the sensor for clutch and brake. An overtemperature monitor protects the unit from overheating. In case of a temperature of >80 C the coil voltage is switched-off. The LED overtemperature unit lights red. A delay time prevents simultaneous appearance of clutch and brake torques. An overexcitation during switching-on reduces the attraction time of the coil and allows an exact switching and positioning. Electric connection PE, L1, N input voltage +12V / Ku / Gnd1 sensor connection for clutch +12V / Br / Gnd2 sensor connection for brake Br1 / Br2 coil connection for brake Ku1 / Ku2 coil connection for clutch Dimension (mm) Technical data Input voltage Current consumption Idle consumption CoilNOM-voltage CoilNOM- CoilNOM-current Coil-overexcitation 230 VAC ±10 %, 50-60 Hz max. 4 Amp./100 % duty cycle < 7 Watt 24 VDC max. 96 Watt factory setting to mayr -ROBA -takt-size max. 325 VDC current limitation is adapted to the respective coil size Overexcitation time 2-50 ms ( 30 % up to +60 %), externally adjustable (only applicable with coding overexcitation ON ) Delay time 2-150 ms ( 25 % to +30 %), externally adjustable Protection IP 20 Ambient temperature 0 C up to +50 C Storage temperature -20 C up to +70 C Conductor cross section 0,14-2,5 mm2 / AWG 26-14 Weight 1,5 kg / 3,31 lb Mains fuse F1/F2, 4 A (M), IEC 5x20mm Load fuse F3, the current is adapted to the ROBA -takt sizes. Always use the same spare fuses Built in temperature switch Overvoltage category II (two) Overvoltage protection For the installation in overvoltage category III a suitable overvoltage protection unit is required between the input voltage and the ROBA -takt switch gear. Order example: To be included when ordering, please state: Size Type Order number X 0 1 4. 000. 2 ROBA -takt switch gear Size 3-7 37

ROBA -takt switch gear Type 014.000.2 Functional sequence Delay time Delay time Connection example Control elements / - function Connection example 1 sensor operation Connection example 2 sensor operation Brake = (Br) Clutch = (Ku) 38 Contact potential-free (Make contact) PLC (10 up to 30 VDC) External voltage (10 up to 30 VDC) NAMUR Proximity switch (10 up to 30 VDC) PNP normal closed Proximity switch (10 up to 30 VDC) Application Function Function (state controlled) (slope controlled) Close contact Clutch ON Close contact Clutch ON clutch or Open contact Brake ON close contact Brake ON brake +24 VDC Signal Clutch ON +24 VDC signal Clutch ON to clutch or 0 VDC Signal Brake ON +24 VDC signal Brake ON to brake +10-30 VDC signal Clutch ON +10-30 VDC signal Clutch ON to clutch or 0 VDC signal Brake ON +10-30 VDC signal Brake ON to brake Sensor undamped Clutch ON Sensor clutch Clutch ON undamped or Sensor damped Brake ON Sensor brake Brake ON undamped Sensor undamped Clutch ON Sensor clutch Clutch ON undamped or Sensor damped Brake ON Sensor brake Brake ON undamped

ROBA -takt circuit module Type 004.000._ Application Start and stop of mayr ROBA -takt circuit modules and mayr -clutch brake combinations. Alternating switching of 24 VDC coils, if a 24 VDC supply is available. Function 1 sensor -actuated- clutch is energised operation -not actuated- brake is energised The respective control of the clutch or brake is indicated via LED. The ROBA -takt circuit module has no over-excitation function. The brake has priority: The brake is energised independent from the sensor position when switching on the 24 VDC supply. The coil is energised with the 24 VDC supply. Delay time: To avoid simultaneous interaction of clutch and braking torques a delay time of 0 100 ms between clutch and braking torques can be set, which acts according to the respective pickup and drop-out times of the coils (see switching time table). The setting is made via the potentiometers Ku = clutch (P2) and Br = brake (P1). Factory default setting is 0 ms. delay time delay time Dimensions with mounting frame (mm) Technical data Input voltage 24 VDC SELV/PELF ripple 5% (protected with 4 amps. time-lag fuse-link.) Output voltage 24 VDC Output max. 79 W Delay time 0 100 ms (Factory default setting is 0 ms) Ambient temperature 0 C - +70 C Storage temperature -20 C - +85 C Conductor cross section 0,14-1,5 mm 2 / AWG 26-14 Protection IP 00 Design Printed board with attachment assembly part or in a mounting frame for 35 mm standard mounting rail. Max. cycle frequencies: 45 C 70 C up to 1 amp/size 3 + 4 600 600 cycles/min approx. 2 amp/size 5 + 6 240 180 cycles/min approx. 3 amp/size 7 120 75 cycles/min Attention: Higher cycle frequencies will lead to overload and breakdown of the ROBA -takt circuit module. Electric connection (terminals) 1 24 VDC input voltage 2 GND voltage supply 3+4 brake 5+6 clutch 7 12 Volt output voltage 8 and 9 control inputs Order example: To be included when ordering, please state: Size Type Order number _ 0 0 4. 000. _ 0 = only printed board without frame 1 = printed board with mounting frame 39

Worldwide representation Headquarters Chr. Mayr GmbH + Co. KG Eichenstraße 1 87665 Mauerstetten Tel.: 49-83 41/8 04-241 Fax: 49-83 41/804422 info@mayr.de http://www.mayr.de Great Britain Mayr Transmissions Ltd. Valley Road, Business Park Keighley, BD21 4LZ West Yorkshire Tel.: 0 15 35/66 39 00 Fax: 0 15 35/66 32 61 sales@mayr.co.uk Italy Mayr Italia S.r.l. Viale Veneto, 3 35020 Saonara (PD) Tel.: 0 49/8 79 10 20 Fax: 0 49/8 79 10 22 info@mayr-italia.it France Mayr France S.A. Z.A.L. du Minopole BP 16 62160 Bully-Les-Mines Tel.: 03.21.72.91.91 Fax: 03.21.29.71.77 contact@mayr.fr Switzerland Mayr Kupplungen AG Tobeläckerstrasse 11 8212 Neuhausen am Rheinfall Tel.: 0 52/6 74 08 70 Fax: 0 52/6 74 08 75 info@mayr.ch USA Mayr Corporation 4 North Street Waldwick NJ 07463 Tel.: 2 01/4 45-72 10 Fax: 2 01/4 45-80 19 info@mayrcorp.com Singapore Mayr Transmission (S) Pte. Ltd. Blk 133 Jurong East Street 13 Unit 03-291 Singapore 600133 Asean Tel.: 0065/65601230 Fax: 0065/65601000 info@mayr.com.sg Korea Mayr Korea 60-11, Woongnam-Dong ROK Changwon Rep. of Korea Tel.: 055/262-4024 Fax: 055/262-4025 info@mayrkorea.com Taiwan German Tech Auto Co. Ltd. No. 58, Wu Chuan Road Wu-Ku Industrial Park Taipei Hsien, Taiwan Tel.: 02/22990237 Fax: 02/22990239 steve@zfgta.com.tw China Mayr Shanghai Xin Jinqiao Road Nr. 201 Room 5227, Pudong Xinqu 201206 Shanghai, China Tel.: 021/64616990 Fax: 021/64617006 Mobile: 013816121658 sales@mayr.com.cn Australia Transmission Australia Pty. Ltd. 22 Corporate Ave, 3178 Rowville, Victoria Australien Tel.: 039/755 4444 Fax: 039/755 4411 info@transaus.com.au New Zealand Saeco A.D.I.Ltd. 36 Hastie Avenue Mangere East P. O. Box 22-256 Otahuhu-Auckland Tel.: 09/634 7540 Fax: 09/634 7552 grant@saeco.co.nz India National Engineering Company (NENCO) J-225, M.I.D.C. Bhosari Pune 411026 Tel.: 0202/7474529 Fax: 0202/7470229 nenco@vsnl.com Japan Shinwa Trading Co. Ltd. 1-3, 3-Chome Goko-Dori, Chuo-ku Kobe City Tel.: 078/2512311 Fax:078/2652676 ohta@shinwa-kobe.co.jp South Africa Torque Transfer Private Bag 9 Elandsfontein 1406 Tel.: 011/3458000 Fax: 011/9740524 torque@bearings.co.za Austria Benelux States Brazil Canada Czech Republic Denmark Finland Greece Hongkong Hungary Indonesia Israel Malaysia Norway Philippines Poland Romania Russia Slovakia Slovenia Spain Sweden Thailand Turkey Note: If a country is not shown, please refer to headquarters or our web site to be advised of the nearest responsible agent. your reliable partner 17/06/2005 IM