Design, Modelling & Analysis of Double Wishbone Suspension System

Similar documents
DESIGN AND ANALYSIS OF PUSH ROD ROCKER ARM SUSPENSION USING MONO SPRING

Designing and Hard Point Optimization of Suspension System of a Three-Wheel Hybrid Vehicle

Design and Analysis of suspension system components

STUDY OF ROLL CENTER SAURABH SINGH *, SAGAR SAHU ** ABSTRACT

Design, analysis and mounting implementation of lateral leaf spring in double wishbone suspension system

Design and optimization of Double wishbone suspension system for ATVs

Design, Analysis, Simulation and Validation of Suspension System for an Electric All-Terrain Vehicle (ATV)

KINEMATICS OF REAR SUSPENSION SYSTEM FOR A BAJA ALL-TERRAIN VEHICLE.

DOUBLE WISHBONE SUSPENSION SYSTEM

Kinematic Analysis of Roll Motion for a Strut/SLA Suspension System Yung Chang Chen, Po Yi Tsai, I An Lai

Comparative study between double wish-bone and macpherson suspension system

Design and Analysis of Front Lower Control Arm by Using Topology Optimization

Study on Dynamic Behaviour of Wishbone Suspension System

Design of Suspension and Steering system for an All-Terrain Vehicle and their Interdependence

IJSRD - International Journal for Scientific Research & Development Vol. 5, Issue 03, 2017 ISSN (online):

Design and Vibrational Analysis of Flexible Coupling (Pin-type)

Design, Analysis and Mockup of Semi-Trailing Rear Suspension for an All-Terrain Vehicle (ATV)

Design Methodology of Steering System for All-Terrain Vehicles

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 ISSN

Technical elements for minimising of vibration effects in special vehicles

Design and Analysis of Spring-Ball Clutch Torque Limiter

BIKE SPIRAL SPRING (STEEL) ANALYSIS

Design and Analysis of All Terrain Vehicle

Design and Optimization of Suspension System of All Terrain Vehicle

Finite Element Modeling and Analysis of Vehicle Space Frame with Experimental Validation

Suspension systems and components

DESIGN METHODOLOGY FOR STEERING SYSTEM OF AN ATV

Design and Analysis of Multi-Link Structure For Rear Independent Suspension of Heavy Vehicle

Optimization of Seat Displacement and Settling Time of Quarter Car Model Vehicle Dynamic System Subjected to Speed Bump

Design & Manufacturing of an Effective Steering System for a Formula Student Car

DESIGN AND ANALYSIS OF LEAF SPRING FOR SOLAR VEHICLE

[Pancholi* et al., 5(6): June, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

DESIGN AND ANALYSIS OF EXHAUST VALVE SPRINGS IN IC ENGINES

Experimental Investigation of Effects of Shock Absorber Mounting Angle on Damping Characterstics

Technical Report Lotus Elan Rear Suspension The Effect of Halfshaft Rubber Couplings. T. L. Duell. Prepared for The Elan Factory.

P. D. Belapurkar, S.D. Mohite, M.V. Gangawane, D. D. Doltode (Department of Mechanical, M.E.S. College of Engineering, S.P. Pune University, India)

Mathematical Modelling and Simulation Of Semi- Active Suspension System For An 8 8 Armoured Wheeled Vehicle With 11 DOF

VEHICLE ANTI-ROLL BAR ANALYZED USING FEA TOOL ANSYS

New Frontier in Energy, Engineering, Environment & Science (NFEEES-2018 ) Feb

Design, Analysis& Optimization of Truck chassis- Rail & Cross member

Analysis of Multistage Linkage Based Eclipse Gearbox for Wind Mill Applications

A double-wishbone type suspension is used in the front. A multi-link type suspension is used in the rear. Tread* mm (in.) 1560 (61.

Simulation and Analysis of Vehicle Suspension System for Different Road Profile

Vehicle dynamics Suspension effects on cornering

Static Structural and Thermal Analysis of Aluminum Alloy Piston For Design Optimization Using FEA Kashyap Vyas 1 Milan Pandya 2

Static Stress Analysis of Piston

Design and Optimization of Steering System

DESIGN AND ANALYSIS OF COMPOSITE LEAF SPRING

PIONEER RESEARCH & DEVELOPMENT GROUP

Design and Analysis of a steering Rack of an ATV for different materials under static loading conditions

Vinayak R.Tayade 1, Prof. A. V. Patil 2. Abstract

Vibration Analysis of an All-Terrain Vehicle

STUDY AND ANALYSIS OF TIRE CHANGING MACHINE COMPONENTS

SUMMARY OF STANDARD K&C TESTS AND REPORTED RESULTS

NEW DESIGN AND DEVELELOPMENT OF ESKIG MOTORCYCLE

Design and analysis of shock absorber using FEA tool

ASME Human Powered Vehicle

ISSN: [Patil et al., 5(10): October, 2016] Impact Factor: 4.116

MODELLING AND STRUCTURAL ANALYSIS OF A GO-KART VEHICLE CHASSIS FRAME

Design & Analysis of Steering System for a Formula Student Car

Keywords: Stability bar, torsional angle, stiffness etc.

Estimation of Dynamic Behavior and Performance Characteristics of a Vehicle Suspension System using ADAMS

Modal analysis of Truck Chassis Frame IJSER

Structural Analysis of Student Formula Race Car Chassis

Racing Tires in Formula SAE Suspension Development

Design, Static and Dynamic analysis of an All- Terrain Vehicle Chassis and Suspension System

Basic Wheel Alignment Techniques

DESIGN, ANALYSIS AND FABRICATION OF BRAKING SYSTEM WITH REAR INBOARD BRAKES IN BAJA ATV

Increase Factor of Safety of Go-Kart Chassis during Front Impact Analysis

UNIT IV DESIGN OF ENERGY STORING ELEMENTS. Prepared by R. Sendil kumar

Design and Analysis of Damper Systems for Circuit Breaker

STRUCTURAL ANALYSIS OF SPUR GEAR USING FEM

Design And Development Of Roll Cage For An All-Terrain Vehicle

KEYWORDS: ANSYS, Clamping effects, Leaf spring, Pro-E. International Journal of Computational Engineering Research Vol, 03 Issue, 10

Design and Analysis of Pressure Die Casting Die for Side Differential Cover of Mini truck

Fatigue life evaluation of an Automobile Front axle

ISSN: [Raghunandan* et al., 5(11): November, 2016] Impact Factor: 4.116

Design and Analysis of Go-kart Chassis

Comparative Theoretical Design of Leaf Spring and V-Shape Spring to Improved Suspension with Part Loading

Static And Modal Analysis of Tractor Power Take Off (PTO) Gearbox Housing

Thermal Analysis of Helical and Spiral Gear Train

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March ISSN DESIGN AND ANALYSIS OF A SHOCK ABSORBER

Harmonic Analysis of Reciprocating Compressor Crankcase Assembly

Structural Analysis of Differential Gearbox

DESIGN AND ANALYSIS OF SHOCK ABSORBER

DESIGN AND ANALYSIS OF TUBULAR CHASSIS OF GO-KART

The Application of Simulink for Vibration Simulation of Suspension Dual-mass System

DESIGN AND STATIC ANALYSIS OF COMPOSITE LEAF SPRING

Investigation of dynamic characteristics of suspension parameters on a vehicle experiencing steering drift during braking

Finite Element Analysis of Anti-Roll Bar to Optimize the Stiffness of the Anti-Roll Bar and the Body Roll

ISSN: Page 4

Fatigue Life Estimation of Chassis Frame FESM Bracket for Commercial Vehicle

Design and analysis of flat joint connection of double wishbone suspension A arm

Power Generation from Suspension due to Piezo Electric Transducer

ISO 8855 INTERNATIONAL STANDARD. Road vehicles Vehicle dynamics and road-holding ability Vocabulary

Modeling of 17-DOF Tractor Semi- Trailer Vehicle

Steering drift and wheel movement during braking: static and dynamic measurements

Design And Analysis Of Two Wheeler Front Wheel Under Critical Load Conditions

Effect of Tyre Overload and Inflation Pressure on Rolling Loss (resistance) and Fuel Consumption of Automobile Cars

Analysis of Turn Table Assembly of Semi- Automatic High Pressure Molding Machine

Transcription:

Design, Modelling & Analysis of Double Wishbone Suspension System 1 Nikita Gawai, 2 Deepak Yadav, 3 Shweta Chavan, 4 Apoorva Lele, 5 Shreyash Dalvi Thakur College of Engineering & Technology, Kandivali (E), Mumbai-400101. Email: 1 gawai.nikita12@gmail.com, 2 deepak.yadav930@gmail.com, 3 shwetachavan609@gmail.com, 4 leleapoorva13@gmail.com, 5 shreyash.dalvi@gmail.com Abstract : The main objective of the project is to analyze the entire Double wishbone suspension system for Green F1 car, as it allows the engineer to carefully control the motion of the wheel throughout suspension travel. A 3D CAD model of the Double wishbone is prepared by using SolidWorks (CAD Software) for analyzing the system capable of handling Green F1 car while maintaining the ride quality. The topic is focused on designing the above mentioned suspension system considering the dynamics of the vehicle along with minimizing the unsprung mass. Index Terms Roll center, Stiffness, Spring, Strut, Sprung,Wishbone. I. INTRODUCTION Suspension system is the term given to the system of springs, shock absorbers and linkages that connect a vehicle to its wheels. When a tire hits an obstruction, there is a reaction force and the suspension system tries to reduce this force. The size of this reaction force depends on the unsprung mass at each wheel assembly. In general, the larger the ratio of sprung weight to unsprung weight, the less the body and vehicle occupants are affected by bumps, dips, and other surface imperfections such as small bridges. A large sprung weight to unsprung weight ratio can also impact vehicle control. Double Wishbone Suspension System consists of two lateral control arms (upper arm and lower arm) usually of unequal length along with a coil over spring and shock absorber. Fig.1: Double wishbone Suspension system It is popular as front suspension mostly used in rear wheel drive vehicles. Design of the geometry of double wishbone suspension system along with design of spring plays a very important role in maintaining the stability of the vehicle. The upper arm is usually shorter to induce negative camber as the suspension jounces (rises), and often this arrangement is titled an "SLA or Short Long Arms suspension. When the vehicle is in a turn, body roll results in positive camber gain on the lightly loaded inside wheel, while the heavily loaded outer wheel gains negative camber. The Four bar link mechanism formed by the unequal arm lengths causes a change in the camber of the vehicle as it rolls, which helps to keep the contact patch square on the ground, increasing the ultimate cornering capacity of the vehicle. It also reduces the wear of the outer edge of the tire. II. PROCEDURE FOR DESIGN The design procedure for the chosen suspension system is divided into two stages: 1. Primary design: Basic design and development of suspension system components. Modified design parameters based on approximation of dynamic condition. Static testing and analysis. 2. Secondary design:- Dynamic testing and analysis on ANSYS. Modification of design parameters based on dynamic testing results. 58

The following components are to be design:- 1. Suspension Spring 2. Wishbones 1. Suspension spring: III. DESIGN Type of spring : Helical spring [2] Advantages of helical spring: Easy to manufacture & High reliability Deflection of spring is linearly proportional to the force acting on the spring Less expensive than others type of springs Sprung mass = 350 kg (approx.) Factor for static to dynamic conditions: 3 According to the mass distribution of 60:40 (Rear: Front) Mass per wheel (Front) = 70 kg Mass per wheel (Rear) = 105 kg 1) Front spring Angle of inclination of the strut = 60 (from horizontal) Point of attachment of strut = 10 (254mm) from chassis end. (from suspension geometry) Reaction force acting from the ground on the wheel = (Mass per wheel * 9.81) N Horizontal distance of reaction force from hinge point = 17.00 (431.8mm).from suspension geometry Horizontal distance of strut attachment point from hinge point = 9.93 (252.34mm) By taking moment about hinge points: 686.7 * 17.00 = Spring Force * 9.93 Spring Force = 1175.619 N Considering the dynamic factor, Dynamic force acting on the spring = 3526.858 N According to the ride conditions and road quality for Green F1, it is concluded that the optimum spring travel should be approx. 4 (101.6 mm) Hence, Required Spring Stiffness =Dynamic Spring Force / Spring Deflection = 3526.858/ 101.6 = 34.71 N /mm 35 N/mm 2) Rear spring Angle of inclination of the strut = 80 (from horizontal) Point of attachment of strut = 6.5 (165.1 mm) from chassis end (from suspension geometry) Reaction force acting from the ground on the wheel = (Mass per wheel * 9.81) N = (105 kg * 9.81) N = 1030.05 N = (70kg * 9.81) N = 686.7 N wishbone A 9.9 Vertical component of spring force wheel centerline Vertical component of spring force wishbone wheel centerline A 8.5 14.0 Fig.3. Forces on rear wishbone 17.0 Fig.2. Forces on front wishbone Considering the wishbone hinges(a) as the point about which moment is taken; Considering the wishbone hinges (A) as the point about which moment is taken; Horizontal distance of reaction force from hinge point = 59

14 (355.6mm)..(from suspension geometry) Horizontal distance of strut attachment point from hinge point = 8.5 (215.9mm) By taking moment about hinge points: 1030.05 * 14 = Spring Force * 8.5 Spring Force = 1696.55 N Considering the dynamic factor, Dynamic force acting on the spring = 5089.65 N According to the ride conditions and road quality for Green F1, it is concluded that the optimum spring travel should be approx. 4 (101.6 mm) Hence, Required Spring Stiffness =Dynamic Spring Force / Spring Deflection = 5089.65/ 101.6 = 50.09 N /mm 50N/mm From above calculation we get: Stiffness = 50N/mm Maximum spring force = 1696.55 N Material: Oil hardened steel wire of Grade-4 [3] Ultimate tensile strength = 1100N/mm 2 Modulus of rigidity= 81370 N/mm 2 According to Indian Standard 4454-1981, Shear stress=0.5*ultimate tensile strength Shear stress( )=550N/mm 2 Taking spring index (C) =8 By wahl s factor, K So, 4C 1 0.615 4C 4 C =1.184 k 8PC d 2 Wire diameter (d) =8.62 9mm Mean coil diameter (D) = C*d = 72mm No. of active coils (N): 3 8PD N 4 Gd N=10.70 12 coils Assuming that the spring has square and ground ends N t = N+2 =14 coils Solid length of spring = N t *d = 126mm Total axial gap = (N t 1)*1 =13mm Free length = (Solid length + Gap + ) =240.6mm Pitch of coil = 18.50mm Table 1. Spring dimensions Sr. No. Parameter Suspension ( Front/ Rear) 1. Material Grade 4 oil hardened spring steel 2. Wire diameter 9mm 3. Mean coil 72mm diameter 4. Total number of turns 14 5. Free length of spring 240.6mm 6. Pitch of coil 18.50mm 7. Solid Length 126mm 8. Stiffness 50 N/mm 60

Determination of Roll Centre: Roll Centre in the vehicle is the point about which the vehicle rolls while cornering. There are two types of roll centres- the geometric roll centre and force based roll centre. The roll centre is the notional point at which the cornering forces in the suspension are reacted to the vehicle body. The location of the geometric roll centre is solely dictated by the suspension geometry, and can be found using principles of the instant centre of rotation. [4] Determination of roll centre plays a very important role in deciding the wishbone lengths, tie rod length and the geometry of wishbones. Roll centre and ICR is determined because it is expected that all the three elements- upper wishbone, lower wishbone and tie rod should follow the same arc of rotation during suspension travel. This also means that all the three elements should be displaced about the same centre point called the ICR. Initially, wishbone lengths are determined based on track width and chassis mounting. These two factors- track width and chassis mounting points are limiting factors for wishbone lengths. Later, the position of the tire and the end points of upper arm and lower arm are located. Analysis of Spring: Fig.4: 2D of designed Spring Spring is analyzed in Ansys analysis software so as to determine the actual maximum deflection of spring corresponding to the maximum spring force. Also, the maximum stress value corresponding to the maximum spring force is determined. Table 6: Spring Analysis Results Parameter Value Maximum Force 1700 N Maximum Deflection 110mm Maximum Stress 967.32 N/mm 2 Fig.6: Roll center in static condition The vehicle centre line is drawn. The end points of wishbones are joined together to visualize the actual position of the wishbones in steady condition. When the lines of upper and lower wishbones are extended, they intersect at a certain point known as Instantaneous Centre (ICR). A line is extended from ICR to a point at which tire is in contact with the ground. The point at which this line intersects the vehicle centre line is called the Roll Centre. [4] Now, extend a line from ICR point to the steering arm. This gives exact tie rod length in order to avoid pulling and pushing of the wheels when in suspension. Figure 5: Analysis of Spring in Ansys Fig.7: Determination of Roll Centre 61

2. Design of wishbone: The upper and lower control arms are called as wishbone. Both are usually of unequal length from which the acronym SLA (short-long arm) gets its name. These are often called A-arms in the United States and wishbones in Britain. This layout sometimes appears with the upper. A-arm replaced by a simple link, or the lower arm replaced by a lateral link, the suspensions are functionally similar. The SLA is well adapted to front-engine, rear-wheel-drive cars because of the package space it provides for the engine oriented in the longitudinal direction. Design of the geometry for a SLA requires careful refinement to give good performance. The camber geometry of an unequal-arm system can improve camber at the outside wheel by counteracting camber due to body roll, but usually carries with it less-favourable camber at the inside wheel (equal-length parallel arms eliminate the unfavourable condition on the inside wheel but at the loss of camber compensation on the outside wheel). At the same time, the geometry must be selected to minimize tread change to avoid excessive tire wear (Gillespie 1992)[1]. Proposed design model of wishbones: Fig.9: 3D CAD model of upper arm IV. CONCLUSION & FUTURE SCOPE We have designed the suspension spring and analyzed it on Ansys Software where we found the safe result to desired condition of ride. We have calculated the roll center of the Green F1 & it have precise roll center. Analysis of lower wishbone Ansys software. Simulation of the Green F1 on MATLAB or Lotus. REFERENCES [1] Gillespie, T.D., 1992. Suspensions, in Fundamentals of Vehicle Dynamics, (Society of Automotive Engineers, USA), pp.97-117 and pp.237-247. [2] V.B. Bhandari, Machine Design,, McGraw Hill, 2012. Fig.8: 3D CAD model of lower wishbone [3] Design Data Book, PSG College, Coimbatore, 2011. [4] Eshaan Ayyar, Isaac de Souza, International Journal on Theoretical and Applied Research in Mechanical Engineering (IJTARME), ISSN : 2319 3182, Volume-2, Issue-4, 2013. [5] John C. Dixon Suspension Geometry and Computation, John C. Dixon, Wiley and Sons Ltd. 62