SYLLABUS 1. SYNCHRONOUS GENERATOR 9 2. SYNCHRONOUS MOTOR 8

Similar documents
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

2014 ELECTRICAL TECHNOLOGY

Regulation: R16 Course & Branch: B.Tech EEE

DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1

ST. ANNE S COLLEGE OF ENGINEERING AND TECHNOLOGY 9001:2015 CERTIFIED INSTITUTION) ANGUCHETTYPALAYAM, PANRUTI

Electrical Machines -II

R07 SET - 1

DC CIRCUITS ELECTROMAGNETISM

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

2-marks question bank UNIT I - TRANSFORMERS UNIT II: AC MACHINES

DHANALAKSHMI COLLEGE OF ENGINEERING MANIMANGALAM. TAMBARAM, CHENNAI B.E. ELECTRICAL AND ELECTRONICS ENGINEERING

GROUP OF INSTITUTIONS :: PUTTUR UNIT I SINGLE PHASE TRANSFORMERS

UNIT-I ALTERNATORS PART-A

SYNCHRONOUS GENERATOR (ALTERNATOR)

Contents. Review of Electric Circuitd. Preface ;

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

ESO 210 Introduction to Electrical Engineering

UNIT I SYNCHRONOUS GENERATOR PART-A

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad

VALLIAMMAI ENGINEERING COLLEGE

Unit-II Synchronous Motor

Short questions and answers. EE1251 Electrical Machines II

Scheme - I. Sample Question Paper

R13 SET - 1. b) Describe different braking methods employed for electrical motors. [8M]

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Introduction to Electrical Machines

AE105 PRINCIPLES OF ELECTRICAL ENGINEERING JUNE 2014

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY MAMALLAPURAM, CHENNAI

694 Electric Machines

QUESTION BANK SPECIAL ELECTRICAL MACHINES

Synchronous Generators I. EE 340 Spring 2011

Electrical Machines II. Week 5-6: Induction Motor Construction, theory of operation, rotating magnetic field and equivalent circuit


Synchronous Generators I. Spring 2013

Question Bank ( ODD)

EE6401 ELECTRICAL MACHINES I UNIT I: MAGNETIC CIRCUITS AND MAGNETIC MATERIALS PART: A 1. Define EMF and MMF. 2. Name the main magnetic quantities

Induction machine characteristics and operation. Induction Machines

AC MOTOR TYPES. DESCRIBE how torque is produced in a single-phase AC motor. EXPLAIN why an AC synchronous motor does not have starting torque.


INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY SIRUVACHUR

ST.ANNE S COLLEGE OF ENGINEERING AND TECHNOLOGY ANGUCHETTYPALAYAM, PANRUTI


COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME : EE 1001 SPECIAL ELECTRICAL MACHINES

(d) None of the above.

Dev Bhoomi Institute Of Technology LABORATORY Department of Electrical And Electronics Engg. Electro-mechanical Energy Conversion II

Stator rheostat, Autotransformer Star to Delta starter and rotor resistance starter.

Unit III-Three Phase Induction Motor:

Lecture 20: Stator Control - Stator Voltage and Frequency Control

JEPPIAAR ENGINEERING COLLEGE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

10. Starting Method for Induction Motors

Circuit Diagram For Speed Control Of Slip Ring Induction Motor

B.E-EEE(Marine) Batch 7. Subject Code EE1704 Subject Name Special Electrical Machines

Part- A Objective Questions (10X1=10 Marks)

Instructor. Payam Zarbakhsh. Department of electrical electronics engineering

Electrical Theory. Generator Theory. PJM State & Member Training Dept. PJM /22/2018

VIII. Three-phase Induction Machines (Asynchronous Machines) Induction Machines

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

Sub:EE6604/DESIGN OF ELECTRICAL MACHINES Unit V SYNCHRONOUS MACHINES. 2. What are the two type of poles used in salient pole machines?

ECE 325 Electric Energy System Components 6 Three Phase Induction Motors. Instructor: Kai Sun Fall 2016

II/IV B.Tech(Regular) DEGREE EXAMINATION. Electronics & Instrumentation Engineering

FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai

EXPERIMENT CALIBRATION OF 1PHASE ENERGY METER

UNIT III. AC Machines

UNIT I D.C. MACHINES PART A. 3. What are factors on which hysteresis loss? It depends on magnetic flux density, frequency & volume of the material.

ELECTRICAL MAINTENANCE

SIMULINK Based Model for Determination of Different Design Parameters of a Three Phase Delta Connected Squirrel Cage Induction Motor

SHRI ANGALAMMAN COLLEGE OF ENGINEERING AND TECHNOLOGY (An ISO 9001:2008 Certified Institution) SIRUGANOOR, TIRUCHIRAPPALLI

Fachpraktikum Elektrische Maschinen. Theory of Induction Machines

ELECTRICAL MACHINES. Theory and Practice. M.N. Bandyopadhyay

Single Phase Induction Motor. Dr. Sanjay Jain Department Of EE/EX

SYLLABUS. osmania university UNIT - I UNIT - II UNIT - III UNIT - IV CHAPTER - 1 : PRINCIPLES OF ELECTRO-MECHANICAL ENERGY CONVERSION CHAPTER - 2 :

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING ME 6351 ELECTRICAL DRIVES AND CONTROL UNIVERSITY QUESTIONS AND ANSWERS

14 Single- Phase A.C. Motors I

Unit III A.C. Machines Explain the construction of induction motor. General principle Construction Stator:

Fall 1997 EE361: MIDTERM EXAM 2. This exam is open book and closed notes. Be sure to show all work clearly.

EE6351 ELECTRIC DRIVES AND CONTROL UNIT-1 INTRODUTION

Design of Brushless Permanent-Magnet Machines. J.R. Hendershot Jr. T.J.E. Miller

9. Examples of hydro energy conversion

Unit 32 Three-Phase Alternators

1. Poly Phase Induction Motor

Lab Electrical Power Engineering I

SRM Institute of Science and Technology (Deemed to be University)

2. Draw the speed-torque characteristics of dc shunt motor and series motor. (May2013) (May 2014)

SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY QUESTION BANK UNIT III EC6352-ELECTRICAL ENGINEERING AND INSTRUMENTATION UNIT III PART A

Electrical Machines-I (EE-241) For S.E (EE)

CHAPTER THREE DC MOTOR OVERVIEW AND MATHEMATICAL MODEL

Scope for Electrical Machine Design. Objectives. Design and Engineering. Course Description. 23-Dec-16 DESIGN OF ELECTRICAL MACHINES AN OVERVIEW

ELECTRICAL ENGINEERING

Chapter 3.2: Electric Motors

The Wound-Rotor Induction Motor Part I

DESIGN OF DC MACHINE

ELECTRICAL MACHINES-II LABORATORY MANUAL

Institute of Technology, Nirma University B. Tech. Sem. V: Electrical Engineering 2EE305: ELECTRICAL MACHINES II. Handout: AC Commutator Motors

SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL ELECTRICAL MACHINES

ELECTRICAL MACHINES I

Three-Phase Induction 208V Motor with MATLAB

CHAPTER 6 DESIGN AND DEVELOPMENT OF DOUBLE WINDING INDUCTION GENERATOR

Single Phase Induction Motors

Pretest Module 21 Units 1-4 AC Generators & Three-Phase Motors

Sri Satya Sai University Of Technology And Medical Sciences, Sehore(M.P)

Transcription:

SYLLABUS 1. SYNCHRONOUS GENERATOR 9 Constructional details Types of rotors emf equation Synchronous reactance Armature reaction Voltage regulation EMF, MMF, ZPF and A.S.A methods Synchronizing and parallel operation Synchronizing torque - Change of excitation and mechanical input Two reaction theory Determination of direct and quadrature axis synchronous reactance using slip test Operating characteristics - Capability curves. 2. SYNCHRONOUS MOTOR 8 Principle of operation Torque equation Operation on infinite bus bars - V-curves Power input and power developed equations Starting methods Current loci for constant power input, constant excitation and constant power developed. 3. THREE PHASE INDUCTION MOTOR 12 Constructional details Types of rotors Principle of operation Slip Equivalent circuit Slip-torque characteristics - Condition for maximum torque Losses and efficiency Load test - No load and blocked rotor tests - Circle diagram Separation of no load losses Double cage rotors Induction generator Synchronous induction motor. 4. STARTING AND SPEED CONTROL OF THREE PHASE INDUCTION MOTOR 7 Need for starting Types of starters Rotor resistance, Autotransformer and Star-delta starters Speed control Change of voltage, torque, number of poles and slip Cascaded connection Slip power recovery scheme. 5. SINGLE PHASE INDUCTION MOTORS AND SPECIAL MACHINES 9

Constructional details of single phase induction motor Double revolving field theory and operation Equivalent circuit No load and blocked rotor test Performance analysis Starting methods of single-phase induction motors - Shaded pole induction motor - Linear reluctance motor - Repulsion motor - Hysteresis motor - AC series motor. Text Book(s): 1. D.P.Kothari and I.J. Nagrath, Electrical machines, Tata McGraw Hill Publishing Company Ltd, 2003. 2. P.S.Bhimbhra Electrical machinery Khanna Publishers, 2003. Reference Book(s): 1. A.E. Fitzgerald, Charles Kingsley, Stephen. D.Umans, Electrical machinery, Tata McGraw Hill Publishing Company Ltd, 2003. 2. J.B.Gupta, Theory and Performance of Electrical Machines, S.K.Kataria & sons, 2002. 3. K. Murugesh Kumar, Electrical Machines, Vikas publishing house Pvt Ltd, 2002. 4. B.L.Theraja & A.K.Theraja A Text Book of Electrical Technology vol II AC & DC Machines, S.Chand & Company Ltd.

EE2302 ELECTRICAL MACHINES UNIT I 1. SYNCHRONOUS GENERATOR 9 Constructional details Types of rotors emf equation Synchronous reactance Armature reaction Voltage regulation EMF, MMF, ZPF and A.S.A methods Synchronizing and parallel operation Synchronizing torque - Change of excitation and mechanical input Two reaction theory Determination of direct and quadrature axis synchronous reactance using slip test Operating characteristics - Capability curves. SYNCHRONOUS GENERATOR Constructional Details Two types of Alternators (a) Stationary armature - rotating field (b) Stationary field rotating armature Constructional Details Advantages of stationary armature - rotating field: i) The HV ac winding and its insulation not subjected to centrifugal forces. ii) Easier to collect large currents from a stationary member. iii) The LV dc excitation easily supplied through slip winding. rings and brushes to the rotor field Stationary Armature - Rotating Field Stator: Laminated core with slots to hold the armature conductors. Rotor: i) Salient pole type Projecting poles dove tailed on the shaft - Used in low speed alternators driven by water turbines or IC engines Stationary Armature - Rotating Field ii) Non Salient pole type

Smooth cylindrical rotor - slots cut to house the field winding - used in high speed alternators driven by steam turbines - smaller diameter and larger axial length compared to salient pole type machines, of the same rating. EMF Equation Where, E ph 4.44K K c d f T ph K c = cos (α/2), K d = {sin (mβ/2)} / {m sin (β/2)} f = PNs/120, Hz; Φ = flux per pole, Wb T ph = Turns in series per phase = (No. of slots * No. of cond. per slot) / (2 x 3) EMF Equation Short pitching and distribution of the winding: time harmonics of induced voltage reduced The waveform made more sinusoidal. Short pitching also reduces the length of the coil end connections Armature Reaction Effect of the armature flux on the main flux. Three phase current in a three - phase winding - a rotating magnetic field produced (MMF = 1.5 I m T ph ). UPF - cross magnetizing. Lag PF - demagnetizing. Lead PF - magnetizing. Armature Leakage Reactance(X L )

Three major components -Slot leakage reactance, end winding leakage reactance and tooth tip leakage reactance. Synchronous reactance/phase X s = X L + X ar, where X ar is the fictitious armature reaction reactance. Synchronous impedance/phase Z s = (R a + jx s ). Voltage Regulation of Alternators E ph V ph I a Z s E ph V cos I R 2 V sin I X 2 ph a a ph a s E ph V V ph ph 100 Methods Of Predetermination Of Regulation Synchronous impedance method (EMF method) Magneto Motive Force method (MMF method) Zero Power Factor method (ZPF method) American Standards Association method (ASA method) Synchronous Impedance Method (EMF Method)

OC and SC tests conducted. Z s is calculated. R a measured and X s obtained. For a given armature current and power factor, E ph determined - regulation is calculated. Magneto Motive Force Method (MMF Method) OC & SC tests conducted. field currents If1 (field current required to produce a voltage of(v ph + I aph R a cos Φ) on OC) and If2 (field current required to produce the given armature current on SC) are added at an angle of (90± Φ). For this total field current, E ph found from OCC and regulation calculated. Zero Power Factor Method (ZPF Method) OC test and ZPF test is conducted characteristics are drawn. This is Potier triangle method From this triangle the potier reactance (leakage reactance of the alternator), X Lph is obtained. The terminal voltage and the leakage reactance drop added vectorially - load induced EMF found Zero Power Factor Method (ZPF Method) For this load induced emf, the corresponding field current If 1 obtained from OCC. The field current If 2 required to balance armature reaction obtained from potier triangle. If 1 and If 2 are added at an angle of (90± Φ). For this total field current, Eph found from OCC regulation calculated American Standards Association Method (ASA Method The field currents If1 (field current required to produce the rated voltage of V ph from theair gap line). If2 (field current required to produce the given armature current on short circuit) added at an angle of (90± Φ). Load induced EMF calculated as was done in the ZPF method - Corresponding to this EMF, the additional field current (If 3 ) due to saturation obtained from OCC and air gap

line - If 3 added to the resultant of If 1 and If 2 -For this total field current, Eph found from OCC and regulation calculated Synchronizing And Parallel Operation Of Alternators Necessary conditions for synchronization : The terminal voltage, frequency and phase sequence of the incoming machine should be same as those of the bus bars. Synchronization can be carried out using either i) Dark lamp method ii) Bright lamp method or iii) Synchroscope. Synchronizing Power and Torque Power developed by an alternator P i E Z s E cos V cos( ) Where θ is the internal angle of the machine and δ is the power angle. Synchronizing power On no load. Synchronizing torque = P SY / ( 2πN s /60). Two Axis Theory X d, X q : Direct & Quadrature axis synchronous reactances in. I d, I q : The current components of I a in the d & q axis Part A 1. Calculate the distribution factor for a 36- slot, 4 -pole, single layer three phase winding. 2. Define voltage regulation of an alternator. 3. What are the two components of field current required for the predetermination of regulation by MMF method?

4. What are the conditions to be fulfilled for connecting two alternators in parallel? 5. Define short circuit ratio of an alternator. PART B 1.The open circuit and short circuit test readings obtained on a 3 phase, star connected, 1000 kva, 2000 V, 50 Hz alternator are : Field Current, A 10 20 25 30 40 50 OC terminal voltage, V 800 1500 1760 2000 2350 2600 SC armature current, A - 200 250 300 - - The effective armature resistance is 0.2 Ω per phase. Draw the characteristic curves and estimate the full-load regulation at a power factor of 0.8 lagging by synchronous impedance method. 2.Derive the EMF equation of an alternator. 3 What do you understand by direct and quadrature axis reactance in a salient pole alternator? Draw the phasor diagram of this alternator for a lagging power factor load 4. Derive the expression for power developed in a 3 phase synchronous motor in terms of E, V, Zs, θ and δ.

5. Sketch an excitation circle and a power circle of a synchronous motor and state what each one represents

UNIT II SYNCHRONOUS MOTOR Principle of Operation 3Ø supply given to the 3Ø stator winding - Rotating magnetic field produced rotating at synchronous speed(ns) Field winding on the rotor excited with dc Field poles produced - if the rotor is brought to near synchronous speed, rotor pulled into synchronism - also rotates at Ns due to magnetic locking between the stator and rotor poles. Torque equation Torque developed = Nm Where, P m (mechanical developed) = P1 3I 2 r a,w P1 (Power input to the stator) = 3VI cosφ,w N s (Synchronous speed) = (120f)/P, rpm I = Stator current in A, P = No. of Poles, f = frequency in Hz V - Curves The V curves shows the variation of armature current with field current for different values of constant power input. Curves joining points of equal power factor are called compounding curves. Variation of power factor with field current gives the inverted V curves. Effect of changing the Excitation (Load constant) Changing the excitation varies the power factor of the motor Normal excitation: E = V (PF Lag) Under excitation : E < V (PF lag) Over excitation : E > V (PF lead) Minimum armature current occurs at UPF

Effect of changing the Load (Excitation Constant) Change in load changes the torque angle armature current changes - induced emf does not change. Pin = 3 VL IL cosφ Power developed Mechanical power developed, Pm = If Ra is neglected, θ, then Pm = The maximum power developed = Circle Diagrams Excitation Circles : The extremity of the armature current phasor varies over a circle when load varies ( for a constant excitation) Radius of the excitation circle = V = applied phase voltage, volts Zs = synchronous impedance per phase, Ω Circle Diagrams Power Circles : The extremity of the armature current phasor varies over a circle when excitation varies (load constant). Radius of the power circle = Amp Starting of synchronous Motors Using Pony motors Using damper winding As a slip ring induction motor

Using small D.C. machine Circle Diagrams Power Circles The extremity of the armature current phasor varies over a circle when excitation varies (load constant). Radius of the power circle = Amp Starting of synchronous Motors Using Pony motors Using damper winding As a slip ring induction motor Using small D.C. machine PART A Why is the field system of an alternator made as a rotor? Sketch salient pole and non salient pole rotors. What is synchronous reactance? Define Pitch factor. Calculate the distribution factor for an 18 slots, 4-pole three-phase winding.

UNIT III STARTING AND SPEED CONTROL OF THREE PHASE INDUCTION MOTOR 7 Need for starting Types of starters Rotor resistance, Autotransformer and Star-delta starters Speed control Change of voltage, torque, number of poles and slip Cascaded connection Slip power recovery scheme. Three phase Induction Motor Construction The stator is similar to that of Synchronous machine and is wound for three phases. Rotor is of two types (i) wound rotor (ii) squirrel cage rotor The rotor core is laminated with slots punched for accommodating the rotor winding/ rotor bars. Rotors Slip ring: The winding is polyphase with coils placed in the slots of rotor core. The number of slots is smaller and fewer turns per phase of heavier conductor are used. Squirrel-cage: These rotors has solid bars of conducting material placed in rotor slots and shorted through end-rings on each side. Principle of operation The stator is fed from a 3-phase supply. The resultant air gap flux/pole is established in the airgap. The mmf vector Fr with associated flux density vector Br rotates at synchronous speed. The relative speed between Br and rotor causes induction of current in shorted rotor. Due to interaction of Br and rotor current torque is produced and the rotor tend to move in the direction of Br. Thus the motor is self starting. Slip

The flux density vector Br moves at speed (ns-n) with respect to rotor conductors, this is known as slip speed. Equivalent circuit An induction motor can be assumed as a transformer having primary and secondary windings separated by an air gap. The mechanical load may be replaced by a variable resistance RL = r2(1- s)/s where r2 is the rotor resistance and s the slip. Power input to rotor/phase = (I22 r2)/s Rotor copper loss = I22 r2 Rotor current I2 = s2/( (r22/s)2 + X22 PART A 6. Draw the phasor diagram of synchronous motor working with lagging power factor. 7. Sketch the V and inverted V- curve of a synchronous motor, clearly indicating the X and Y axes for each curve. 8. State the differences in construction between squirrel cage and slip ring rotors of an induction motor. 9. A 3 phase, 4 pole, 50 Hz induction motor runs at a speed of 1425 rpm. Calculate the slip and frequency of the rotor EMF. 10. Sketch the circle diagram of a 3 phase induction motor. PART B 1. Using relevant phasor diagrams, describe the effect of changing the excitation, on the armature current and power factor of a synchronous motor and thereby obtain V and inverted V curves. 2. Deduce the Equivalent circuit of 3 phase induction motors

3. The power input to a 3 phase, 500 V, 50 Hz, 6 Pole, induction motor is 40 kw. The motor runs at a speed of 975 rpm. The stator losses amount to 1 kw and the friction and windage losses amount to 2 kw. Calculate the i) slip ii) rotor copper loss iii) hp output and iv) efficiency. 4.Draw the Circle diagram for a 5.6 kw, 400 V, 3 phase, star connected 4 pole 50 Hz slip ring induction motor which gave the following test data : No-load: 400 V, 6 A, 360 W : Blocked rotor : 100 V, 12 A, 720 W The ratio of stator to rotor turns is 2.6. The stator resistance per phase = 0.67 Ω. The rotor resistance per phase = 0.185 Ω. Calculate the full load current and maximum output. 5. With neat diagrams, explain the working of any two types of starters used for starting 3 phase squirrel cage induction motors.

UNIT IV STARTING AND SPEED CONTROL OF THREE PHASE INDUCTION MOTOR 7 Need for starting Types of starters Rotor resistance, Autotransformer and Star-delta starters Speed control Change of voltage, torque, number of poles and slip Cascaded connection Slip power recovery scheme. Need for Starting Types of Starters At starting when the rotor is at standstill, the squirrel cage rotor is just like a short circuited secondary. Therefore the current in the rotor circuit will be high and consequently the stator also will draw a high current from the supply lines if full line voltage were applied at start. Auto Transformer Starter A three phase auto transformer can be used to reduce the voltage applied to the stator. The advantage of this method is that the voltage is reduced by transformation and not by dropping the excess in resistor and hence the input current and power from the supply are also reduced compared to stator resistor starting. Auto Transformer Starter The ratio of starting torque (Tst) to full load torque (Tf): Ist = starting current and Ist = full load current X = Transformer tapping as p.u. of rated voltage Sf = Full load slip Star-Delta Starter This method applicable for motors designed to run normally with delta connected stator windings - At starting, the stator windings connected in star - After the motor has reached nearly the steady state speed, the windings are connected in delta over load and single phasing protection are provided.

Star-Delta Starter At starting the stator phase voltage reduced by 1/ 3 times the voltage. Phase current reduced by 1/ 3 times the current with the direct online starting. Line current reduce by 3 times. Rotor Resistance Starter Applicable to slip ring induction motors - Rated voltage applied to the stator - balanced three phase resistors connected in series with the rotor through slip rings Resistance kept at maximum at starting starting current reduced starting torque increased after starting resistance can be cut out. Speed Control of Induction Motors Synchronous speed of the rotating magnetic field produced by the stator, Ns = 120 f / P By changing the frequency. The available AC voltage (50 Hz) is rectified and then inverted back to AC of variable frequency/ Variable voltage using inverters. Inverter can be Voltage source or current source inverter. Speed Control of Induction Motors By changing the number of poles. The stator winding is designed for operation for two different pole numbers: 4/6,4/8,6/8 etc. This can be applied only to squirrel cage induction motors. Stator voltage control. The stator voltage is varied slip and operating speed varies. Speed Control of Induction Motors Rotor resistance control.

This method is applied to slip ring induction motor rotor is connected to variable resistance through slip rings resistance varied slip and hence the operating speed varies this method results in power loss in the resistor Speed Control of Induction Motors Using cascade connection Three phase voltage applied to the stator of a slip ring induction motor(p1 poles ) slip ring voltage applied to the stator of squirrel cage induction motor (P2 poles) two rotors are coupled. Ns = 120 f / (P1±P2) Slip Power Recovery Scheme This scheme applied to slip ring induction motor:- Rated voltage applied to the stator - the rotor voltage is rectified using a diode bridge rectifier the resulting DC voltage is inverted using line commutated inverter and the AC voltage is fed back to the supply through appropriate transformer slip power is thus recovered from the motor and the speed reduced PARTA 11. Calculate the pitch factor for a 36 slot, 4 pole winding having a coil pitch of 6 slots. 12. A 5 MVA, 10 kv, 1500 rpm, 3 phase, 50 Hz, 4 pole, star connected alternator is operating on infinite bus bars. Determine the synchronizing power per mechanical degree of displacement under no-load condition. Xs = 20 %. 13. When is a synchronous motor said to be under excited? What will be the nature of power factor under that condition? 14. What is hunting in a synchronous motor? 15. Under what condition, the slip in an induction machine is i) negative ii) greater than one? PARTB

1. Describe the following methods of speed control of slip ring induction motors: i) Using external rotor resistance ii) Slip power recovery scheme 2. Based on double field revolving theory and using the torque speed characteristics, explain the operation of single- phase induction motors. ii) Draw the equivalent circuit of single-phase induction motor. 3. Describe the constructional features and the operation of the following: i) Stepper motor ii) Shaded pole motor iii) Hysteresis motor 4. A 3 phase star connected synchronous motor is rated for 6600 V. For a particular load, the motor takes 50 A line current from the supply. The effective armature resistance is 1.0 Ω per phase and synchronous reactance is 20 Ω per phase. Calculate (a) the power supplied to the motor and (b) induced EMF for a power factor of 0.8 lag. 5. Explain why a synchronous motor is not self starting. Describe the method of starting the synchronous motor using damper winding. UNIT IV STARTING AND SPEED CONTROL OF THREE PHASE INDUCTION MOTOR 7

Need for starting Types of starters Rotor resistance, Autotransformer and Star-delta starters Speed control Change of voltage, torque, number of poles and slip Cascaded connection Slip power recovery scheme. Need for Starting Types of Starters At starting when the rotor is at standstill, the squirrel cage rotor is just like a short circuited secondary. Therefore the current in the rotor circuit will be high and consequently the stator also will draw a high current from the supply lines if full line voltage were applied at start. Auto Transformer Starter A three phase auto transformer can be used to reduce the voltage applied to the stator. The advantage of this method is that the voltage is reduced by transformation and not by dropping the excess in resistor and hence the input current and power from the supply are also reduced compared to stator resistor starting. Auto Transformer Starter The ratio of starting torque (Tst) to full load torque (Tf): Ist = starting current and Ist = full load current X = Transformer tapping as p.u. of rated voltage Sf = Full load slip Star-Delta Starter This method applicable for motors designed to run normally with delta connected stator windings - At starting, the stator windings connected in star - After the motor has reached nearly the steady state speed, the windings are connected in delta over load and single phasing protection are provided. Star-Delta Starter At starting the stator phase voltage reduced by 1/ 3 times the voltage. Phase current reduced by 1/ 3 times the current with the direct online starting.

Line current reduce by 3 times. Rotor Resistance Starter Applicable to slip ring induction motors - Rated voltage applied to the stator - balanced three phase resistors connected in series with the rotor through slip rings Resistance kept at maximum at starting starting current reduced starting torque increased after starting resistance can be cut out. Speed Control of Induction Motors Synchronous speed of the rotating magnetic field produced by the stator, Ns = 120 f / P By changing the frequency. The available AC voltage (50 Hz) is rectified and then inverted back to AC of variable frequency/ Variable voltage using inverters. Inverter can be Voltage source or current source inverter. Speed Control of Induction Motors By changing the number of poles. The stator winding is designed for operation for two different pole numbers: 4/6,4/8,6/8 etc. This can be applied only to squirrel cage induction motors. Stator voltage control. The stator voltage is varied slip and operating speed varies. Speed Control of Induction Motors Rotor resistance control. This method is applied to slip ring induction motor rotor is connected to variable resistance through slip rings resistance varied slip and hence the operating speed varies this method results in power loss in the resistor Speed Control of Induction Motors

Using cascade connection Three phase voltage applied to the stator of a slip ring induction motor(p1 poles ) slip ring voltage applied to the stator of squirrel cage induction motor (P2 poles) two rotors are coupled. Ns = 120 f / (P1±P2) Slip Power Recovery Scheme This scheme applied to slip ring induction motor:- Rated voltage applied to the stator - the rotor voltage is rectified using a diode bridge rectifier the resulting DC voltage is inverted using line commutated inverter and the AC voltage is fed back to the supply through appropriate transformer slip power is thus recovered from the motor and the speed reduced PARTA 16. Calculate the pitch factor for a 36 slot, 4 pole winding having a coil pitch of 6 slots. 17. A 5 MVA, 10 kv, 1500 rpm, 3 phase, 50 Hz, 4 pole, star connected alternator is operating on infinite bus bars. Determine the synchronizing power per mechanical degree of displacement under no-load condition. Xs = 20 %. 18. When is a synchronous motor said to be under excited? What will be the nature of power factor under that condition? 19. What is hunting in a synchronous motor? 20. Under what condition, the slip in an induction machine is i) negative ii) greater than one? PARTB 1. Describe the following methods of speed control of slip ring induction motors: iii) Using external rotor resistance iv) Slip power recovery scheme

2. Based on double field revolving theory and using the torque speed characteristics, explain the operation of single- phase induction motors. ii) Draw the equivalent circuit of single-phase induction motor. 3. Describe the constructional features and the operation of the following: iv) Stepper motor v) Shaded pole motor vi) Hysteresis motor 4. A 3 phase star connected synchronous motor is rated for 6600 V. For a particular load, the motor takes 50 A line current from the supply. The effective armature resistance is 1.0 Ω per phase and synchronous reactance is 20 Ω per phase. Calculate (a) the power supplied to the motor and (b) induced EMF for a power factor of 0.8 lag. 6. Explain why a synchronous motor is not self starting. Describe the method of starting the synchronous motor using damper winding.

B.E./B.TEChD. EGREE EXAMINATION, NOVEMBER/DECEMBER 2007. Fourth Semester (Regulation 2004) Electrical and Electronics Engineering EE 1251 - ELECTRICAL MACHINES - II (Common to B.E. (Part-Time) Third Semester Regulation 2005) Time : Three hours Maximum : 100 marks Answer ALL questions. PART A - (10 x2 = 20 marks) 1. Calculate the distribution facior for a 36 slots, 4 poles, single layer three phase winding. 2. Write down the causes for reduction in terminal voltage of Alternator from it's no ioad value Eo to V for a lagging power factor. 3. Write down the applications of synchronous motor. 4. Write down the equation for power developed by a synchronous motor. 5. A 3 phase Induction motor is wound for 4 poles and is supplied from 50 Hz system. Calculate rotor frequency when rotor runs at 600 r.p.m' 6. Write down the advantages of double cage rotor Induction motor over single squirrel cage motor. 7. Name the type of starters used in 3 phase Induction motors. 8. Write down the methods to control the speed of 3 phase lnduction motor from its rotor side. 9. Explain how to start the single phase Induction motor? 10. Write down any two applications of stepper motor. PARTB-(5x16=80marks) 11. (a) (i) Explain in detail E.M.F. method of finding voltage regulation of 3 phase Alternator. (8) (ii) Find the no load phase and line voltage of a star connected 3 phase, 6 pole alternator which runs at 1200 r.p.m, having flux per pole of 0.1 Wb sinusoidalally distributed. It's stator has 54 slots having double layer winding. Each coil has 8 turns and the coil is chorded by 1 slot Or (b) (i) Explain with neat diagrams on alternator. 12. (a) Explain the effect of excitation on synchronous motor and thereby (8) the armature reaction and it's effects (8)

(ii) Explain synchronizing of 3 phase alternator by dark lamp method. (8) armature current and power factor of obtain 'V and inverted 'V curves. (b) 13. (a) (i) Explain slip-torque characteristics of 3 phase Induction motor with necessary equations. (8) (ii) A 100 kw(output), 3300 V, 3 phase,s tar connectedin duction motor has a synchronous speed of 500 r.p.m. The full load slip is 1.8 Va and full load power factor 0.85. Stator copper loss = 2440 W. Iron loss = 3500 V/. Rotational losses = 7200 W. Calculate (1) the rotor copper loss (2) the line current (3) the full load efficiency. Or Explain the principle of operation of synchronous motor and starting methods. (16) 14. (a) (i) Explain the necessity of starters in induction motor @) Explain with neat sketches the different methods of speed control in 3 phase induction motor. Or ( (b) Explain with neat diagram the Static Scherbius drive system of slip power recovery scheme. (16) 15. (a) Explain why the single phase induction motor is double field revolving theory. Or (b) (i) Explain the operation of Repulsion motor (ii) Explain the operation of Stepper motor' not self starting, n'ith