Design, development and testing of an orthogonal shaft transmission lawn mowing machine

Similar documents
Design and Fabrication of Eco Friendly Pedal Operated Lawn Mower for Agricultural Applications

Design and Analysis of Cutting Blade for Rotary Lawn Mowers

Design, Construction and Testing of an Electric Powered Toggle Jack Mechanism

Wheel Horse. 42 Mower. for Lawn and Garden Tractors. Model No & Up. Operator s Manual

P. D. Belapurkar, S.D. Mohite, M.V. Gangawane, D. D. Doltode (Department of Mechanical, M.E.S. College of Engineering, S.P. Pune University, India)

THE VERSATilE, DURABLE, MANI

Design and Fabrication of Palm Fronds Petioles Stripping Machine

Design And Analysis Of Two Wheeler Front Wheel Under Critical Load Conditions

FINISH MOWERS. Discover the premium cut quality that makes Woods the undisputed leader in finish mowers

A Novel Device to Measure Instantaneous Swept Volume of Internal Combustion Engines

Solar Based Wireless Grass Cutter

Wheel Horse. 48 Mower. for Lawn and Garden Tractors. Model No & Up. Operator s Manual

SOLAR GRASS CUTTER VPMP POLYTECHNIC GANDHNAGAR

Department of Mechanical Engineering University of Engineering & Technology Lahore(KSK Campus).

Design and Analysis of Connecting Rod for High- Speed Application in I.C Engine

DESIGN AND FABRICATION OF A SOLAR POWERED LAWN MOWER


Question 8 Engineering Higher Level

TYPICAL EXPERIMENTS Centers of gravity. Force triangle. Force polygon and Bow s Notation. Non- concurrent forces.

MAE 322 Machine Design Shafts -3. Dr. Hodge Jenkins Mercer University

Wheel Horse. 48 Mower. for 5xi Tractors. Model No & Up. Operator s Manual

EXAMPLES INTRODUCTION

AGE 222. Introduction to Farm Machinery Dr. O. U. Dairo. Farm Machinery and Power

encoreequipment.com 2 FEATURES STANDARD

Parts Catalog. Commercial / Residential 28 Mower

48 Side Discharge Mower

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING

Design, Analysis & Balancing of 5 Cylinder Engine Crankshaft

Parts Catalog. Commercial / Residential 33 Mower

Z Master. 62 Mower. for Z Master Z 255 Traction Unit. Model No & UP. Operator s Manual

TO THE OWNER ASSEMBLY

Form No Wheel Horse. 52 in. Mower 5xi Tractor Attachment. Model No and Up. Operator s Manual. Domestic English (EN)

Footstep Power Generation

48 Side Discharge Mower

New. Bush Hog TOUGH. SqUealer Series rotary Cutters. Loaded With Bush Hog TOUGH Features

Load Analysis and Multi Body Dynamics Analysis of Connecting Rod in Single Cylinder 4 Stroke Engine

POWER TRANSMISSION LAWN & GARDEN

Design & Modeling of Mobile Chaff Cutter a Review

Design and Vibrational Analysis of Flexible Coupling (Pin-type)

COMPACT TRACTOR LINE-UP

Analytical impact of the sliding friction on mesh stiffness of spur gear drives based on Ishikawa model

ENGINE & WORKING PRINCIPLES

GOVERNMENT ENGINEERING COLLEGE, GODHRA

ISSN: [Raghunandan* et al., 5(11): November, 2016] Impact Factor: 4.116

Comparison Chart. extremely difficult. Finally, separated components can rarely be re-used.

SINGLE SPINDLE ROTARY CUTTERS

International Journal of Scientific Research and Modern Education (IJSRME) ISSN (Online): ( Volume I, Issue II,

B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY

CONTENT. 1. Syllabus 2. Introduction 3. Shaft 4. Coupling. Rigid coupling. Flange coupling. Sleeve (or) muff coupling Split muff coupling

MPV7100/S/B MOWER. VEHICLE. GENERATOR. GAME CHANGER RAVENAMERICA.COM

FINISH MOWERS. Discover the premium cut quality that makes Woods the undisputed leader in finish mowers

Modeling and Analysis of Two Wheeler Connecting Rod by Using Ansys

SOLAR BASED GRASS CUTTER

Heat treatment Elimination in Forged steel Crankshaft of Two-stage. compressor.

What is a Mechanism?

Gearless Power Transmission-Offset Parallel Shaft Coupling

encoreequipment.com 2 FEATURES

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

DESIGN AND DEVELOPMENT OF A TEST RIG TO ESTIMATE FATIGUE LIFE OF THE TIMING BELT OF I. C. ENGINE

ME6601 DESIGN OF TRANSMISSION SYSTEMS

Design and Stress Analysis of Crankshaft for Single Cylinder 4-Stroke Diesel Engine

Fully Automated Solar Grass Cutter

FRICTION DEVICES: DYNAMOMETER. Presented by: RONAK D. SONI Assistant Professor Parul Institute of Technology, Parul University

Increase Factor of Safety of Go-Kart Chassis during Front Impact Analysis

with all ride on mowers over $3000!

Semi-Active Suspension for an Automobile

UNIT -I. Ans: They are specified by the no. of strands & the no. of wires in each strand.

GEAR GENERATION GEAR FORMING. Vipin K. Sharma

Agri-Fab OWNERS MANUAL. Model No " FINISH CUT TRAILMOWER. CAUTION: Read Rules for Safe Operation and Instructions Carefully

FABRICATION OF VERTICAL CAR PARKING SYSTEM- A PROTOTYPE

INSTALLATION INSTRUCTIONS

LESSON Transmission of Power Introduction

PRODUCTS AND SERVICES 2017

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

SCAMP AND UTILITY MODELS SELF-PROPELLED BELT DRIVE SERVICING 4502, 4503, 8602, 8603 WITH F SERIES ENGINES

Quiet Collector. Model No & Up

FINISHING MOWERS & TRI-DECKS

Precision Modules PSK

Design and Analysis of Go-kart Chassis

36 Rear Discharge Mower

ProLine. 36 Mower. for Mid-Size Traction Unit. Model No & Up. Operator s Manual

Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport

Wheel Horse. 52 Mowers. Model No & Up Model No & Up. Operator s Manual

ISSN: [Patil et al., 5(10): October, 2016] Impact Factor: 4.116

MOWER HOUSING SUSPENSION

Quiet Collector. Model No & Up

Finishing Mower Estate 72

Chapter 11. Keys, Couplings and Seals. Keys. Parallel Keys

Review Paper on Design and Development of Coupling Torque Endurance Test Machine with Variable Torque and Chamber Adjustment

DHANALAKSHMI COLLEGE OF ENGINEERING

Agri-Fab OWNERS MANUAL. Model No " ROUGH CUT TRAILMOWER. CAUTION: Read Rules for Safe Operation and Instructions Carefully

SINGLE-SPINDLE ROTARY CUTTERS

ANALYSIS AND OPTIMIZATION OF CONNECTING ROD USING ALFASiC COMPOSITES

Stress Analysis in Pulley of Stacker-Reclaimer by Using Fem Vs Analytical

PWC - 33

UNIT IV DESIGN OF ENERGY STORING ELEMENTS. Prepared by R. Sendil kumar

ATTACHMENTS COMPONENT LOCATION

MULTI-SPINDLE ROTARY CUTTERS

'' ''' '' ''' Code No: R R16 SET - 1

RL255/257/ Commercial Reel Mower

Transcription:

Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 32, January-June 2018 p. 173-182 Engineering, Environment Design, development and testing of an orthogonal shaft transmission lawn mowing machine Emmanuel ABOLARINWA 1 and Segun ADEDAYO 2* 1 Vehicle Inspection office, Ministry of Works and Transport, Ilorin, Nigeria 2 Department of Mechanical Engineering, University of Ilorin, Nigeria E-mails: 1 bobsege@yahoo.com; *2 adyos1@yahoo.com 2 *Corresponding author phone: (+234) 8033821984 Received: February 23, 2018 / Accepted: June 26, 2018 / Published: June 30, 2018 Abstract A lawn mowing machine with an orthogonally powered transmission system from a 5.5 HP engine via a bevel gearing to a moulded tool steel cutter blade was designed, developed and tested. A 5.5 HP internal combustion engine serves as the power source, transmitting power horizontally through a vee belt to a pair of meshing bevel gears that transmitted the power orthogonally to the cutter blade. The cutter blade was moulded from 3mm thick tool steel cutting tools. A structural frame built from 25 x 25 mm structural angle iron and supported on a large rear wheel of 350 mm diameter and frontage wheel of 150 mm was used to enhance smooth movement on rugged terrains. An adjustable height push behind handle that allows for easy directional change was used. Tests carried out on a lawn of average weed height 800mm showed a cutting rate of 3.16 m 2 /min. while operating at an average operator pace as against 1.77m 2 /min. when manually cut, indicating a 78.53% productivity increase. Maximum observed vibration level on push handle was 152.4 and 71.7 mm/sec. under cutting tool attachment and detachment respectively. Maximum noise levels with cutting tool attachment and detachment was 94.1 and 77.36 db respectively. Keywords Bevel gear; Cutter; Noise level; Mould; Orthogonal; Productivity; Transmission; Vibration 173

Design, development and testing of an orthogonal shaft transmission lawn mowing machine Emmanuel ABOLARINWA, Segun ADEDAYO Introduction Grass cutting machines are widely used by workers in agriculture, gardening, and landscaping and residential houses compound maintenance. Various concepts are presently in use of mower design. They comprise of petrol, diesel and electric powered. There exists direct and indirect couplings in transmission of power to cutting tools. Electric powered mowers are more conveniently operated when cordless [1]. Pokharel [2] designed a lawn mower which uses a reciprocating motion from rotary motion to cut grass. Nkakiniet et al. [3] designed, fabricated and evaluated a spiral blade lawn mower. It consists of an internal spur gear system which transfers the torque to the mower spiral mechanism. A limitation of earlier listed designs is lack of ability to mow large, unsmooth and thick grasses. Today, powerful tractors, robots and hovercraft are used to keep lawn tidy. Common to all mowers is a rotating blade powered by a motor or engine. Blade designs emphasizes on profile angle, resistance to bending and shear stresses and corrosion resistance [4]. The blade sits within a casing (deck) which keeps grass from flying in all direction. The deck is mounted on four wheels. Most rotary lawn mowers are powered by an internal combustion engine of two cylinder or four cylinder capacities. Rotary lawn mowers that use electric motor do have extension cords or recharge battery with solar cells. A 3-in-1 mower allows bagging, mulching or side discharge of grass dipping [5]. Direct power transmission from engine to cutter obtains in some mower designs while in some others transmission is done via belts or chain. Choice of chain is applicable to high power transmission in the range of 10 100 HP, while belts are for 1 10 HP [6]. Intermediary transmission through belts allows for easy absorption of shock loads. Reduction of vibration and noise are areas of focus in several works on mower. Causes of vibration are bent blade, bent crankshaft, unbalanced blade and large debris [7]. An attempt is made in this work to design a mower manually pushed with capacity to cut thick shrubs, operate in undulating terrains, controlled vibration and stall safely in event of a shock load [8]. 174

Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 32, January-June 2018 p. 173-182 Materials and Method Design and product development The design principle comprises of a structural frame supported at the rear with two 400 mm diameter wheels and two small diameter 150 mm in front. The different tire sizes allows for easy movement on uneven terrains. An internal combustion engine rated 5.5 HP transmitting power horizontally through a V belt to a pair of bevel gears for orthogonal transmission of power to the cutting tool. Figure 1 and Table 1 shows the pictorial outlook of the designed mower and the list of component parts. Figure 1. Component parts of the designed lawn mowing machine Table 1. Designated numbers and name of the parts No. Name of parts Part specifications 1 Shaft 2 3 4 5 6 7 8 9 10 11 12 Wheel Push handle Engine (prime mover) Height adjuster Gear Pulley Shaft holder Frame Bearing Bearing housing Casing AISI 1020 cold-drawn steel,(dia.: 23.1 mm) (G = 85Gpa ; L = 300 mm ; θ =0.0175 c ) Rubber (Metallic rim); Dia.250mm BS1387:1967 steel pipe I.C.E, 5.5HP Angle iron S275 C1050 medium carbon steel BS 3790:1995 AISI 1020 cold-drawn steel BS 1449 ISO 3290-1:2014 BS535A99 AISI 1020 cold-drawn steel Indented steel plate 175

Design, development and testing of an orthogonal shaft transmission lawn mowing machine Emmanuel ABOLARINWA, Segun ADEDAYO Detailed stress analysis was carried out on some selected parts in order to obtain safe dimensional specifications when fully loaded. The parts are: shaft, cutter, bevel gears and keys. A typical analysis carried out on the vertical shaft (Part number 1(b) in Figure 1) based on source engine power of 5.5 HP is as shown: Power rating of the internal combustion engine (p) = 5.5 HP (4103 Watts). Relationship between forces on the tension and slack sides of the vee belt is as indicated in Eq. (1): F1 = 5F2 (1) Where: F1 force in belt at upper side between pulleys; F2 force in belt at lower side between pulleys. Torque transmitted to the vertical shaft is obtained from the relationship: T2 = (F1 - F2) Dm/2, where: ω = 3000 rpm and shaft bevel gear speed = 1949.7 rpm. From torsion theory, Eq. (2-4): T J G (2) L J 4 d 32 TL G (3) 32* T * L d = 4 (4) G * * Where: d - diameter of vertical shaft; dm - pulley diameter on gear shaft; F1, F2 - tight and slack sides forces of vee belt; G - modulus of rigidity; J - polar moment of inertia; L - length of vertical shaft; P - power rating of internal combustion engine; r - radius of vertical shaft; T2 - torque transmission on gear pulley; T - torque on vertical shaft; ω - engine speed; θ - twist angle. This will give the minimum diameter for the driven shaft based on the torsion or twisting moment caused by the prime mover via the pulley system. Manufacturing procedure All parts of the mower except standard parts were produced using established workshop procedures such as machining, grinding, drilling, fitting, joining etc. Close tolerance of 0.2 mm were maintained in the production of all machined components. A typical procedure of manufacture for the vertical shaft entails marking out a specified length of 302 176

Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 32, January-June 2018 p. 173-182 mm on a bar of Ф 25.00 mm. Turning of the horizontal and vertical shaft to diameters 22.46 and 23.10 mm respectively was carried out. Threading of the vertical shaft was carried out on the lathe machine with threaded 24 mm cutter. Key ways of length 20 mm were milled out on both the horizontal and vertical shaft. Figure 2 shows an abridged production process chart highlighting the various steps taken in making the machine. SHAFT *Bar Length 302mm, Dia 25 turned to specification *Horizontal =Dia 22.40m *Vertical =Dia 23.10Threading at defined length *Make keyways HANDLE *Obtain Dia 20mm thick pipe. *Bend to designed specifications* Insert in Dia 25mm pipe (welded to frame) for height FRAME *Thick plate of 4mm cut to shape *Reinforce edges with 25x25mm angle iron *Drill shaft entry points *Mark out wheel attachment points HEIGHT ADJUSTERS *Obtain 50x50mm angle iron *Mill out slots *Weld to frame WHEELS *Place roller bearings *Attach bracket with stud to wheel. CUTTER BLADE *Obtain an existing alloyed and treated cutlass. *Cut to cutter length. *Bend to required shape. *Drill to locate shaft. BLADE HOLDER *Cut 100x50x4mm steel bar *Drill to locate shaft and bolts/nut for bladeattachment. BEVEL GEAR *Obtain bevel gears *Machine the entry shaft *Assemble gear with bearings *Connect outer gears with cutter shaft *Position assembly in housing ASSEMBLY *All parts are assembled on frame. *Attach the four wheels *Place the I.C. engine *Place the bevel gear *Connect belt between engine inlet shaft *Connect the cutter *Fix handle to frame ENGINE *Obtain 75x75x3mm angle Iron *Make slots for engine bolts *Weld component part that attaches to engine Figure 2. Abridged production process chart Performance tests Vibration tests Vibration test on three (3) vital parts of the fabricated machine was carried out. The parts are: the push handle, the engine and the frame. The vibration was measured using a vibration meter (Model Vb-8206SD). 177

Design, development and testing of an orthogonal shaft transmission lawn mowing machine Emmanuel ABOLARINWA, Segun ADEDAYO Range (0.5-199.9mm/s), and accuracy of ±5%. The vibration meter was mounted on the machine part through a RS232 knob with a magnetic base. The velocity unit is used in this research work in order to allow for comparison of results with existing ISO 2372 standards on limits of vibration level for human operators. Noise level measurement The noise level was measured using Auto-Range Sound Level Meter (RS 232 Interface LT lutron-sl-4012) to measure the sound from the machine. The meter was within 1m distance to the machine in order to measure the sound emanating from the machine. Sound level at the following stages were measured: (i) Before the engine was cranked. (ii) After cranking the engine without incorporating the belt. (iii) After cranking the engine with belt incorporated. (iv) After cranking the engine with belt and blade 1 fitted. (v) After cranking the engine with belt and blade 2 fitted. Actual sound of machine torque transmitting component is obtained by subtracting average noise level when the machine is not cranked from average noise level when running the machine with belt engaged. Productivity tests The machine was tested on a grass of mean height of 800 mm, width 20 mm and 16 mm 2 demarcated area as shown in Figure 3 (a and b). Operational time under manual and machine cut were taken with a stop watch. Machine time spent in cutting under normal working speed condition was subtracted from manual cutting time applicable to standard average human speed. Productivity increase (%) = Manual Machine time Manual time (5) 178

Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 32, January-June 2018 p. 173-182 Figure 3 (a). Uncut grass of mean height 800 mm Figure 3 (b). Cut grass of mean height 60 mm Results and Discussion Vibration test results Vibration velocity amplitude with time for the frame, engine and push handle with and without belt connection are shown in Figures 4 and 5 respectively. Average velocity amplitudes of frame, engine and push handle when transmission belt is connected were 141.30, 140.95 and 115.50 mm/sec. respectively. The frame vibration is highest because of the combination of cutter and engine seat vibrations that are transmitted to it. Corresponding vibration values when no belt was connected were 27.4, 51.10 and 36.06 mm/sec. Figure 4. Vibration levels with belt connected 179

Design, development and testing of an orthogonal shaft transmission lawn mowing machine Emmanuel ABOLARINWA, Segun ADEDAYO Figure 5. Vibration levels without belt connection The engine vibration is highest at no load due to its own rotating parts while other sources of vibration such as cutter is nil. A significant increase of vibration obtains when transmission belt was connected due to the effect of high vibration transmission from the cutter to other parts of the mower. Productivity test results Machine time spent in cutting was 5.07 minutes under normal working speed condition while manual cut of the same area was 9.03 minutes at average human speed. The mean height of the grass after cut was 60 mm as shown in Figure 3 (b). Productivity increase due to use of machine is 43.84 %. Noise level test results The measured noise level reading from different stages of the running machine is presented in Table 2. S/N Sound before cranking the engine (db) Table 2. Noise level of the Lawn Mowing Machine Sound when Sound when engine is running engine is running and belt engaged without belt (db) engaged (db) Sound when engine is running with belt and blade engaged (db) 180

Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 32, January-June 2018 p. 173-182 1 2 3 4 5 52.8 49.6 50.2 49.3 48.9 83.4 88.1 87.7 85.2 83.2 76.8 77.2 77.8 79.1 75.4 92.1 92.1 92.0 92.4 92.3 Derived from Table 2 above are the following values: (i) Average noise level when running the machine with belt engaged = 85.57 db (ii) Average noise level when machine is off = 49.1 db (iii) Actual noise level of machine with belt engaged = 36.43 db (iv) Average noise level without belt engagement = 77.32 db (v) Actual noise level of prime mover and mower frame = 28.22 db (vi) Actual noise level of gear, pulley and bearings = 8.21 db (vii) Average noise level with belt and blade engaged = 92.18 db (viii) Actual noise made by blade alone = 6.61 db Environmental noise accounted for 49.1 db. Highest noise level of gross value 92.18 and a net value of 36.43 db was observed when machine operates with transmission belt engaged. This resulted from a combination of noise from the prime mover, frame, pulleys, bearings, gears and belt. The low noise level of transmission elements which is 8.21 db is due to effective lubrication of the gears and bearings. Conclusion The following conclusions can be drawn from the research: (a) An orthogonal power transmission weed cutting machine was designed, fabricated and tested. The machine had a productivity increase of 48.85% when compared with manual grass cutting process. (b) Vibration caused by the machine is high and the machine tends to vibrate higher when the belt is engaged than when disconnected. The machine vibrates highest in the push handle as compared to the engine itself and the frame when belt is not engaged. Highest vibration level of 178.5 mm/s at the handle is below stipulated international standards for vibration in humans (above 200 mm/s for 8 hours exposure is very uncomfortable for human (ISO 2631). 181

Design, development and testing of an orthogonal shaft transmission lawn mowing machine Emmanuel ABOLARINWA, Segun ADEDAYO (c) Maximum net sound level of 36.43 db was produced by the machine (ISO benchmark for safe hearing is 85 db (ISO 4871)). Acknowledgement The authors wish to acknowledge the Department of Mechanical Engineering, University of Ilorin, Nigeria who partly sponsored this research. The technical assistance of Mr. Ologbonsaiye during fabrication and testing is acknowledged and Mr. Dada for carrying out the welding and fittings. References 1. Okafor B., Simple design of self-powered lawn mower, International Journal of Engineering and Technology, 2013, 3 (10), p. 933-938. 2. Pokhare R., Manually operated lawn mower applicable for grass cutting, International Journal of Scientific Research, 2014, 13 (4), p. 1-15. 3. Nkakini S.O. and Yabefa B.E., Design, fabrication and evaluation of a spiral blade lawn mower, European Int. Journal of Science and Technology, 2014, 3 (4), p. 1 8. 4. Tremonia F., Concerning the sharpness of blades, (available on www.hroar.com.../sharpness.pdf, accessed on 20 th March, 2014). 5. Schumacher L., How lawn mower works, (available on: http://home.howstuffworks.com/lawn-mower.htm (accessed on 18 th November, 2015). 6. Mott R.L. Machine elements in mechanical design, 2013, 5 th Edition, Pearson. 7. Cleveland V. C., How to fix vibration in a push behind mower, (available at: http://www.ehow.com/how-fix-vibration-push-mower.html, accessed on 18 th November, 2015). 8. Alex H., Clark C., Jean-Francois L., Erica M., Design and building of a battery powered electric reel mower, Final design report, Reel Mower Team 15, Department of Mechanical Engineering, Dalhousie University, U.S.A, 2014 (available on http://www.poisson.me.dal.ca/-dp_13_15/the team.html, accessed on 12 th,april, 2018). 182