COMPARISON OF PROPELLER TYPE B-SERIES AND AU-OUTLINE GAWN SERIES FOR IMPROVING ON SUBMARINE PROPULSION PERFORMANCE USING CFD

Similar documents
Design and Hydrodynamic Model Test of Mini Submarine Propeller with High Efficiency and Low Cavitation

Advanced Design of a Ducted Propeller with High Bollard Pull Performance

Development of Contra-Rotating Propeller with Tip-Raked Fins

STRESS AND THERMAL ANALYSIS OF CLUTCH PLATE

Controllable pitch propellers for future warships and mega yachts

STUDYING THE EFFECT OF PITCH RATIO ON SHEET CAVITATION IN MARINE PROPELLERS

TURN DOWN THE VOLUME. Our Proposals to Save Marine Life From Underwater Noise Pollutions. Strangers

MODELLING AND STRUCTURAL ANALYSIS OF A GO-KART VEHICLE CHASSIS FRAME

SHIP HYDRODYNAMICS LECTURE NOTES OF PROPULSION PART

Merchant Ships Determined From. Model Tests and Full Scale Trials. Stuart B. Cohen Principal Investigator. for. Hydronautics, Inc. Project Coordinator

Aguk Zuhdi Muhammad Fathallah 1, Wolfgang Busse 2, Fadhil Rizki Clausthaldi 3

Study of intake manifold for Universiti Malaysia Perlis automotive racing team formula student race car

A GEAR COUPLING WITH TAPERED EXCESS LOAD ABSORPTION

Contra-Rotating Propellers Combination of DP Capability, Fuel Economy and Environment

A conceptual design of main components sizing for UMT PHEV powertrain

INTERCOOLER FOR EXTREMELY LOW TEMPERATURES OF CHARGING

Optimization of Hydraulic Retarder Based on CFD Technology

2ND EXAM OF MAIN MACHINERY AND AUXILIARY MARINE SYSTEMS

System design thrust vector control via liquid injection within the nozzle and the numerical simulation of the corresponding flow

POWER QUALITY IMPROVEMENT BASED UPQC FOR WIND POWER GENERATION

A Development of a Propeller with Backward Tip Raked Fin

A STUDY ON DIESEL ENGINE PERFORMANCE DEPENDS ON BP AND BSFC BY APPLYING DIFFERENT INJECTION PRESSURE

Salakhov R.R Salakhov Rishat Rizovich, Candidate of Technical Sciences, Director, Research Institute of Energy Efficient Technologies, KNRTU-KAI

Large Area Propellers

fincantieri / marine systems and components Controllable and Fixed Pitch Propellers

A Framework for Energy Saving Device (ESD) Decision Making

Reliable, Silent, Efficient. Voith Linear Jet

DESIGN AND MANUFACTURING ELECTRICAL CAR JACK D.C. 12 VOLT

Subject: ARRV Underwater Radiated Noise Design Limit Date: 29 July, 2008

CFD on Cavitation around Marine Propellers with Energy-Saving Devices

Available online at ScienceDirect. Procedia Engineering 68 (2013 ) 70 76

CFD Investigation of Influence of Tube Bundle Cross-Section over Pressure Drop and Heat Transfer Rate

Numerical Analysis of Flow in Kaplan Turbine Runner Blades Anticavitation Lip with Modified Hydrodynamic

A Novel Design for Lithium ion Battery cooling using Mineral Oil

MULTI-USE FLOOR CLEANING MACHINE

Ansys-CFX Analysis on a Hatch-Back Car with Wheels and without Wheels

Aerodynamic Characteristics of Sedan with the Rolling Road Ground Effect Simulation System

A Breakthrough in Waterjet Propulsion Systems

Micro-Bubble drag reduction with triangle bow and stern configuration using porous media on self propelled barge model

SOLAR FLAT PLATE COLLECTOR HEAT TRANSFER ANALYSIS IN THE RAISER WITH HELICAL FINS Mohammed Mohsin Shkhair* 1, Dr.

INFLUENCE OF THE MARINE 4-STROKE DIESEL ENGINE MALFUNCTIONS ON THE NITRIC OXIDES EMISSION

COMPUTATIONAL ANALYSIS OF TWO DIMENSIONAL FLOWS ON A CONVERTIBLE CAR ROOF ABDULLAH B. MUHAMAD NAWI

Redesign of exhaust protection cover for high air flow levelling valve

2 nd generation wobble watercraft

Study on Braking Energy Recovery of Four Wheel Drive Electric Vehicle Based on Driving Intention Recognition

Experimental Study of Incorporating Fins on the Rotor Blades of Savonius Wind Turbine

CFD Analysis and Comparison of Fluid Flow Through A Single Hole And Multi Hole Orifice Plate

Chandra Prasad B S, Sunil S and Suresha V Asst. Professor, Dept of Mechanical Engineering, SVCE, Bengaluru

Effect of Stator Shape on the Performance of Torque Converter

A STUDY ON THE PROPELLER SHAFT OF CAR USING CARBON COMPOSITE FIBER FOR LIGHT WEIGHT

Propeller Particulars and Scale Effect Analysis of ECO-Cap by CFD

Simulation Studies on the Effect of Porous Twisted Plate Inserts on the Performance of Fire Tube Steam Packaged Boiler

MARITIME AFTERNOON. Torben Ole Andersen. June 14, 2017 Aalborg University, Denmark

ANALYSIS ON MECHANICAL PARAMETERS OF LUNAR ROVER WHEEL

CFD Analysis of Oil Discharge Rate in Rotary Compressor

AUTONOMOUS UNDERWATER VEHICLE DESIGNED TO BE USED IN ANTISUBMARINE WARFARE

Underwater Radiated Noise Measurements on a Chemical Tanker Measurements at Sea- Trials Compared to Model-Scale Tests and CFD

Turbostroje 2015 Návrh spojení vysokotlaké a nízkotlaké turbíny. Turbomachinery 2015, Design of HP and LP turbine connection

Scroll Compressor Oil Pump Analysis

Exploit of Shipping Auxiliary Swing Test Platform Jia WANG 1, a, Dao-hua LU 1 and Song-lian XIE 1

A Study on the Optimum Shape of Automobile Air Cleaner Diffuser

Analysis of regenerative braking effect to improve fuel economy for E-REV bus based on simulation

Design and calculation of mechanical system for solar-powered electric boat

AN EXPERIMENTAL STUDY OF THE AERODYNAMICS FORCES ACTING ON A TRUCK

CFD application for an icebreaker propeller design

A Full Scale CFD Analysis of the Twin Fin Propulsion System

Journal Online Jaringan COT POLIPD (JOJAPS) Fluid Flow Analysis of Micro Gas Turbine Using Computational Fluid Dynamics (CFD)

10th Australian International Aerospace Congress

IMPROVEMENT OF PROPULSION OF SURFACE SHIPS BY USING NON-TRADITIONAL PROPELLERS

Coriolis Fuel Mass Flow Metering for Fishing Vessels

CFD analysis of heat transfer enhancement in helical coil heat exchanger by varying helix angle

V-POD electric propulsion & maneuvering system

THERMAL ANALYSIS OF SHELL AND TUBE HEAT EXCHANGER

THE INFLUENCE OF THE MICROGROOVES ON THE HYDRODYNAMIC PRESSURE DISTRIBUTION AND LOAD CARRYING CAPACITY OF THE CONICAL SLIDE BEARING

Australian Journal of Basic and Applied Sciences

Experimental Investigation on Mixing time Analysis of Jet Mixer

Determination of power loss of combine harvester travel gear

Fig 2: Grid arrangements for axis-symmetric Rocket nozzle.

DESIGN A NOVEL THRUSTER MAGNETISM MOTOR (TMM) FOR UNDERWATER VEHICLE APPLICATION MUHAMMAD NUR BIN OTHMAN (PRINCIPAL) MOHD SHAHRIEEL BIN MOHD ARAS

WITH BIO LUBRICANTS JATROPHA OIL, CASTOR OIL, NEEM OIL AND MINERAL OIL (SAE 20W50)

Development of a working Hovercraft model

Implementation of telecontrol of solar home system based on Arduino via smartphone

Numerical Study on the Flow Characteristics of a Solenoid Valve for Industrial Applications

A CAD Design of a New Planetary Gear Transmission

Highest Propeller Performance Reduced Hydroacoustics Increased Flexibility Larger Fuel Savings Lowest Total Cost of Ownership

New Alpha CP Propellers A high-efficient VBS Mk 5 design is revealed at SMM

BRAKING SYSTEM DESIGN FOR ALL TERRIAN VEHICLE (ATV)

DYNAMIC EFFICIENCY - Propulsors with Contra-Rotating Propellers for Dynamic Positioning

Numerical check of a 2DOF transmission for wind turbines

DETERMINATION OF OPERATING CHARACTERISTICS OF NAVAL GAS TURBINES LM2500

Cavitation CFD using STAR-CCM+ of an Axial Flow Pump with Comparison to Experimental Data

Change in Delta Plate Angle Effect on the Reactive Muffler

Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests

KINEMATICS OF REAR SUSPENSION SYSTEM FOR A BAJA ALL-TERRAIN VEHICLE.

S.Solomon Raj, Assistant Professor, Department of Mechanical Engineering, CBIT, Gandipet, Hyderabad ;

Ship Electrical Propulsion System

Design and Structural Analysis of Torpedo

Voith Schneider Propeller (VSP) - Investigations of the cavitation behaviour

(1) Keywords: CFD, helicopter fuselage, main rotor, disc actuator

TABLE OF CONTENTS ENGINEERING MANUFACTURING FEDERAL PROPELLER CONSIDERATIONS...2

Transcription:

International Journal of Mechanical Engineering and Technology (IJMET) Volume 10, Issue 03, March 2019, pp. 534-538. Article ID: IJMET_10_03_054 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=10&itype=3 ISSN Print: 0976-6340 and ISSN Online: 0976-6359 IAEME Publication Scopus Indexed COMPARISON OF PROPELLER TYPE B-SERIES AND AU-OUTLINE GAWN SERIES FOR IMPROVING ON SUBMARINE PROPULSION PERFORMANCE USING CFD Deddy Chrismianto, Ahmad Fauzan Zakki, Berlian Arswendo and Insanu Abdilla Cendikia Abar Department of Naval Architecture, Faculty of Engineering, Diponegoro University Indonesia. ABSTRACT Submarine propeller need some unique criteria can give bigger amount of thrust with noiseless. The submarine propeller design must able to produce the high thrust value, low pressure value, and smooth propeller streamline. This study investigates and compares some type of propeller that are B 7 series, B 8 series, Au 7 Outline gawn series, and Au 8 outline gawn series with some different parameters, that is blade diameter, number of blade, skew angle and pitch. From some models that have been compared, the best propeller is B 8 series on 500 rpm with thrust value 25481 N, torque value 3927 Nm, average value pressure about 10608,92 Pa, and turbulance flow with average value velocity stream under 14,33 m/s. Keywords: Submarine, B-series propeller, Au-series propeller, CFD. Cite this Article: Deddy Chrismianto, Ahmad Fauzan Zakki, Berlian Arswendo and Insanu Abdilla Cendikia Abar, Comparison of Propeller Type B-Series and Au- Outline Gawn Series for Improving on Submarine Propulsion Performance using Cfd, International Journal of Mechanical Engineering and Technology, 10(3), 2019, pp. 534-538. http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=10&itype=3 1. INTRODUCTION Submarine is a one of ship can dives independently. The submarine requirement with effective hull is designed for diving with long time under the sea, and it equipped by the periscope and torpedo for war [1]. Submarine propeller need some unique criteria in which the propeller can give bigger amount of thrust with noiseless for spying in submarine, so it has designed for moving without make noise or detected from other enemy radar and it can fast moving under the water. For the study purpose, the variable of parameters are choiced, that is; the number of blade, skew angle, diameter and blade type based on amount of effect that can reacted with propeller http://www.iaeme.com/ijmet/index.asp 534 editor@iaeme.com

Comparison of Propeller Type B-Series and Au-Outline Gawn Series for Improving on Submarine Propulsion Performance using Cfd cavitation. The skew angle will make an effect on torque and thrust fluctuation in which it can increase the effect of propeller cavitation. The number of blade will effect on thrust fluctuation that cause thrust noise. Otherwise, the minimum number blade selected is about 7 for decrease the effect of turbulence for submarine propeller have limit for propeller diameter different with ordinary ship and the increase of diameter can make the decrease of propeller thrust and increase average of streamline speed [2, 3]. The purpose of this study is to obtain the comparation between thrust and torque values and streamline flow around propeller on several kind of the B-Series type propeller and Au outline gawn series propeller type for applying on submarine. 2. SUBMARINE PROPELLER Design and development of propellers for submarines are different from propellers for surface vessels. The most important demand is low acoustic signature that has priority over propeller efficiency, and the submarine propeller must be optimized with respect to acoustics rather than efficiency. Moreover, the operating conditions of a submarine propeller are quite different. These aspects are discussed as well as the weighing of the various propeller parameters against the design objectives [4, 5, 6]. That thing can cause the cavitation that can make some noise. The propeller may cause the cavitation in the highest speed that produce and lowest pressure on the propeller so it can make some steam bubble. That bubble mix with some other gas around and it cause cavitation flow [7]. From that cavitation flow cause noise that must avoid when we design a submarine propeller causes noise that must be avoid in design submarine propeller. The propeller design process with CAD propeller software (Figure 1). After the coordinate data is obtained, so the surface data propeller is also found. Figure 1 shows the submarine propeller model 3. THEORETICAL ANALYSIS Each type of each ship's propeller has different performance curve characteristics. The study of the characteristics of a ship's propeller cannot be generalized to the overall shape or type of the propeller. The equation is as follows [8]: T KT n2d4 (1) Q KQ n2d4 Va J nxd (2) (3) http://www.iaeme.com/ijmet/index.asp 535 editor@iaeme.com

Deddy Chrismianto, Ahmad Fauzan Zakki, Berlian Arswendo and Insanu Abdilla Cendikia Abar Where; KT = propeller thrust coefficient KQ = propeller torque coeffitcient J = propeller advance coefficient Va = advance velocity D = propeller diameter n = propeller rotation speed in rpm T = thrust propeller in N Q = torque propeller in Nm ρ = fluid density Thrust force is produced by the operation of the propeller is caused by a momentum difference that occurs when the propeller leaves move fluidized. The flow of water due to rotation the propeller in the water, then the reaction force will arise which is the force produced by the propeller leaves. 4. RESULTS AND DISCUSSIONS Boundary condition for CFD calculation is generated with using propeller specification as follow: Propeller Diameter : 1,00 m Blade Number : 7 Pitch/diameter : 1,03 Skew, Degree : 30,8 Table 1 shows the result for validation between the experiment and the CFD calculation. Table 1 Validation of Experiment result and CFD result at 500 rpm Rotation speed (rpm) Experiment Result (K T ) CFD Result (K T ) Diff. (%) 500 0.2594 0.2458 5.23 Table 2 Thrust values on several types of propeller at 450 rpm and 500 rpm Propeller Type Au- 8 Au-7 B - 8 B 7 Thrust at 450 rpm (N) 23,683 11,723 203,47 21,009 Thrust at 500 rpm (N) 27,742 11,967 25,481 22,436 Table 3 Torque values on several types of propeller at 450 rpm and 500 rpm Propeller Type Au- 8 Au-7 B - 8 B 7 Torque at 450 rpm (N m) 3,532 2,001 2,975 3,063 Torque at 500 rpm (N m) 4,330 2,153 3,927 3,543 Table 2 shows the result of thrust analysis at 450 rpm and 500 rpm on several types of propeller. Au 8 series propeller type has the highest thrust with 23683 N at 450 rpm and also at 500 rpm is obtained the highest thrust with 27,742 N. While Table 3 shows the result of torque analysis at 450 rpm and 500 rpm on several types of propeller. Au 8 series propeller type has the highest torque with 3,532 Nm at 450 rpm and also at 500 rpm is obtained the highest torque with 4,330 Nm. http://www.iaeme.com/ijmet/index.asp 536 editor@iaeme.com

Comparison of Propeller Type B-Series and Au-Outline Gawn Series for Improving on Submarine Propulsion Performance using Cfd Figure 2 Streamline simulation Au 8 and Au 7 Figure 3 Streamline simulation B 8 and B 7 Figure 4 Streamline simulation Au 8 and Au 7 Figure 5 Streamline simulation B 8 and B 7 Figure 2 figure 5 show the streamline comparison between four propeller type and be conclused that B 8 Series is best streamline with average speed 14.33 m/s. 5. CONCLUSION At 500 rpm, the propeller Au 7 type produces a thrust 11,967 N at average pressure 87,231.83 Pa with average speed on streamline16.05 m/s but it has irregular flow. While the propeller Au 8 type produces a thrust 27,742 N, average pressure 18,111.33 Pa with average speed on streamline 15.45 m/s but has irregular flow. The propeller B 7 type is obtained a http://www.iaeme.com/ijmet/index.asp 537 editor@iaeme.com

Deddy Chrismianto, Ahmad Fauzan Zakki, Berlian Arswendo and Insanu Abdilla Cendikia Abar thrust 22,436 N, average pressure 43,251.75 Pa with average speed on streamline16.25 m/s but has irregular flow. And the propeller B 8 type has a thrust 25,481 N, average pressure 10,608.92 Pa with average speed on streamline 16.35 m/s with smooth flow. The chosen propeller is used on the Submarine of Midget Type 150 m is Propeller B 8 series type with thrust 25,481 N, average pressure 10,608.92 Pa, with average speed on streamline16.35 m/s with smooth streamline. ACKNOWLEDGEMENT Ministry of Research, Technology, and Higher Education, Republic of Indonesia in scheme of Penelitian Fundamental 2015. REFERENCES [1] Joulbert, P. N. Some Aspect of Submarine Design Part 1 Hydrodynamics, Australian Goverment. Australian: DSTO Platforms Sciences Laboratory, 2004, pp.45. [2] Andersen, P., Kappel, J. J. and Spangenberg, E. Aspects of Propeller Developments for a Submarine, First International Symposium on Marine Propulsors. Norway, 2009, pp. 1-8. [3] Chrismianto, D., Zakki, A. F., Arswendo, B. and Dong, J. K. Development of Cubic Bezier Curve and Curve-Plane Intersection Method for Parametric Submarine Hullform Design in order to Optimize the Hull Resistance by Using CFD. Journal of Marine Science and Application, 14(4), pp. 399 405. [4] Abidin, Z., Chrismianto, D. and Trimulyono, A. Komparasi dan Analisa Underwater Thruster pada Remotely Operated Vehicle (ROV) dengan Metode CFD. Jurnal Teknik Perkapalan, 3(2), 2015, pp. 204-212. [5] Chrismianto, D., Manik, P. and Good, R. Study Comparative of Stability Performance Between PVC Fishing Boat and Wooden Traditional Fishing Boat. IOP Conference Series: Materials Science and Engineering, 403(012002), 2018, pp. 1-6. [6] Kiryanto, Ridwan, M., Adietya, B. A. And Chrismianto, D. Stability Analysis of Trawls Type Traditional Fishing Boat with Modification of Eco-Friendly Fishing Gear on the North Coast of Central Java. IOP Conference Series: Materials Science and Engineering, 403(012052), 2018, pp. 1-8. [7] Trimulyono, A., Manik, P. and Huda, N. Analisa pengaruh Energy Saving Device pada Propeller dengan Metode CFD. KAPAL Jurnal Ilmu Pengetahuan dan Teknologi Kelautan, 10(3), 2013, pp. 147-153. [8] Lewis, E. V. Principles of Naval Architecture Volume II: Resistance, Propulsion and Vibration, Second Revision. USA: The Society of Naval Architecture and Marine Engineers,1988, pp. 181. http://www.iaeme.com/ijmet/index.asp 538 editor@iaeme.com