Experimental Analysis of Working Characteristics of Cornoil As An Alternate Fuel of Diesel Engine

Similar documents
Performance, Combustion and Emission Characteristics of Corn oil blended with Diesel

ABSTRACT I. INTRODUCTION II. TECHNICAL SPECIFICATIONS OF THE ENGINE III. MATERIAL & METHODS

Ester (KOME)-Diesel blends as a Fuel

Project Reference No.: 40S_B_MTECH_007

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 11 Nov p-issn:

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

Experimental Investigations on a Four Stoke Diesel Engine Operated by Jatropha Bio Diesel and its Blends with Diesel

International Engineering Research Journal Performance and Emission Analysis of a Diesel Engine Fuelled with Waste Turmeric oil.

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

Experimental Study on Performance and Emission of Diesel Engine using Sunflower Oil-Diesel Blends as Fuel

Experimental investigation on constant-speed diesel engine fueled with. biofuel mixtures under the effect of fuel injection

Performance and Emission Analysis of Diesel Engine using palm seed oil and diesel blend

PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER

Automotive Technology

Performance and Emission Characteristics of 4 S DI diesel Engine fueled with Calophyllum Inophyllum Biodiesel Blends

Material Science Research India Vol. 7(1), (2010)

Chandra Prasad B S, Sunil S and Suresha V Asst. Professor, Dept of Mechanical Engineering, SVCE, Bengaluru

Comparative Analysis of Jatropha-Methanol Mixture and Diesel on Direct Injection Diesel Engine

STUDY ON ENTREPRENEURIAL OPPORTUNITIES IN BIODIESEL PRODUCTION FROM WASTE COCONUT OIL AND ITS UTILIZATION IN DIESEL ENGINE

EXPERIMENTAL INVETIGATIONN ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DI- CI ENGINE FUELED WITH PREHEATED SHEA OLEIN BIODIESEL

TO INVESTIGATE THE PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE USING MUSTARD OIL BIODIESEL AS FUEL

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL

Combustion and Emission Characteristics of Jatropha Blend as a Biodiesel for Compression Ignition Engine with Variation of Compression Ratio

PERFORMANCE EVALUATION OF C.I. ENGINE WITH COTTON SEED OIL

Investigation of Single Cylinder Diesel Engine Using Bio Diesel from Marine Algae

PERFORMANCE AND EMISSION ANALYSIS OF CI ENGINE FUELLED WITH THE BLENDS OF PALM OIL METHYL ESTERS AND DIESEL

GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN:

EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL

Performance and Emission Characteristics of a Kirloskar HA394 Diesel Engine Operated on Mahua Oil Methyl Ester

Performance and Emission Characteristics of Direct Injection Diesel Engine Running On Canola Oil / Diesel Fuel Blend

EXPERIMENTAL INVESTIGATION OF METHODS TO IMPROVE PERFORMANCE OF DI ENGINE USING PONGAMIA BIODIESEL BY VARYING PARAMETERS

Performance, emission and combustion characteristics of fish-oil biodiesel engine

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE WITH MUSTARD OIL-DIESEL BLENDS AS FUEL

A R DIGITECH International Journal Of Engineering, Education And Technology (ARDIJEET) X, VOLUME 2 ISSUE 1, 01/01/2014

Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine

Effect Of Exhaust Gas Recirculation On The Performance And Emission Characteristics Of Diesel Engine With Orange Oil- Diesel Blend

National Conference on Advances in Mechanical Engineering Science (NCAMES-2016)

Performance Analysis of Four Stroke Single Cylinder CI Engine Using Karanja Biodiesel-Diesel Blends

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF BTE AND NOX IN A DIRECT INJECTION VCR DIESEL ENGINE RUNNING WITH RICE BRAN METHYL ESTER

An experimental investigation to study combined effect of EGR and tung oil biodiesel blends used for CI engine

Sathyabama Institute of Science and Technology,Chennai ,Tamilnadu,India. JSPM s,college of Engineering,Hadapsar,Pune ,Maharashtra,India.

Evaluation of Performance and Emission Characteristics of Four Stroke Diesel Engine with Mahua Bio-Diesel Blends

Effect of Varying Load on Performance and Emission of C.I. Engine Using WPO Diesel Blend

ISSN: [Sirivella, 6(10): October, 2017] Impact Factor: 4.116

PERFORMANCE OF DIRECT INJECTION C.I. ENGINE USING KARANJA OIL AT DIFFERENT INJECTION PRESSURES

EFFECT OF EMULSIFIER ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING PALM BIODIESEL

EXPERIMENTAL INVESTIGATION OF PERFORMANCE ANALYSIS ON VCR DI DIESEL ENGINE OPERATED ON MULTI BLEND BIODIESEL

Experimental investigations on the performance characteristic of diesel engine using n- butyl alcohols

EFFECT OF STEAM INJECTION ON NO X EMISSIONS AND PERFORMANCE OF A SINGLE CYLINDER DIESEL ENGINE FUELLED WITH SOY METHYL ESTER

Performance Analysis of a Diesel Engine with the Help of Blends of Linseed Oil Biodiesel

Prediction of Performance and Emission of Palm oil Biodiesel in Diesel Engine

International Journal on Theoretical and Applied Research in Mechanical Engineering (IJTARME)

Experimental studies on a VCR Diesel Engine using blends of diesel fuel with Kusum bio-diesel

Investigation of the Performance and Emission Characteristics of CI Engine Using Simarouba Biodiesel as Fuel

EMISSION AND PERFORMANCE CHARACTERISTICS OF KARANJA BIODIESEL AND ITS BLENDS IN A C.I. ENGINE AND IT S ECONOMICS

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.5, pp ,

Experimental Investigation of Performance, Combustion and Emission characteristics of neat Lemongrass oil in DI Diesel engine

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 06, 2016 ISSN (online):

A.S.P. Sri Vignesh 1, Prof C. Thamotharan 2 1 (Department of Automobile Engineering, Bharath Institute of Science and Technology, Bharath University

EXPERIMENTAL STUDY ON PERFORMANCE OF DIESEL ENGINE USING BIO-DIESEL

Government Engineering College, Bhuj.

Impact of Various Compression Ratio on the Compression Ignition Engine with Diesel and Mahua Biodiesel

EXPERIMENTAL ANALYSIS ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH EUCALYPTUS AND METHYL ESTER OF PALM KERNEL OIL

Use of Palm oil Biodiesel Blends as a Fuel for Compression Ignition Engine

PERFORMANCE AND EMISSION CHARACTERISTICS OF CI DI ENGINE USING BLENDS OF BIODIESEL (WASTE COOKING OIL) AND DIESEL FUEL

Performance Testing of Diesel Engine using Cardanol-Kerosene oil blend

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

Performance and Experimental analysis of a Safflower biodiesel and Diesel blends on C.I. Engine

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL

Operational Characteristics of Diesel Engine Run by Ester of Sunflower Oil and Compare with Diesel Fuel Operation

International Journal on Emerging Technologies (Special Issue on NCRIET-2015) 6(2): 57-62(2015)

Effect of Jatropha Biodiesel Blend with Diesel Fuel on Performance of Four Stroke Single Cylinder Diesel Engine

Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil

IJRASET 2013: All Rights are Reserved

National Journal on Advances in Building Sciences and Mechanics, Vol. 1, No.2, October

Performance Test of IC Engine Using Blends of Ethanol and Kerosene with Diesel

EXPERIMENTAL INVESTIGATION ON VCR ENGINE BY USING DUAL BIODIESEL

CHAPTER 1 INTRODUCTION

Vivek Pandey 1, V.K. Gupta 2 1,2 Department of Mechanical Engineering, College of Technology, GBPUA&T, Pantnagar, India

COMBUSTION CHARACTERISTICS OF DI-CI ENGINE WITH BIODIESEL PRODUCED FROM WASTE CHICKEN FAT

S S Ragit a *, S K Mohapatra a & K Kundu b. Indian Journal of Engineering & Materials Sciences Vol. 18, June 2011, pp

Analysis of Emission characteristics on Compression Ignition Engine using Dual Fuel Mode for Variable Speed

Effect of Compression Ratio in a Direct Injection Compression Ignition Engine Fuelled with Methyl Ester of Neem Oil: Experimental Study

PERFORMANCE IMPROVEMENT OF A DI DIESEL ENGINE WITH TURBOCHARGING USING BIOFUEL

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 08, 2015 ISSN (online):

Effect of Tangential Groove Piston on Diesel Engine with Jatropha Methyl Ester

Emission Characteristics of Rice Bran Oil Biodiesel as an Alternative in Single Cylinder CI Engine with DI Ethyl Ether Blends

Experimental Investigation of Performance and Emission Characteristics of Simarouba Biodiesel and Its Blends on LHR Engine

EFFECT OF COMPRESSION RATIO ON CI ENGINE FUELED WITH METHYL ESTER OF THEVETIA PERUVIANA SEED OIL

Effect of Nano-Fluid Additiveon Emission Reduction in Biodiesel

Effect of injection timing on performance, combustion and emission characteristics of diesel engine using mahua oil methyl ester as fuel

Experimental Investigation on Performance Characteristic of Diesel Engine by Using Methyl Ester of Linseed and Neem oil

National Conference on Advances in Mechanical Engineering Science (NCAMES-2016)

INVESTIGATIONS ON THE EFFECT OF MAHUA BIOFUEL BLENDS AND LOAD ON PERFORMANCE AND NOX EMISSIONS OF DIESEL ENGINE USING RESPONSE SURFACE METHODOLOGY

Experimental Study of Linseed Oil as an Alternative Fuel for Diesel Engine

Cottonseed Oil and Esterifies Cottonseed Oil as Lubricant in IC

EFFECTS OF ETHANOL-DIESEL EMULSIONS ON THE PERFORMANCE, COMBUSTION AND EMISSION CHARACTERISTICS OF DI DIESEL ENGINE

Transcription:

Experimental Analysis of Working Characteristics of Cornoil As An Alternate Fuel of Engine Dr. A. Nagaraju 1 U. Sreekanth 1 Lecturer, Asst.prof, Department of Mechanical Engineering, Department of Mechanical Engineering, JNTUA College of Engineering, JNTUA, Geethanjali College of Engineering & Tech, Ananthapuramu, A.P, India. Hyderabad. Telangana, India. Abstract:: In many applications like Transportation, Power generation, Marine applications etc., diesel Engines are being used as a major source. During last century, the use of fossil resources is increasing due to significant growth of population and change in life style. This causes crises of fossil fuel depletion For the diesel engines there is an urgent need for suitable alternative fuels.in this paper will be examined the use of dieselcorn oil mixtures in diesel four stroke engine.. With diesel and different blends of corn oil, an attempt is made to analyze the performance and emission characteristics of a diesel engine. Based on experimental analysis of the engine brake power specific fuel consumption thermal efficiencies are calculated. Emissions such as carbon monoxide, carbon dioxide are measured. Keywords: Alternative fuels, Emissions, engines, fossil fuel, corn oil. I. INTRODUCTION As fossil fuels are limited sources of energy, this increasing demand for energy has led to a search for alternative sources of energy that would be economically efficient, socially equitable and environmentally sound. Biofuels are considered as alternative sources of energy. Speaking in terms of advantages, much heard is they, as an alternative fuel, could solve served is used as the increasing energy prices world wide. By using renewable resources like Vegetable oils [1], Animal fats tallow s etc., biodiesel can be produced. Low content of sulfur, aromatic content and having high cetane number and lubrication properties are seen in biodiesel by many investigations [2]. With the help of biodiesel blends with diesel fuel many investigations are carried out and results showed that there is less in emissions like CO,HC,SO2 [3]. In this paper, would like to highlight upon the usage of different blends (1%, 2%, 3%, 4%)of corn oil for a compression ignition engine and studied the performance and Emission characteristics of this fuel at different loads. A single cylinder CI engine (Kirloskar, 4stroke water cooled with 5HP,15rpm) coupled with eddy current dynamo meter loading is used for experimental investigation and following results have been recorded. II. LITERATURE SURVEY S. Bari (4)., makes a point that viscosity of Crude Palm Oil (CPO) is too high to allow smooth flow in fuel lines and thus needs to be heated to reduce viscosity. However, this heating of CPO offered no advantages in term of performance. In the performance test, it was found that the performance of CPO, as a fuel, was comparable with that of. Carbon monoxide emissions for CPO. Compared to, were higher. Y. He (5)., has done his investigation on cottonseed oi1. This oil is promising as an alternate fuel source of engine because of its high gross heat content. Optimal combinations of four working parameters under two operating conditions were determined when the mixture of 3% cottonseed oil and 7% oil were used. The main factor influencing the SFC or thermal efficiency was found to be the fuel delivery angle and its optimum values for two operating conditions was about 22CA that is 3CA to 5CA in advance of that which was appropriate for the engine fuelled by pure oil. Murat karabektas et al.,(6) In this study " cottonseed oil methyl ester(come) is use as fuel in engine to evaluate the performance and emission parameters. For this purpose single cylinder. four-stroke, direct injection engine is taken. Before supplied to the engine, COME was preheated to four different temperatures. namely 3.6.9 and 12'C. The results revealed that preheating COME up to 9C leads to favorable effects on the BTE and CO emissions but causes higher NOx emissions. Moreover. the brake power increases slighty with the preheating temperature up to 9 C. L.kallivroussis (7)., points out that one requirement for an oil seed crop to be considered for Bio- production is that it provides a positive energy return compared with the energy used to produce the fuel. sunflower seed is a good source of Biomass, and a crop considered for Bio- production. The energy inputs and outputs were estimated to be 1.49 and47.4 GJ ha-1, respectively, which translates into an energy ratio of 4.5:1. The possibilities to reduce the energy inputs are very limited. www.ijert.org 3

III. CORN OIL Corn is an important raw material for bioethanol production. The oil is contained in the germ of the grain. Up to 7% of corn is used as an animal feed,2% for food, 5% in industry. Industrial use of corn is expanding By-product of bioethanol production -DDGS(Distillers dried grains with soluble) is used for the production of animal feed. Corn oil can be produced from germ separated in preparation of maize grains for fermentation or for production of starch. corn oil processing starts with corn germ, the first step in corn oil processing is mechanical: corn kernels are dehulled and then crushed with a grooved roller to break down the cell walls. The resultant cake is then wet milled, steeped in water acidified with sulfur dioxide to separate the components of the seed. Oil is expelled from the germ using a heated screw press, which can yield as much as 5 percent of the germ oil and remaining oil is stripped from the press cake with the solvent hexane, a volatile by-product of gasoline production.(hexane is introduced to the cake bed with an exposure time as brief as possible so that hexane residual in the oil is limited). The corn oil in the hexane solution is heated to vaporize the volatile solvent, which is captured as a condensate and used again. Then the heated expelled and hexane extracted oils are combined as crude oil. The remaining cake is processed for livestock feed. separating funnel PROPERTIES OF CORN OIL COMPARISON WITH DIESEL PROPERTIES CORNOIL DIESEL Density at 15 c (gm/cc).893.827 Calorific value(kj/kg) 36,21 42,682 Kinematic viscosity at 4 c 5.512 5 Flash point( c) 182 72 Fire point( c) 196 85 By seeing the properties of corn oil the following conclusions are made: 1.corn oil has high flash point, it means it is safer to transport than diesel. 2.corn oil is non toxic than diesel. :corn kernal IV. BIODIESEL PRODUCTION PROCESS 3.corn oil can be used as an alternative fuel because of calorific value which is nearer to diesel. V. EXPERIMENTAL INVESTIGATION:- Transesterification: The process of converting bio-oils less viscous and it is a chemical process by which bio-oils are turned into biodiesel by separating glycerin. Transesterification process: Corn oil is added into a three neck fitted with condenser, thermometer and methanol dozer. The oil is heated upto 6 C. Mean while prepare sodium hydroxide in appropriate amount of methanol and add this solution to preheated oil and stir it for 1-1.5 hours. Then in a separating funnel the mixture is poured to settle down. Glycerin which is settled at the bottom as thick, cloudy liquid is drained out. The biodiesel remains on top as a translucent liquid. www.ijert.org 31

1.Engine Specification: Engine make : Kirloskar Type : single cylinder, 4 stroke water cooled Capacity : 5HP @ 15 rpm Bore diameter : 8 mm Stroke length : 11 mm 2.Test rig description: Brand new kirloskar make AV1 model diesel engine of 5HP[3.7kW] capacity and water cooled was used. To measure the engine power, eddy current dynamometer was connected. Thermocouples are provided at appropriate positions and are read by digital temperature indicator. Engine speed and load applied at various conditions are determined by digital rpm indicator and energy meter reading. The emission like NOx, HC, CO, O2 and CO2 are measured by employing an exhaust gas analyzer. 3.Procedure: Always engine was started at no load condition by hand cranking using de-compressor lever and allowed to work for at least few minutes to stabilize at rated value. Load the engine by switching on the loading switches..experiments were carried out with pure diesel and various blends of biodiesel [B1, B2, B3, B4]. At a rated speed, with no load and varying load conditions all blends were tested. The ammeter, voltmeter, time taken for 1cc of fuel consumption parameters which are related to performance of engine were recorded. The emissions from exhaust gas analyzer were recorded. Brake thermal efficiency, brake specific fuel consumption for pure diesel and its blends were calculated. VI. RESULTS AND DISCUSSION 1. Brake Specific Fuel Consumption The variation of brake specific fuel consumption with various loads for diesel and various blends of biodiesel is shown in fig.3.it is observed that the brake specific fuel consumption is found to decrease with increase in load. B1 showed lowest brake specific fuel consumption (.461kg/kWhr). This is due to lower calorific value of the blended fuel as compared with diesel. BSFC, kg/kw hr.8.7.6.5.4.3.2.1 Load Vs BSFC 1 2 3 Diese l B1 B2 B3 2.Brake Thermal Efficiency Load Vs Brake Thermal Efficiency The variation of brake thermal efficiency with respect to various loads of the engine is shown in fig.4...it is observed that the maximum thermal efficiency for B1 (18.5%) was higher than that of diesel (18.23%). This may be due to variation of total power produced by the engine with respect to heat supplied in the form of fuel. 1 1 2 3 3.Exhaust Gas Emissions of Carbon dioxide: CO 2, %Vol ηbth, % 3.5 3 2.5 2 1.5 1.5 22 2 18 16 14 12 Load Vs ηbth Load Vs CO 2 1 2 3 Load Vs Carbon dioxide Diese l B1 B2 B1 B2 B3 B4 The variation of carbon dioxide emission with respect to various loads of the engine is shown in fig.5. From the results, it is observed that amount of carbon dioxide emission produced while using corn oil blend B1 is higher than diesel at full load condition, this indicates the complete combustion of fuel. Load Vs Brake specific fuel consumption www.ijert.org 32

4.Unburnt Hydrocarbons: Load Vs Hydro carbons The hydrocarbons variation with brake power for the blends and diesel are shown in fig.6. The hydrocarbons are lower for all blends for all the blends compared to diesel. This is depends on oxygen quantity and fuel viscosity, in turn atomization. 5.Exhaust Gas Emissions of Carbon monoxide: CO, %Vol HC, ppm 4 3 2 1.4.35.3.25.2.15.1.5 Load vs HC 1 2 3 Load Vs CO 1 2 3 Load Vs Carbon monoxide B1 B2 B3 B4 B1 B2 B3 B4 The variation of carbon monoxide emission with respect to various loads of the engine is shown in fig.7.variation of CO emission against various loads are recorded. These lower CO emissions of biodiesel blend B1 may be due to their more complete oxidation as compared to diesel. VII.CONCLUSIONS Following are the conclusions based on the experimental results obtained while operating single cylinder water cooled diesel engine fuelled with corn Oil and its diesel blends. 1. It is observed that the maximum thermal efficiency for B1 (18.5%) was higher than that of diesel (18.23%). 2. B1 showed lowest brake specific fuel consumption (.461kg/kWhr). 3. It is observed that amount of carbon dioxide emission produced while using corn oil blend B1 is higher than diesel at full load condition. 4. CO emission is reduced for B1 blend fuel compared to diesel 5. HC emission is reduced for B1 blend fuels compared to diesel. VIII.REFERENCES [1] Ibrahim Thamer Nazzal, Experimental study of vegetable oildiesel blends on the performance of CI engine, Anbar Journal of Engineering Sciences. [2] B.Tesfa etal., combustion and performance characteristics of CI engine running with biodiesel, University of Huddersfield Respository. [3] A.M.Liaquat etal., application of blends fuels in a diesel engine, Energy Procedia 14(212) 1124-1133. [4] S.Bari etal., Effects of preheating crude palm oil(cpo) on injection system,performance and emission of a diesel engine,renewable Energy 27(3),339-351,22 [5] Y.He etal., study on cotton seed oil in a single cylinder diesel engine,renewable Energy3(25). [6] Murat Karabektas etal., The effect of cottonseed oil methyl ester on the performance and exhaust emissions of a diesel engine, International journal of Ambient Energy1/21;31:23-21. [7] L.Kallivroussis etal., The energy balance of sunflower production for biodiesel, Biosystems Engineering 3/2. www.ijert.org 33