Experimental Investigation of a Diesel Engine fueled by emulsified B20 biodiesel

Similar documents
EXPERIMENTAL INVESTIGATION OF A DIESEL ENGINE FUELED BY EMULSIFIED B20 BIODIESEL

THEVETIA PERUVIANA BIODIESEL EMULSION USED AS A FUEL IN A SINGLE CYLINDER DIESEL ENGINE REDUCES NOX AND SMOKE

EFFECT OF BUTANOL-DIESEL BLENDS IN A COMPRESSION IGNITION ENGINE TO REDUCE EMISSION

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends

International Journal of Current Trends in Engineering & Technology ISSN: Volume: 02, Issue: 04 (JULY-AUGUST, 2016)

Experimental Investigations on a Four Stoke Diesel Engine Operated by Jatropha Bio Diesel and its Blends with Diesel

Performance and Emission Analysis of Diesel Engine using palm seed oil and diesel blend

Performance and Emission Characteristics of Direct Injection Diesel Engine Running On Canola Oil / Diesel Fuel Blend

Combustion and Emission Characteristics of Jatropha Blend as a Biodiesel for Compression Ignition Engine with Variation of Compression Ratio

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 11 Nov p-issn:

Investigation of Engine Performance using Emulsified Diesel fuel

Material Science Research India Vol. 7(1), (2010)

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India

EFFECT OF STEAM INJECTION ON NO X EMISSIONS AND PERFORMANCE OF A SINGLE CYLINDER DIESEL ENGINE FUELLED WITH SOY METHYL ESTER

A.S.P. Sri Vignesh 1, Prof C. Thamotharan 2 1 (Department of Automobile Engineering, Bharath Institute of Science and Technology, Bharath University

ABSTRACT I. INTRODUCTION II. TECHNICAL SPECIFICATIONS OF THE ENGINE III. MATERIAL & METHODS

Project Reference No.: 40S_B_MTECH_007

Research Article. Effect of exhaust gas recirculation on NOx emission of a annona methyl ester operated diesel engine

Ester (KOME)-Diesel blends as a Fuel

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine

PERFORMANCE AND EMISSION CHARACTERISTICS OF CI DI ENGINE USING BLENDS OF BIODIESEL (WASTE COOKING OIL) AND DIESEL FUEL

EFFECT OF EMULSIFIER ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING PALM BIODIESEL

Performance, emission and combustion characteristics of fish-oil biodiesel engine

EXPERIMENTAL INVETIGATIONN ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DI- CI ENGINE FUELED WITH PREHEATED SHEA OLEIN BIODIESEL

Performance, Combustion and Emission Characteristics of Corn oil blended with Diesel

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.5, pp ,

Eucalyptus Biodiesel; an Environmental friendly fuel for Compression Ignition Engines

National Conference on Advances in Mechanical Engineering Science (NCAMES-2016)

EFFICACY OF WATER-IN-DIESEL EMULSION TO REDUCE EXHAUST GAS POLLUTANTS OF DIESEL ENGINE

Comparative Analysis of Jatropha-Methanol Mixture and Diesel on Direct Injection Diesel Engine

EFFECTS OF ETHANOL-DIESEL EMULSIONS ON THE PERFORMANCE, COMBUSTION AND EMISSION CHARACTERISTICS OF DI DIESEL ENGINE

GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN:

Performance and Emission of Small Diesel Engine Using Diesel-Crude Palm Oil- Water Emulsion as Fuel

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE WITH MUSTARD OIL-DIESEL BLENDS AS FUEL

EFFECT OF L-ASCORBIC ACID AS ADDITIVE FOR EXHAUST EMISSION REDUCTION IN A DIRECT INJECTION DIESEL ENGINE USING MANGO SEED METHYL ESTER

Experimental Study on Performance and Emission of Diesel Engine using Sunflower Oil-Diesel Blends as Fuel

Biodiesel-water emulsions: An alternative approach for conventional fuels

Chandra Prasad B S, Sunil S and Suresha V Asst. Professor, Dept of Mechanical Engineering, SVCE, Bengaluru

Experimental investigation on constant-speed diesel engine fueled with. biofuel mixtures under the effect of fuel injection

National Journal on Advances in Building Sciences and Mechanics, Vol. 1, No.2, October

Automotive Technology

EFFECT OF COMPRESSION RATIO ON CI ENGINE FUELED WITH METHYL ESTER OF THEVETIA PERUVIANA SEED OIL

PERFORMANCE AND EMISSION ANALYSIS OF CI ENGINE FUELLED WITH THE BLENDS OF PALM OIL METHYL ESTERS AND DIESEL

Rubber Seed Oil as an Alternative Fuel for CI Engine: Review

CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES

INVESTIGATION OF PERFORMANCE AND EMISSION CHARACTERISTICS OF A COMPRESSION IGNITION ENGINE WITH OXYGENATED FUEL

Performance and Emission Characteristics of 4 S DI diesel Engine fueled with Calophyllum Inophyllum Biodiesel Blends

THE EFFECT OF SUPERCHARGING ON PERFORMANCE AND EMISSION CHARACTERISTICS OF COMPRESION IGNITION ENGINE WITH DIESEL-ETHANOL-ESTER BLENDS

Case Study of Exhaust Gas Recirculation on Engine Performance

S S Ragit a *, S K Mohapatra a & K Kundu b. Indian Journal of Engineering & Materials Sciences Vol. 18, June 2011, pp

ISSN: [Sirivella, 6(10): October, 2017] Impact Factor: 4.116

CHAPTER 5 EXPERIMENTAL SET UP AND TESTING PROCEDURES

Impact of Cold and Hot Exhaust Gas Recirculation on Diesel Engine

THE EFFECT OF SUPERCHARGING ON PERFORMANCE AND EMISSION CHARACTERISTICS OF C.I.ENGINE WITH DIESEL-ETHANOL-ESTER BLENDS

Impact of Various Compression Ratio on the Compression Ignition Engine with Diesel and Mahua Biodiesel

Dual Fuel Engine Operated with Hydrogen Enriched Producer Gas & Honge Biodiesel

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL

COMBUSTION CHARACTERISTICS OF DI-CI ENGINE WITH BIODIESEL PRODUCED FROM WASTE CHICKEN FAT

Comparative Analysis of Performance and Emission Charactristics of Neem Oil Using 3 And 4 Holes Injection Nozzle on DI Diesel Engine

(Department of Automobile Engineering, Bharath Institute of Science and Technology, Bharath University Selaiyur, Chennai - 73, Tamil Nadu, India)

Effect of biodiesel and its blends with oxygenated additives on performance and emissions from a diesel engine

Study on Effect of Injection Opening Pressure on the Performance and Emissions of C I Engine Running on Neem Methyl Ester Blend as a Fuel

Properties and Use of Jatropha Curcas Ethyl Ester and Diesel Fuel Blends in Variable Compression Ignition Engine

Government Engineering College, Bhuj.

Prediction of Performance and Emission of Palm oil Biodiesel in Diesel Engine

Effect of Direct Water Injection on Performance and Emission Characteristics of Diesel Engine Fueled with Bio Diesel and Hydrogen

April-June JCPS Volume 8 Issue 2

EXPERIMENTAL INVESTIGATION OF METHODS TO IMPROVE PERFORMANCE OF DI ENGINE USING PONGAMIA BIODIESEL BY VARYING PARAMETERS

STUDY ON PERFORMANCE AND EMISSION CHARACTERISTICS OF A SINGLE CYLINDER DIESEL ENGINE USING EXHAUST GAS RECIRCULATION

PERFORMANCE AND EMISSION CHARACTERISTICS OF A VARIABLE COMPRESSION SI ENGINE USING ETHANOL- GASOLINE BLENDS AS FUEL

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL

Performance Testing of Diesel Engine using Cardanol-Kerosene oil blend

EXPERIMENTAL ANALYSIS ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH EUCALYPTUS AND METHYL ESTER OF PALM KERNEL OIL

Experimental Investigation On Performance And Emission Characteristics Of A Diesel Engine Fuelled With Karanja Oil Methyl Ester Using Additive

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 08, 2015 ISSN (online):

EXPERIMENTAL AND THEORETICAL INVESTIGATION ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL FUEL BLENDS

PERFORMANCE OF DIRECT INJECTION C.I. ENGINE USING KARANJA OIL AT DIFFERENT INJECTION PRESSURES

Performance Enhancement & Emission Reduction of Single Cylinder S.I. Engine using Tri Fuels -An Experimental Investigation

Feasibility Study of Soyabean Oil as an Alternate Fuel for CI Engine at Variable Compression Ratio

Experimental Investigation of Single Cylinder Diesel Engine with Sesame Oil and Ethanol Blends at Various Compression Ratio.

EFFECT OF ETHANOL BLENDED WITH COTTONSEED OIL METHYL ESTER ON ENGINE PERFORMANCE AND EMISSION IN A DI DIESEL ENGINE BY VARYING INJECTION PRESSURE

Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil

PERFORMANCE AND EMISSION CHARACTERISTICS OF CASHEW NUT SHELL PYROLYSED OIL WASTE COOKING OIL WITH DIESEL FUEL IN A FOUR STOKE DI DIESEL ENGINE

Experimental Investigation On Performance, Combustion Characteristics Of Diesel Engine By Using Cotton Seed Oil

V.Venkatakranthi Teja. N S Raju Institute of Technology (NSRIT), Sontyam, Visakhapatnam, Andhra Pradesh , India.

EXPERIMENTAL INVESTIGATION OF FOUR STROKE SINGLE CYLINDER DIESEL ENGINE WITH OXYGENATED FUEL ADDITIVES

Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System

EFFECTS OF WATER DIESEL EMULSION ON DIESEL ENGINE. Vadlamudi, Guntur, Andhra Pradesh, India

Investigation on the Performance and Emissions of Aloevera Blends with EGR System

Mechatronics, Electrical Power, and Vehicular Technology

ANALYSIS OF EXHAUST GAS RECIRCULATION (EGR) SYSTEM

EXPERIMENTAL INVESTIGATIONS ON DUAL BIO-FUEL (PINE BIODIESEL AND PALM BIODIESEL) BLENDED WITH DIESEL ON A SINGLE CYLINDER DIESEL ENGINE

1. Introduction. Arun Pattanashetti 1, Praveen A. Harari 2, Ghadge S. S 3., Bhagwat V. A 4 ABSTRACT

COMBUSTION AND EMISSION CHARACTERISTICS OF A DIESEL ENGINE FUELLED WITH JATROPHA AND DIESEL OIL BLENDS

International Journal on Emerging Technologies (Special Issue on NCRIET-2015) 6(2): 57-62(2015)

EFFECT OF EXHAUST GAS RECIRCULATION (EGR) IN INTERNAL COMBUSTION ENGINE

Experimental analysis of a Diesel Engine fuelled with Biodiesel Blend using Di-ethyl ether as fuel additives

JCHPS Special Issue 7: 2015 NCRTDSGT 2015 Page 408

Transcription:

International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 974-429, ISSN(Online):2455-9555 Vol.11 No.2, pp 2-26, 218 Experimental Investigation of a Engine fueled by emulsified biodiesel R. Vinoth Kumar Department of Mechanical Engineering, E.S.Engineering College, Villupuram, Tamil Nadu, India. Abstract : The depletion of petroleum reserves and ever growing vehicle population have lead to the search for an apt substitute fuel to meet the future requirements satisfying the emission norms as well. Since diesel engines emit gases like nitrogen oxide (NOx) and particulate matter to objectionable level which are harmful to the environment, the search becomes much more relevant. Emulsified fuels have been found to be promising in reducing the emissions. Thevetia Peruviana biodiesel has already been found to be a promising substitute fuel for diesel. In this study biodiesel of Thevetia Peruviana (diesel and 2% biodiesel) with water in the ratios of 5% and 7.5% has been utilized as fuel to investigate the engine performance and emission characteristics and the results reported. Keywords : biodiesel, Thevetia Peruviana biodiesel, emulsions, surfactants, emissions. I. Introduction The depletion of petroleum reserves due to the growing vehicle population has intensified the search for renewable alternate fuels. The emissions like NOx and particulate matter from the diesel engines are detrimental to the environment and to the human beings. Water emulsified fuels are getting importance due to the simultaneous reduction of NOx and particulate matter. The addition of water in the form of emulsion has been found to improve the combustion efficiency and the brake thermal efficiency [1&2]. Analysis of the emissions and heat release data indicate that water enhances air fuel mixing to maintain fuel economy and lower soot emissions [3]. The volatility difference between fuel and water enhances the micro explosion phenomenon which leads to faster combustion reaction. So there is an improvement in brake thermal efficiency and reduction in the formation of NOx, Soot, HC and PM in the diesel engine [4&5]. Usually diesel or biodiesel is immiscible with water. Surfactants are required to emulsify the fuel and ensure stability for long duration by reducing the interfacial tension [6]. In utilizing span 8 and tween 8 in producing O/W/O three phase emulsion, 2% emulsifier with a HLB=6-8 produces more stable emulsifier [7]. Many recent papers highlight the engine performance and emission reduction in using the water emulsified diesel as fuel. Research on biodiesel emulsion is limited compared to diesel emulsion due to stability problems. The emulsification stability of biodiesel is inferior to that of the diesel emulsion if the same surfactant mixture of span 8and tween 8 is used [8]. The increase of water content in the emulsion formulation reduces the calorific value of the fuel[9]. The International Journal of ChemTech Research, 218,11(2): 2-26. DOI= http://dx.doi.org/1.292/ijctr.218.11225

R. Vinoth Kumar /International Journal of ChemTech Research, 218,11(2): 2-26. 21 present study deals with the performance and emission characteristics of the diesel engine using biodiesel with the emulsions of 5% and 7.5% water. biodiesel was used in the above combination due to its suitability as an alternative fuel for diesel as stated in most of the research works [1]. The low energy content restricts the utilization of high percentage of water in emulsified fuel. Hence in this study emulsified fuels in low percentages of water have been tried. These biodiesel emulsions have emulsification stability for five hours. II. Experimental Details A computerized kirloskar diesel engine of AV1 model, four stroke, direct injection, naturally aspirated, water cooled engine was utilized for the investigation. The engine specifications are listed in Table 1. Table I Specification of the diesel engine No. of cylinders 1 1 Bore 8mm Stroke 11mm Compression ratio 16.5:1 Rated power 3.7kW Injection pressure 2-25 bar Injection timing 23 BTDC Rated speed 15rpm The diesel engine in which the experiments were carried outwas coupled with an eddy current dynamometer and a data acquisition system. A five gas AVL analyzer was used to measure the emission characteristics like CO2, CO, NOx, HC and O2. Smoke opacity was measured using the AVL smokemeter. Thevetia Peruviana biodiesel (TPBD) was prepared inthe laboratory using the seed oil of the plant.5g of NaoH perliter of Thevetia Peruviana seed oil (TPSO) was mixed with16 ml of methyl alcohol to prepare methoxide. Then oil was heated to 6C and the prepared methoxide was poured intothe oil. The reaction was allowed for one hour and the final products were allowed to settle in the separating funnel overnight. Using distilled water, the biodiesel was washed four or five times to remove the impurities. The properties of biodiesel are listed in Table 2. Table 2 Properties of Biodiesel Properties kinematic diesel TPSO TPBD ASTM code viscosity 4. 32.9 6. D2217 (Cst), 4 C specific.83.92.86 D445 gravity Flash 45 24 16 D92 Point C Fire point 52 252 172 D92 ( C) Cloud -8 2-2 D97 point ( C) Pour point -2-3 -4 D97 ( C) Calorific 432 41 4132 D489 value (kj/kg) Cetane 49 47 5 D4737

R. Vinoth Kumar /International Journal of ChemTech Research, 218,11(2): 2-26. 22 number Emulsions were prepared by using the emulsifying agents lipophilic span 8 and hydrophilic tween 8 having the HLB value of 8 in 2% of total volume. In this study a two stage emulsification method was used for the emulsion preparation. In the first stage lipophilic span 8 with HLB = 4.3 and hydrophilic tween 8 with HLB=15 were added with diesel and water slowly and stirred. In the second stage biodiesel was added and the stirring was continued for 1 minutes at 5rpm.Water was added in the ratios of 5% and 7.5% with biodiesel by volume. The properties of emulsified fuels are given in table 3 below. Using the emulsions the engine was run and the performance and emission characteristics were studied. Table 3 Properties of Emulsified Fuels Type of fuel Density kg/m 3 Calorific value kj/kg 836 425 Biodiesel 836 42198 Biodiesel +5%W 845 397 Biodiesel +7.5%W 848 38466 The experiments were conducted in different loads like 25%,5% and 75% of full load and full load. Similar experiments were done with diesel and biodiesel so as to make a comparison. The accuracy of measurement and uncertainties of computed results are listed in Table 4. Table 4 The Accuracies of the Measurements and the Uncertainties in the Calculated Results Measurements Accuracy Temperatures 1 C Speed 1rpm Time.5% Smoke meter 1% CO.3% vol CO 2.5%vol HC 1rpm vol O 2.1% vol No 5 ppm vol Pressure.2% Crank angle.5deg Calculated Results Uncertainty Thermal efficiency 1% Time.5% Fuel volumetric rate 1% III. Results and Discussions A. Brake Thermal Efficiency (BTE) The variations of brake thermal efficiency with different loads for different fuels have been shown in figure 1. The brake thermal efficiency increases with increase in load. The brake thermal efficiency of biodiesel is less than diesel due to its lower calorific value. The 5% and 7.5% water emulsified fuels exhibit lower brake thermal efficiencies in low loads compared to diesel and show slight improvement in higher loads. This is because the micro explosion phenomenon due to volatility difference between water and fuels enhances air fuel mixing during higher engine torque and hence the improvement in combustion efficiency [4]. This could be the possible reason for higher brake thermal efficiencies even though the calorific values of the emulsions are

HC (ppm) EGT (C) BTE (%) R. Vinoth Kumar /International Journal of ChemTech Research, 218,11(2): 2-26. 23 less than that of diesel. The BTE of 7.5% water emulsion is 3% higher than pure diesel at full load, and it is 2.3% higher for 5% water emulsion. 4 3 2 1 2 4 6 8 Fig.1 Brake Thermal Efficiency versus Load B. Exhaust Gas Temperature The exhaust gas temperature increases while the load is increased. The EGT of biodiesel is higher than that of diesel. The heavier molecules of biodiesel lead to continuous burning even during exhaust which causes higher exhaust gas temperature. For emulsions the exhaust gas temperatures are lesser than that of diesel. This is because the water content in the emulsions gets vaporized during the combustion process and absorbs the heat energy which decreases the local adiabatic flame temperature [4]. This leads to lower exhaust gas temperatures than that of diesel as shown in figure 2. The EGT of biodiesel is 449 C whereas for diesel it is 429 C only. But 7.5% water emulsion and 5% water emulsion emit the exhaust gas with the temperatures of 412 C and 42 Crespectively. 5 4 3 2 1 +5%W +7.5%W 2 4 6 8 Fig. 2 Exhaust Gas Temperature versus Load C. Hydro Carbon (HC) Emissions The hydro carbon emissions at different loads for different fuels have been shown in figure 3. 8 +5%W +7.5%W 6 4 2 2 4 6 8

Smoke (%) NOx (ppm) R. Vinoth Kumar /International Journal of ChemTech Research, 218,11(2): 2-26. 24 Fig.3 Hydro Carbon versus Load Biodiesel shows significant reduction in HC emissions due its efficient burning than diesel. HC emissions of emulsions are found decreasing than that of diesel in higher loads. This is because the enhancement of air fuel mixing due to micro explosion phenomenon as discussed already improves the combustion process and hence the reduction of HC emissions. D. Nitrogen Oxide (NOx) Emissions NOx emission increases while the load is increased as shown in figure 4. In case of biodiesel, burning continuous even during exhaust due to the heavier molecules of biodiesel and exhaust temperature increases as seen already and this is the cause for slightly higher content of NOx compared to diesel[11]. 1 8 6 4 2 +5%W +7.5%W 2 4 6 8 Fig.4 Nitrogen Oxide versus Load By oxidation, the atmospheric nitrogen forms NOx at sufficiently high temperatures [12]. NOx emissions of emulsions are found decreasing than that of diesel as shown in figure 4. This is because the existence of lower adiabatic flame temperature due to the presence of water in the emulsions reduces the formation of NOx [13]. 7.5% water emulsion shows 1% NOx reduction than that of diesel, whereas 8%reduction is observed for 5% water emulsion at full loads. E. Smoke opacity The smoke opacity at different loads for different fuels has been shown in figure 5.The smoke opacity of biodiesel is slightly higher than that of diesel due the heavier molecules of biodiesel. 9 8 7 6 5 4 3 2 1 +5%W +7.5%W 2 4 6 8 Fig.5 Smoke opacity versus load Water emulsified fuels are found to produce reduced smoke opacity compared to diesel. This is because water gets vaporized by absorbing the heat energy during combustion process. This increases the ignition delay time [14]. The ignition delay times of 5% and 7.5% emulsified fuels were found to be 14.2 degrees and 14.4

R. Vinoth Kumar /International Journal of ChemTech Research, 218,11(2): 2-26. 25 degrees respectively whereas diesel had a delay of 13.6 degrees. This increase in delay time improves the mixing process which leads to improved combustion reaction and hence the reduction of smoke opacity[4]. 7.5% water emulsion shows 5% smoke opacity reduction than that of diesel, where as 2.5% reduction is observed for5% water emulsion at full load. IV. Conclusions 1. Thevetia Peruviana biodiesel was prepared in the laboratory and it was observed that the properties were comparable to that of diesel. 2. Emulsified biodiesel (diesel and 2% biodiesel)with water in the ratios of 5% and 7.5%have been prepared and utilized as fuels 3. biodiesel showed slightly lesser BTE compared to diesel due to its lower calorific value. But water emulsified fuels were found to increase the BTE compared to that of diesel at fullload. 4. The continuous burning of biodiesel even during exhaust led to the formation of higher EGT and hence increased NOx emissions than diesel. But emulsified fuels exhibited lower exhaust gas temperatures and hence reduced NOx emissions. A reduction of 1% in NOx emissions was found for 7.5% water emulsified fuel and 8% reduction for 5% water emulsified fuel. 5. Significant reduction in HC emissions was noted for biodiesel due to its efficient burning than diesel. In the case of emulsified fuels, enhancement of air fuel mixing during micro explosion phenomenon in higher loads improved the combustion process thereby reducing the HC emissions. 6. The smoke opacity of biodiesel was slightly higher than that of diesel due the heavier molecules of biodiesel. Emulsified fuels showed reduction in smoke opacity. This was due to the faster combustion reaction. 5% reduction in smoke opacity was noted for 7.5% water emulsified fuel, and 2.5% reduction for 5% water emulsified fuel. 7. There is no significant difference in pressure and heat release rates for various fuels. References 1. Abu-zaid,M., 24.Performance of single cylinder, direct injection engine using waterfuel emulsions Energy conservation and management,45,pp 697-75. 2. Anna lif., Krister Holm berg. Water in diesel emulsions and related systems. Advances incolloid and interface science 26,123-126,pp231-239. 3. kass,m.,d.,lewis,s.a., 29 Utilizing water emulsification to reduce NOx and particulate emissions associated with biodiesel, Transactions of the ASABE,52,pp 5-13 4. Armas,O.,Ballesteros,R.,Martos,F.,J.,Agudelo,F.,J.,25 Characterization of light duty enginepollutant emissions using water emulsified fuels Fuel,84,pp 111-118. 5. Cherng-Yuan Lin.,Kuo-Hua Wang 24 engine performance and emission characteristics using three phase emulsions as fuel.fuel,83,pp 537-545. 6. Danilov,N.,Danilova,R.A.,1977 Properties of water emulsion fuels. Chemistry and Technology of fuelsand oils. vol.13 7. Cherng-Yuan Lin.,Kuo-Hua Wang 23 The fuelproperties of three-phase emulsions as analternativefuel for diesel engines Fuel,82,pp 1367-1375. 8. Cherng-Yuan Lin.,Shiou-An- Lin 27 Effects of emulsification variables on fuel propertiesof two andthree phase biodiesel emulsions Fuel,86,pp 21-217. 9. Roila Awang.,Choo Yuen May 28 Water in oilemulsion of palm biodiesel. Journal of OilPalm Research 2,pp 571-576. 1. Ghosal,M.K.,Das,D.K.,Pradhan,S.C.,Sahool,N.,29.Performance study of engine by using MahuaMethyl Ester (biodiesel) and its blends with dieselfuel. The CIGR Ejournel.vol 1. 11. Balusamy,T.,Marappan,R., 27. Performance evaluation of direct injection diese engine with blends of Thevetia peruviana seed oil and diesel, Journal of Scientific &Industrial ResearchVol.66,pp135-14 12. Heywood, J.B., 1988. Internal Combustion Engines fundamentals, McGrawHill,Newyork. 13. JamilGhojel., Damon Honnery., 25 Heat releasemodel for the combustion of diesel oilemulsion in DIdiesel engines. Applied Thermal Engineering. 25,pp272-285.

R. Vinoth Kumar /International Journal of ChemTech Research, 218,11(2): 2-26. 26 14. Kannan,T.K.,Marappan,R., Thevetia peruviana biodiesel emulsion used as a fuel in a single cylinderdiesel engine reduces NOx and Smoke Thermalscience, 211,Article in press, Available in online(doi:1.2298/tsci 18145K). 15. Senthilkumar,M.,Bellettre,J.,Tazerout,M.,29. The use of biofuel emulsions as fuel for diesel engines: a review. Proceedings of the institution of Mechanical engineers, Part A:Journal of Power and Energy.223,pp729-742 16. Kannan,T.K., Marappan,R., Study of Performance and Emission Characteristics of a Engine fueled with Diethyl Ether blended Thevetia peruviana Bio- emulsion, Journal of the energy institute,211, Article in press. *****