Performance and Emission Analysis on Single Cylinder Diesel Engine Using Dual Fuels

Similar documents
INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

Ester (KOME)-Diesel blends as a Fuel

Performance and Emission Characteristics of a Kirloskar HA394 Diesel Engine Operated on Mahua Oil Methyl Ester

EXPERIMENTAL INVETIGATIONN ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DI- CI ENGINE FUELED WITH PREHEATED SHEA OLEIN BIODIESEL

Chandra Prasad B S, Sunil S and Suresha V Asst. Professor, Dept of Mechanical Engineering, SVCE, Bengaluru

National Journal on Advances in Building Sciences and Mechanics, Vol. 1, No.2, October

Material Science Research India Vol. 7(1), (2010)

Dual Fuel Engine Operated with Hydrogen Enriched Producer Gas & Honge Biodiesel

Experimental Study on Performance and Emission of Diesel Engine using Sunflower Oil-Diesel Blends as Fuel

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 11 Nov p-issn:

Comparative Analysis of Performance and Emission Charactristics of Neem Oil Using 3 And 4 Holes Injection Nozzle on DI Diesel Engine

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE WITH MUSTARD OIL-DIESEL BLENDS AS FUEL

GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN:

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF BTE AND NOX IN A DIRECT INJECTION VCR DIESEL ENGINE RUNNING WITH RICE BRAN METHYL ESTER

PERFORMANCE AND EMISSION CHARACTERISTICS OF CI DI ENGINE USING BLENDS OF BIODIESEL (WASTE COOKING OIL) AND DIESEL FUEL

EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL

Experimental Investigations on a Four Stoke Diesel Engine Operated by Jatropha Bio Diesel and its Blends with Diesel

PERFORMANCE OF DIRECT INJECTION C.I. ENGINE USING KARANJA OIL AT DIFFERENT INJECTION PRESSURES

Simultaneous reduction of NOx and smoke emission of CI engine fuelled with biodiesel

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL

Prediction of Performance and Emission of Palm oil Biodiesel in Diesel Engine

Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System

Effect of injection timing on performance, combustion and emission characteristics of diesel engine using mahua oil methyl ester as fuel

CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES

S S Ragit a *, S K Mohapatra a & K Kundu b. Indian Journal of Engineering & Materials Sciences Vol. 18, June 2011, pp

EXPERIMENTAL INVESTIGATIONS ON 4- STROKE SINGLE CYLINDER DIESEL ENGINE (C.I) WITH CHANGING GEOMETRY OF PISTON

Automotive Technology

PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE FUELLED WITH NON EDIBLE VEGETABLE OIL AND DIESEL BLENDS

ANALYSIS OF EXHAUST GAS RECIRCULATION (EGR) SYSTEM

Combustion and Emission Characteristics of Jatropha Blend as a Biodiesel for Compression Ignition Engine with Variation of Compression Ratio

COMBUSTION AND EMISSION CHARACTERISTICS OF A DIESEL ENGINE FUELLED WITH JATROPHA AND DIESEL OIL BLENDS

Investigation on the Performance and Emissions of Aloevera Blends with EGR System

PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends

Performance, Combustion and Emission Characteristics of Corn oil blended with Diesel

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine

EFFECT OF EMULSIFIER ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING PALM BIODIESEL

Performance and Emission Analysis of C.I. Engine using Biodiesels and its Blends

TO INVESTIGATE THE PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE USING MUSTARD OIL BIODIESEL AS FUEL

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

International Journal of Engineering Science Invention Research & Development; Vol. II Issue II August e-issn:

Study on Effect of Injection Opening Pressure on the Performance and Emissions of C I Engine Running on Neem Methyl Ester Blend as a Fuel

PERFORMANCE IMPROVEMENT OF A DI DIESEL ENGINE WITH TURBOCHARGING USING BIOFUEL

ABSTRACT I. INTRODUCTION II. TECHNICAL SPECIFICATIONS OF THE ENGINE III. MATERIAL & METHODS

Effect of Direct Water Injection on Performance and Emission Characteristics of Diesel Engine Fueled with Bio Diesel and Hydrogen

Research Article. Effect of exhaust gas recirculation on NOx emission of a annona methyl ester operated diesel engine

Preparation of Biodiesel from Chicken Feather oil and Performance analysis on VCR Diesel Engine Equipped with EGR and Smoke Analyser

PERFORMANCE AND EMISSION ANALYSIS OF CI ENGINE FUELLED WITH THE BLENDS OF PALM OIL METHYL ESTERS AND DIESEL

REDUCTION OF NOX EMISSIONS IN JATROPHA SEED OIL-FUELED CI ENGINE

Experimental Investigation of Multi Cylinder Diesel Engine Using Rubber seed oil and Diesel

ISSN: [Sirivella, 6(10): October, 2017] Impact Factor: 4.116

EXPERIMENTAL ANALYSIS ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH EUCALYPTUS AND METHYL ESTER OF PALM KERNEL OIL

International Journal of Modern Engineering Research (IJMER) Vol.3, Issue.1, Jan-Feb pp ISSN:

Use of Alternative Fuel in Lower Heat Rejection Engine with Different Insulation Levels

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HYDROGEN BLENDING ON THE CONCENTRATION OF POLLUTANTS EMITTED FROM A FOUR STROKE DIESEL ENGINE

Feasibility Study of Soyabean Oil as an Alternate Fuel for CI Engine at Variable Compression Ratio

Performance and Emission Analysis of Diesel Engine Using Fish Oil And Biodiesel Blends With Isobutanol As An Additive

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India

Inturi Vamsi et al. Int. Journal of Engineering Research and Applications ISSN : , Vol. 5, Issue 5, ( Part -4) May 2015, pp.

Impact of Cold and Hot Exhaust Gas Recirculation on Diesel Engine

4. With a neat sketch explain in detail about the different types of fuel injection system used in SI engines. (May 2016)

Investigation of the Performance and Emission Characteristics of CI Engine Using Simarouba Biodiesel as Fuel

July 2016 IJIRT Volume 3 Issue 2 ISSN:

Government Engineering College, Bhuj.

Influence of Injection Timing on the Performance of Dual Fuel Compression Ignition Engine with Exhaust Gas Recirculation

A.S.P. Sri Vignesh 1, Prof C. Thamotharan 2 1 (Department of Automobile Engineering, Bharath Institute of Science and Technology, Bharath University

Impact of Various Compression Ratio on the Compression Ignition Engine with Diesel and Mahua Biodiesel

CHAPTER 5 EXPERIMENTAL SET UP AND TESTING PROCEDURES

Performance, emission and combustion characteristics of fish-oil biodiesel engine

National Conference on Advances in Mechanical Engineering Science (NCAMES-2016)

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.5, pp ,

International Journal on Theoretical and Applied Research in Mechanical Engineering (IJTARME)

EMISSION AND PERFORMANCE CHARACTERISTICS OF KARANJA BIODIESEL AND ITS BLENDS IN A C.I. ENGINE AND IT S ECONOMICS

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 08, 2015 ISSN (online):

EFFECT OF COMPRESSION RATIO ON PERFORMANCE OF A HYDROGEN BLENDED CNG-DIESEL DUAL FUEL ENGINE

EXPERIMENTAL INVESTIGATION OF PERFORMANCE ANALYSIS ON VCR DI DIESEL ENGINE OPERATED ON MULTI BLEND BIODIESEL

Experimental Investigation of Emission Reduction by Blending Methanol, Ethanol and Biodiesel with diesel on C.I. Engine

ENVO DIESEL TEST ON AUTOMOTIVE ENGINE AN ANALYSIS OF ITS PERFORMANCE AND EMISSIONS RESULTS

Rubber Seed Oil as an Alternative Fuel for CI Engine: Review

International Journal on Emerging Technologies (Special Issue on NCRIET-2015) 6(2): 57-62(2015)

Received 13 October 2010; revised 23 January 2011; accepted 28 January 2011

Project Reference No.: 40S_B_MTECH_007

COMBUSTION AND EMISSION CHARACTERISTICS OF A DIESEL ENGINE FUELLED WITH JATROPHA AND DIESEL OIL BLENDS

Performance and Emission Analysis of Diesel Engine using Biodiesel and Preheated Jatropha Oil

International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 ISSN IJSER

STUDY ON PERFORMANCE AND EMISSION CHARACTERISTICS OF A SINGLE CYLINDER DIESEL ENGINE USING EXHAUST GAS RECIRCULATION

Keywords: Alternative fuels, Biodiesel, Blends, Diesel engine, Emissions, Karanja and Performance. 1. Introduction

Experimental Investigation of Single Cylinder Diesel Engine with Sesame Oil and Ethanol Blends at Various Compression Ratio.

Emission and Performance Characteristics of Diesel Engine Using Mamey Sapote Biodiesel as Alternate Fuel

AN EXPERIMENTAL INVESTIGATION OF EFFECT OF COOLED EXHAUST GAS RE-CIRCULATION (EGR) FOR NOX REDUCTION IN SINGLE CYLINDER CI

Research Article Performance and Emission Analysis of a CI Engine in Dual Mode with LPG and Karanja Oil Methyl Ester

THE EFFECTS OF OXYGENATED ADDITIVE AND EGR IN A DIESEL ENGINE

Indian Journal of Engineering

REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD

COMBUSTION CHARACTERISTICS OF DI-CI ENGINE WITH BIODIESEL PRODUCED FROM WASTE CHICKEN FAT

Comparative Analysis of Performance and Emission of Diesel Engine by Varying Compression Ratio Using Different Fuels

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 08 Aug p-issn:

1. Introduction. Arun Pattanashetti 1, Praveen A. Harari 2, Ghadge S. S 3., Bhagwat V. A 4 ABSTRACT

INVESTIGATION OF CI DIESEL ENGINE EMISSION CONTROL AND PERFORMANCE PARAMETERS USING BIODIESEL WITH YSZ COATED PISTON CROWN

Performance and Emission Analysis of Diesel Engine using palm seed oil and diesel blend

Transcription:

Performance and Emission Analysis on Single Cylinder Diesel Engine Using Dual Fuels R. Vidya Sagar Raju a, V. Nageswara Reddy a, B. Dinesh Babu a, Dr. R. Meenakshi Reddy b, Dr. G. Sreenivasa Rao c a R.G.M. College of Engg. & Technology, Nandyal, A.P., India. b Sri Venkateshwara Institute of Technology, Anantapur, A.P., India c R.V.R. & J.C. Engg. College, Guntur, A.P., India. ABSTRACT 1. Introduction: Biodiesel is an alternative fuel to diesel derived from vegetable oils by transesterification process. It can be used in diesel engines with/without any modification in the engine system. Biodiesel engines emit slightly higher NOx emissions, as compared to that of diesel engines, as higher cylinder temperatures achieved during combustion. A single cylinder diesel engine was modified to use LPG in dual fuel mode to study the performance, emission, and characteristics. The primary fuel, liquefied petroleum gas (LPG), was mixed with air, compressed, and ignited by a small pilot spray of diesel. The kirloskar (AV1 model) 4-stroke single cylinder water cooled diesel engine in made to work as Dual Fuel Engine by attaching a mixing chamber to the engine and giving the LPG gas connections to supply LPG. The engine performed satisfactorily with LPG - Biodiesel, so that the PAME can be used as an alternative fuels in existing Dual Fuel Engine without any hardware modification in the system. The engine has been properly modified to operate under dual fuel operation using LPG as the primary fuel and Diesel, POME as an ignition source. From the experimental results obtained with LPG - Diesel, LPG - POME in dual fuel engine, it was concluded that the brake thermal efficiency of the engine under dual fuel mode is less compared to normal diesel operation at lower and part loads. But at higher loads the efficiency of the engine with LPG - Diesel in a dual fuel mode is comparable with normal diesel operation. It was also noticed reduction in emissions of diesel engine with dual fuel mode. Key words: Diesel engine, dual fuel, biodiesel, LPG gas, performance, emissions. Literature on log and biodiesel has been collected and grouped in the following sections. [1] In this investigation, the characteristics of combustion of natural gas in an unmodified diesel engine using pilot injection ignition method. They identified that the engine speeds, load, and delay period, system temperature, mixture composition and turbulence in the cylinder as the factors influencing the combustion characteristics of dual fuel engines. [2] In this investigation the suitability of Mahua oil methyl ester as alternative fuel for diesel engine. They found that trans-esterification of Mahua oil with alcohol provided a significant reduction in viscosity, thereby enhancing the physical properties of the renewable fuel to improve engine performance. They reported in their paper that the engine performance with Mahua oil methyl ester differed a little from engine performance with diesel fuel. They concluded that the engine with methyl ester of Mahua oil gives lower HC, CO emission and smoke than conventional diesel at optimum conditions. [3] In this investigation, the suitability of Mahua oil methyl oil ester as alternative fuel for diesel engine. They mentioned that Mahua oil be easily substituted up to % diesel without any significant difference in power output, BSFC, and brake thermal efficiency. The performance of engine with Mahua oil blends increased with the increase in compression ratio from 16:1 to :1. They found that the increase in concentration of Mahua oil in diesel revealed that the power output decreases at all compression ratios. However, at compression ratio of :1, the blends up to 6% Mahua oil did not reveal any significant difference at 5% level of significance in power output. [4] In this investigation, the test conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under dual fuel conditions. The primary amount of fuel is the gaseous one, which is ignited by a pilot Diesel liquid injection. Comparative results are given for various engine 1267

speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions. [5] In this investigation, the use of non-edible oil (Pongamia oil) as an alternative to diesel fuel. They varied the fuel injection pressures from 1 to 2 bars on single cylinder air cooled vertical diesel engine of 6hp at 15 rpm. They adopted blends of,,, and 5% Pongamia oil and diesel oil. They observed smooth running of the engine at 5% blend of Pongamia oil and also observed that the % blend of Pongamia with 8% diesel gave the better performance with lower emissions compared to all other blends. They encountered no cold start problems and observed bar as the optimum injection pressure for % Pongamia oil. [6] In this investigation, the combustion model for direct injection dual fuel compression ignition engine in which the biogas is supplied through the inlet manifold and the diesel fuel through fuel injection system. Their results shown that introduction of biogas reduce the rate of combustion due to the presence of carbon dioxide which brings down engine performance. [7] In this investigation, the performance and emission characteristics of a compression ignition engine fuelled with Karanja oil and its blends (%, %, 5% and 75%) visa- vis mineral diesel. A series of engine tests, with and without preheating/preconditioning have been conducted using each of the above fuel blends for comparative performance evaluation. The performance parameters evaluated include thermal efficiency, brake specific fuel consumption (BSFC), brake specific energy consumption (BSEC), and exhaust gas temperature whereas exhaust emissions include mass emissions of CO, HC, NO and smoke opacity. [8] In this study the effect of cycle by cycle variations on the performance of the LPG-Diesel dual fuel engine. They found for LPG flow rates between.2-.3 Kg/hr, fluctuation in various parameters like peak pressure, rate of pressure rise and IMEP is minimum because the combustion is mainly due to diesel fuel. At LPG flow rate beyond.3 Kg/hr, the fluctuation in parameters increases due to the fact that combustion of LPG is not efficient because of mixture being very lean. They finally concluded that at full load fluctuation in IP, Indicated thermal efficiency and peak pressure remains steady at low value for most of the LPG flow rates. [9] In this study, an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under LPG Diesel blended fuel conditions, using LPG Diesel blended fuels with various blended rates (%, %, %, %, %). Comparative results are given for various engine speeds and loads for conventional Diesel and blended fuels, revealing the effect of blended fuel combustion on engine performance and exhaust emissions. [] In this research has shown that biodiesel-fueled engines produce less carbon monoxide (CO), unburned hydrocarbon (HC), and particulate emissions compared to mineral diesel fuel but higher NOx emissions. Exhaust gas recirculation (EGR) is effective to reduce NOx from diesel engines because it lowers the flame temperature and the oxygen concentration in the combustion chamber. However, EGR results in higher particulate matter (PM) emissions. [11] In this study, the combustion characteristics and emissions of two different petroleum diesel fuels (No. 1 and No. 2) and biodiesel from soybean oil were compared. The experimental results compared with No. 2 diesel fuel showed that biodiesel provided significant reductions in PM, CO, and unburned HC, the NOx increased by 11.2%. Biodiesel had a 13.8% increase in brakespecific fuel consumption due to its lower heating value. However, using No. 1 diesel fuel gave better emission results, NOx and brake-specific fuel consumption reduced by 16.1% and 1.2%, respectively. [12] In this investigation Gasification is a process in which solid biomass is converted into a mixture of combustible gases, which complete their combustion in an IC engine. Hence, producer gas can act as a promising alternative fuel, especially for diesel engines by substituting considerable amount of diesel fuels. Downdraft moving bed gasifiers coupled with IC engine are a good choice for moderate quantities of available biomass, up to 5kW of electric power. Hence, bio derived gas and vegetable liquids appear more attractive in view of their friendly environmental nature. Since vegetable oils produce higher smoke emissions, dual fuel operation could be adopted for improving their performance. [13] In this investigation the effect of variation in LPG composition on emissions and performance characteristics in a dual fuel engine run on diesel fuel and five gaseous fuel of LPG with different composition. To quantify the best LPG composition for dual fuel operation especially in order to improve the exhaust emissions quality while maintaining high thermal efficiency comparable to a conventional diesel engine, a two-cylinder, naturally aspirated, four-stroke, DI diesel engine converted to run as pilot-injected dual fuel engine. From the results, it is observed that the exhaust emissions and fuel conversion efficiency of the dual fuel engine are found to be affected when different LPG composition is used as higher butane content lead to lower NOx levels while higher propane content reduces CO levels. [14] In this investigation, on single cylinder vertical aircooled diesel engine was modified to use LPG in dual fuel mode to study the performance, emission, and combustion characteristics. 1268

2. EXPERIMENTAL SETUP AND PROCEDURE: Fig.1 shows the schematic diagram of the complete experimental setup of LPG-Diesel/Vegetable oil dualfuel engine. It is a single cylinder four-stroke, and water cooled diesel engine test rig which is modified to work in dual fuel mode (see Appendix A for Engine Specifications) and is directly connected to mechanical loading. It is provided with temperature sensors for the measurement of jacket temperature, calorimeter water and calorimeter exhaust gas inlet and outlet temperature. Pressure sensors are provided for combustion gas pressure and fuel injection pressure and an encoder is fixed for crank angle plots. Provision is also made for volumetric liquid fuel flow measurement. A differential pressure transducer detects the air pressure across the orifice. The LPG cylinder is connected to the inlet manifold through a rubber hose provided with a control valve. The volumetric LPG flow rate is measured by a rotometer. Combustion chamber position vertical Cooling method Water cooled Starting condition Cold start Ignition technique Compression ignition Bore (D) 8 mm Stroke ( L ) 1 mm Rated speed 15 rpm Rated power 5 hp (3.72 kw) Compression ratio 16.5 : 1 The various views of experimental set up, exhaust gas analyzer and smoke meter are shown in below figures 2, 3 and 4. Fig.1 Experimental Setup The experiment is conducted for various loads viz. 4, 6, 8,, 12 and with 19,2and 2 bar injection pressures. At each load, the corresponding performance parameters are recorded. The set of experiments are repeated for the next dual-fuel combination of LPG Methyl esters of palm oil and various observations were noted down. The specifications of the diesel engine are given in table 1. Make Kirloskar model AV1 No. of Strokes per cycle 4 No. of Cylinders 1 Fig 2 Engine Setup 1269

Bth (%) Bth( %) BRAKE THERMAL EFFICIENCY Vs LOAD FOR LPG + DIESEL 35 25 15 5 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM PRESSURE AT 19 BAR PRESSURE AT 2BAR PRESSURE AT 2 BAR LOAD (kg) 4 6 8 12 Fig.5 Brake Thermal Efficiency Vs Load Brake Thermal Efficiency Vs Load For LPG + PALM Fig 3 Exhaust Gas Analyzer Fig 4 Emissions test setup 3. RESULTS AND DISCUSSIONS: The variation of brake thermal efficiency with load at different injector opening pressures, when diesel was used as pilot fuel, is shown in Fig 5. At full load, for the injector opening pressure of 19 bar, 2 bar and 2 bar, the LPG flow rate of 1.5 LPM, 1.5 LPM and 2. LPM respectively, results in higher brake thermal efficiency. At higher LPG flow rate, the higher flame speed of LPG might have resulted in better combustion of the fuel. 35 25 15 5 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM PRESSURE AT 19 BAR PRESSURE AT 2BAR PRESSURE AT 2 BAR Load (kg) 4 6 8 12 Fig.6 Brake Thermal Efficiency Vs Load The variation of brake thermal efficiency with load at different injector opening pressures, when biodiesel was used as pilot fuel, is shown in Fig. 6. At full load, for the injector opening pressure of 19 bar, 2 bar and 2 bar, the LPG flow rate of 1. LPM, 1.5 LPM and 1. LPM respectively, results in higher brake thermal efficiency. Since the viscosity of the biodiesel is high, it requires large heat source for the combustion of fuel at lower injector opening pressure. But at higher injector opening pressure, atomization and penetration of pilot fuel is good and hence the injector opening pressure of 2 bar results in higher brake thermal efficiency at the LPG flow rate of 1. LPM Brake specific energy consumption Vs Load: The variation of brake specific energy consumption with load at different injector opening pressures is shown in Fig. 7 & Fig. 8. 127

BSEC Kj/Kw hr) CO (PPM) BSEC (Kj/Kw hr) CO (PPM) BSEC Vs LOAD FOR LPG + DIESEL CO Vs LOAD For LPG+DIESEL 35 25 15 5 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM PRESSURE AT 19 BAR PRESSURE AT 2BAR PRESSURE AT 2 BAR LOAD ( Kg) 4 6 8 12 Fig.7 Brake specific energy consumption Vs Load BSEC Vs LOAD FOR LPG + PALM 35 25 15 5 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM BSEC (Kj/kw hr) PRESSURE AT 19 BAR PRESSURE AT 2 BAR PRESSURE AT 2 BAR LOAD (KG) 1.2.8.6.4.2 1.5.5 2 1 1 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM PRESSURE AT 19 BAR PRESSURE AT 2BAR PRESSURE AT 2 BAR LOAD(kg) 4 6 8 12 Fig.9. Carbon monoxide Vs Load CO Vs LOAD For LPG + PALM 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM PRESSURE AT 19 BAR PRESSURE AT 2BAR PRESSURE AT 2 BAR LOAD(kg) 4 6 8 12 Fig.8. Brake specific energy consumption Vs Load Emission Characteristics: CO Emission characteristics: The variation of carbon monoxide (CO) emission with load at different injector opening pressures, when diesel was used as pilot fuel, is shown in Fig. 9. At full load, for the injector opening pressure of 19 bars, 2 bars and 2 bar, the LPG flow rate of 2. LPM, 1.5 LPM and 1. LPM respectively, results in lower CO emission. The variation of carbon monoxide emission with load at different injector opening pressures, when biodiesel was used as pilot fuel, is shown in Fig.. At full load, for the injector opening pressure of 19 bar, 2 bar and 2 bar, the LPG flow rate of 1. LPM, 2. LPM and 1.5 LPM respectively, results in lower CO emission. 4 6 8 12 Fig.. Carbon monoxide Vs Load UBHC Emission characteristics: The variation of un burnt hydrocarbon (UBHC) emission with load at different injector opening pressures, when diesel was used as pilot fuel, is shown in Fig.11. At full load, for the injector opening pressure of 19 bars, 2 bars and 2 bar, the LPG flow rate of 2. LPM, 2. LPM and 1. LPM respectively, results in lower UBHC emission. The variation of UBHC emission with load at different injector opening pressures, when biodiesel was used as pilot fuel, is shown in Fig. 12. At full load, for the injector opening pressure of 19 bar, 2 bar and 2 bar, the LPG flow rate of 1. LPM, 1.5 LPM and 2. LPM respectively, results in lower UBHC emission. 1271

UBHC (PPM) SMOKE OPACITY (%) UBHC (PPM) SMOKE OPACITY (%) UBHC Vs LOAD FOR DIESEL + LPG SMOKE OPACITY Vs LOAD FOR LPG + DIESEL 7 6 5 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM PRESSURE AT 19 BAR PRESSURE AT 2BAR PRESSURE AT 2 BAR LOAD (KG) 4 6 8 12 8 7 6 5 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM PRESSURE 19 BAR PRESSURE 2 BAR PRESSURE 2 BAR LOAD (kg) Fig.11. UBHC Vs Load UBHC Vs LOAD FOR PALM + LPG 4 6 8 12 Fig.13. UBHC Vs Load 9 8 7 6 5 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM PRESSURE AT 19 BAR PRESSURE AT 2BAR PRESSURE AT 2 BAR LOAD (kg) 4 6 8 12 Fig.12. UBHC Vs Load Smoke Emission characteristics: The variation of smoke emission with load at different injector opening pressures, when diesel was used as pilot fuel, is shown in Fig. 13. At full load, for the injector opening pressure of 19 bars, 2 bars and 2 bar, the LPG flow rate of 2. LPM, 2. LPM and 1.5 LPM respectively, results in lower smoke emission. The variation of smoke emission with load at different injector opening pressures, when biodiesel was used as pilot fuel, is shown in Fig. 14. At full load, for the injector opening pressure of 19 bar, 2 bar and 2 bar, the LPG flow rate of 1. LPM, 2. LPM and 2. LPM respectively, results in lower smoke emission. SMOKE OPACITY Vs LOAD FOR LPG +PALM 9 8 7 6 5 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM PRESSURE 19 BAR PRESSURE 2 BAR PRESSURE 2 BAR LOAD (kg) 4 6 8 12 Fig.14. UBHC Vs Load NO X Emission characteristics The variation of NOx emission with load at different injector opening pressures, when diesel was used as pilot fuel, is shown in Fig. 15. At full load, for the injector opening pressure of 19 bar, 2 bar and 2 bar, the LPG flow rate of 1.5 LPM, 2. LPM and 2. LPM respectively, results in higher NOx emission. The variation of NOx emission with load at different injector opening pressures, when biodiesel was used as pilot fuel, is shown in Fig. 16. At full load, for the injector opening pressure of 19 bars, 2 bars and 2 bar, the LPG flow rate of 2. LPM, 1.5 LPM and 2. LPM respectively, results in lower NOx emission. 1272

NOx (PPM) NOx (PPM) 8 7 6 5 8 7 6 5 NOx Vs LOAD For LPG + DIESEL 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM PRESSURE AT 19 BAR PRESSURE AT 2BAR PRESSURE AT 2 BAR LOAD (Kg) Series1 Series2 Series3 Series4 Series5 Series6 Fig.15. NOx Vs Load NOx Vs LOAD FOR LPG+PALM 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM 1. LPM 1.5 LPM 2. LPM PRESSURE AT 19 BAR PRESSURE AT 2BAR PRESSURE AT 2 BAR 4. Conclusions: LOAD (Kg) 4 6 8 12 Fig.16. NOx Vs Load In the present work, an experimental investigation has been conducted to perform the optimization studies on the dual fuel engine using LPG as primary fuel and POME as pilot fuel on a CI Diesel Engine. The engine has been properly modified to operate under dual fuel operation using LPG as the primary fuel and Diesel, POME as an ignition source. From the experimental results obtained with LPG - Diesel, LPG - POME in dual fuel engine the following conclusions are drawn: The kinematic viscosity and specific gravity of the Palm oil have reduced to a great extent by the esterification process. The existing diesel engine in made to work as Dual Fuel Engine by attaching a mixing chamber to the engine and giving the LPG gas connections to supply LPG. The engine performed satisfactorily with LPG - Biodiesel, so that the PAME can be used as an alternative fuels in existing Dual Fuel Engine without any hardware modification in the system. The brake thermal efficiency of the engine under dual fuel mode is less compared to normal diesel operation at lower and part loads. But at higher loads the efficiency of the engine with LPG - Diesel in a dual fuel mode is comparable with normal diesel operation. The highest obtained brake thermal efficiency with biodiesel was 35% and that for diesel operation was found to be 36%. This may be due to high viscosity and less calorific value of POME compared to that of diesel. The exhaust emissions like smoke opacity, CO, CO2, UBHC and NOx are higher for LPG - POME compared to LPG- Diesel operation which may be due to higher viscosity and lower volatility of biodiesel which leads to improper atomization and thus higher exhaust emissions. It was found that NOx emission is not effected much by the change in the flow rates of LPG at lower injection pressure of 19 bars but it has been significantly affected at higher injection pressures. It has also been observed that the amount of smoke in the exhaust is much lower at higher injection pressures of 2 bars which might be due to the better atomization of the fuel at higher injection pressures and at the same time NOx emissions are found on the higher side for higher LPG flow rates. An LPG flow rate of 1. LPM was found to the worst emission characteristics for most of the cases. 5. REFERENCES: [1] Nwafor.O.M.I., Effect of choice of pilot fuel on the performance of the natural gas in diesel engine, Renewable Energy 21, P 495,. [2] Sukumar Puhan, N.Vedaraman, Boppana V.B Ram, G. Sankaranarayana, K.jeychandran, Mahua oil (Maduca Indica seed oil) methyl ester as biodiesel preparation and emission characteristics, Biomass and Bioenergy 28, P. 87-93, 5. [3] Y C Bhatt, N S Murthy, R K Datta, Use of Mahua Oil ( Madhuca indica ) as a Diesel Fuel Extender, IE (I) Journal.AG, Vol.85, 4. 1273

[4] R.G. Papagiannakis, D.T. Hountalas. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot Diesel fuel and natural gas Energy Conversion and Management 45 (4) 2971 2987. [5] Bonadaya.G.Reddy, and Ganeshan. V, Utilization of non-edible vegetable oil in diesel engine, XVII NCICEC, pp 211-214, 1. [6] V Thyagarajan, M.K.Gajendra Babu, A combustion model for a duel fuel direct injection diesel engine, pp.no.67-614,5. [7] Avinash Kumar Agarwal Experimental investigation of control of NOx emissions in biodieselfueled compression ignition engine Renewable Energy 31 (6) 2356 2369.. [8] Srinavas Rao B.R., Sudesh Bekal and Samaga B.S, Studies on Particulate matter and noise Emission for C.I Engine working on duel fuel mode, proceedings of National Seminar on Automobiles Emission Monitoring and Control, Annamalai University, Annamalai Nagar, pp. 72, 2. [9] Deepak Agarwal Experimental investigation of control of NOx Emissions in biodiesel-fueled compression ignition engine Renewable Energy 31 (6) 2356 2369. [] Y.ZH. Bian& CH.H. Zhang Combustion and exhaust emission characteristics of a compression ignition engine using liquefied petroleum gas Diesel blended fuel Energy Conversion and Management 48 (7) 5 59. [11] Mustafa C Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel Bioresource Technology 98 (7) 1167 1175. [12] N.R. Banapurmath, P.G. Tewari, R.S. Hosmath Experimental investigations of a four-stroke single cylinder direct injection diesel engine operated on dual fuel mode with producer gas as inducted fuel and Honge oil and its methyl ester (HOME)as injected fuels (7). [13] H.E. Saleh Effect of variation in LPG composition on emissions and performance in a dual fuel diesel engine Fuel 87 (8) 31 3. [14] P.Vijayabalan & G. Nagarajan Performance, Emission and Combustion of LPG Diesel Dual Fuel Engine using Glow Plug Volume 3, Number 2, June, 9. 1274