Hybrid Vehicle Evolution and Future

Similar documents
Fundamentals and Classification of Hybrid Electric Vehicles Ojas M. Govardhan (Department of mechanical engineering, MIT College of Engineering, Pune)

The Hybrid and Electric Vehicles Manufacturing

Azure Dynamics is a leading developer of highly efficient, cost-effective and environmentally friendly hybrid-electric ( HEV ) and electric ( EV )

Into the Future with E-Mobility

The xev Industry Insider Report

Automotive Research and Consultancy WHITE PAPER

3. TECHNOLOGIES FOR MEETING ZEV PROGRAM REQUIREMENTS AND PRODUCTION VOLUME ESTIMATES

Shri Vishnu Engineering College for Women: Bhimavaram (Autonomous) Department of Electrical and Electronics Engineering

Toyota. Stephen Stacey - General Manager Arjan Dijkhuizen - Senior Engineer. Government & Technical Affairs Toyota Motor Europe TOYOTA MOTOR EUROPE

The xev Industry Insider Report

1 Faculty advisor: Roland Geyer

Perspectives on Vehicle Technology and Market Trends

An Overview of Hybrid Vehicle Technologies

INVENTION DISCLOSURE MECHANICAL SUBJECT MATTER EFFICIENCY ENHANCEMENT OF A NEW TWO-MOTOR HYBRID SYSTEM

HYDROGEN. Turning up the gas. Jon Hunt. Manager Alternative Fuels TOYOTA GB CCS HFC 2019

Seoul, Korea. 6 June 2018

TECHNICAL WHITE PAPER

THE ELECTRIC VEHICLE REVOLUTION AND ITS IMPACT ON PEAK OIL DEMAND

Electric Vehicle Charging Station Infrastructure World 2012 (Summary)

Technology Trends and Products for Accessory Drive Belt Systems

FOCUS ON ITALY: HYBRID VEHICLES FY2015 MARKET OVERVIEW. Analysis completed: January All Rights Reserved JATO Dynamics Ltd 1

The Renewable Energy Market Investment Opportunities In Lithium. Prepared by: MAC Energy Research

Cathode material for batteries the safe bridge to e-mobility

Variable Intake Manifold Development trend and technology

Modern Auto Tech Study Guide Chapter 38 Pages Hybrid Drive Systems 48 Points. Automotive Service

The Future By TOYOTA. May 2012 UNION MOTORS LTD.

Ph: October 27, 2017

Effectiveness of Plug-in Hybrid Electric Vehicle Validated by Analysis of Real World Driving Data

Focus on the Future Powertrain Strategies for the 21st Century

Creating Innovation Conducive to Energy and the Environment By Takeshi Uchiyamada Chairman of Toyota Motor Corporation

New Engines Aiming for 60% Thermal Efficiency Japanese Automobile Manufacturers Rising to the Post-HEV Challenge

Chris Pick. Ford Motor Company. Vehicle Electrification Technologies and Industry Approaches

The Case for Plug-In Hybrid Electric Vehicles. Professor Jerome Meisel

Electric cars: Technology

Grid Services From Plug-In Hybrid Electric Vehicles: A Key To Economic Viability?

EV1 RETROSPECTIVE AND THE ELECTRIC VEHICLE REVOLUTION ROBERT DAWSEY VICE PRESIDENT, ENGINEERING AND OPERATIONS FLEX POWER CONTROL INC.

JEE4360 Energy Alternatives

Fossil Fuels and Agriculture

TREND INSIGHTS Automotive Sales Analysis

Aging of the light vehicle fleet May 2011

Nancy Gioia Director, Global Electrification Ford Motor Company

Impacts of Weakening the Existing EPA Phase 2 GHG Standards. April 2018

Brief Assessment of progress in EV Battery Technology since the BTAP June 2000 Report

GRID TO VEHICLE (G2V) Presentation By Dr. Praveen Kumar Associate Professor Department of Electronics & Communication Engineering

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 4, April

Efficiency Enhancement of a New Two-Motor Hybrid System

FUTURE OF POWERTRAIN TECHNOLOGY

Nilar leads the way with high-voltage solutions for the electrical energy storage market

1. Thank you for the opportunity to comment on the Low Emissions Economy Issues Paper ( Issues Paper ).

Objectives At the completion of this session, the delegates will understand and will be able to

CHAPTER 7 ELECTRIC VEHICLE CHARGING FACILITIES

Automotive Market: Where Do We Go From Here?

Electric Vehicles House Select Committee on Energy Independence & Alternative Fuels Anne Tazewell Transportation Program Manager December 7, 2011

The wheels of a greener world, now in India

Volkswagen. World Premiere. Golf SportWagen HyMotion Research vehicle with hydrogen fuel cell. Los Angeles Auto Show November 2014

Moving to Electric-Drive Conference Presentation New Energy Dynamics Recession and Beyond

Investigation of CO 2 emissions in usage phase due to an electric vehicle - Study of battery degradation impact on emissions -

Strategies for Sustainable Energy

Executive Summary. Light-Duty Automotive Technology and Fuel Economy Trends: 1975 through EPA420-S and Air Quality July 2006

May, 2013 / Carel Oberholzer, Sales Manager Power Conversion - Fast Charging Solutions ABB charging platforms optimally support all relevant EV user

Technology to Meet Future FE and GHG Requirements

Toyota s View on the Future Powertrain

The Market for Electric Lemons: Residual Values for Aging Electric Cars

Press release. From battery cell to electric motor Bosch paving the way to electromobility 21 projects with 13 automakers by 2013

Details emerge of new engine, batteries and much more for the 4th-generation Prius

Resources for the Future The Role of the States in Federal Climate Legislation

How vehicle fuel economy improvements can save $2 trillion and help fund a long-term transition to plug-in vehicles

DOE OVT Energy Storage R&D Overview

Course Catalog Pre-Release

DESIGNING AN ELECTRIFIED VEHICLE:

Powertrain: New Technologies and Strategies. Contents

ANALYSIS OF THE IMPACT OF ELECTRIC VEHICLES ON PRIMARY ENERGY CONSUMPTION AND CARBON EMISSION ON NATIONAL LEVEL.

How do we make city buses cleaner and more comfortable?

Efficient Source and Demand Leveling Power System

Statement Dr. Norbert Reithofer Chairman of the Board of Management of BMW AG Conference Call Interim Report to 30 June August 2013, 10:00 a.m.

Powertrain Strategies for the 21st Century: Revolution and Evolution. John Shutty Chief Engineer July 22 nd, 2015

A car-free world? Name:... Date:... Car-free Day comprehension. The Development of Cars

Who killed the electric car? (is it really dead???) Ramon Sanchez. Harvard University

Acura Hybrid Vehicle FAQs

Since the necessity of the wireless and mobiles electronic devices, the estimation of state

COMPARISON OF ELECTRIC VEHICLE TO THE INTERNAL COMBUSTION ENGINE VEHICLE AND ITS FUTURE SCOPE

Electric Vehicles in China:

Bridge Time UPS Batteries: A Scalable Alternative to Flywheels by

Influences on the market for low carbon vehicles

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

2012 SAE Government and Industry Meeting January 26, 2012 EPA & NHTSA

Effect of Twin Turbocharger on Eicher Dump Truck

Challenges on the Road to Electrification of Vehicles. Hrishikesh Sathawane Analyst Lux Research, Inc. October, 2011

Electric Vehicles: Opportunities and Challenges

National Engineering 2017: SMART CAR 4.0. Ninnart Chaithirapinyo. Toyota Motor Thailand Co., Ltd. November 16, 2017

When to Expect Robust

Q. Is it really feasible to produce a car that offers advanced performance features while also preserving the environment?

Powertrain Acceptance & Consumer Engagement Study. Chrysler Powertrain Research March

BMW Group Investor Relations.

A joint industry analysis of the current and future availabilities of resources and materials used in a range of battery technologies

Technology Development of Dual Power Supply System for Mild Hybrid System and Micro Hybrid System

Plug-in Hybrid Systems newly developed by Hynudai Motor Company

Is there really anything wrong with it? Generation II 2007 Toyota Prius 311,000 miles

WHEN ARE FUEL CELLS COMPETITIVE? Hans Pohl, Viktoria Swedish ICT AB Bengt Ridell, SWECO AB Annika Carlson, KTH Göran Lindbergh, KTH

FORD AND AZURE DYNAMICS COLLABORATE ON TRANSIT CONNECT ELECTRIC FOR EUROPE

Transcription:

IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 10 April 2016 ISSN (online): 2349-784X Rajkumar Patil Department of Mechanical Engineering Government College of Engineering and Research, Awasari (Khurd), Tal. Ambegaon, Pune Omkar Borhade Department of Mechanical Engineering Jaihind College of Engineering Kuran, Tal. Junnar, Pune Reshma Kunjir Department of Instrumentation Engineering Government College of Engineering and Research, Awasari (Khurd), Tal. Ambegaon, Pune Bomble Shriraja Umrao Department of Mechanical Engineering Government College of Engineering and Research, Awasari (Khurd), Tal. Ambegaon, Pune Jamdade Pooja Nandkumar Department of Mechanical Engineering Government College of Engineering and Research, Awasari (Khurd), Tal. Ambegaon, Pune Abstract With the advancement in 21st century, there has been increase in uses of oil and gas leading to problems like global warming, climate change, storage of crude oil, etc. due to this reasons automobile companies have started doing research for making hybrid technology usable into the daily life. Hybrid technology usable into the daily life. The paper start from brief history about hybrid technology and also some brief introduction on it. Paper will also discuss the technologies used in the making of hybrid cars such as Hybrid Solar Vehicle, Hybrid Electric Vehicle and plug in hybrid electric vehicles. Our paper is based on the explanation of such technologies, their function, drawback of this technology, efficiency of hybrid cars, case studies on the present commercial hybrid cars such as Toyota, Prius series, Astrolab, etc. and the fuel and raw materials used in the hybrid cars. Paper concludes on the advantages and disadvantages of hybrid cars and how this technology will take over the world in future and world become the alternative for petrol and diesel cars. Keywords: Belt Alternator Starter (BAS), Fuel Cell Vehicle (FCVs), Integrated Motor Assist (IMP), Hybrid Vehicle I. INTRODUCTION What is a hybrid? A hybrid vehicle combines any two power (energy) sources. Possible combinations include diesel/electric, gasoline/fly wheel, and fuel cell (FC)/battery. Typically, one energy source is storage, and the other is conversion of a fuel to energy. The combination of two power sources may support two separate propulsion systems. Thus to be a True hybrid, the vehicle must have at least two modes of propulsion. For example, a truck that uses a diesel to drive a generator, which in turn drives several electrical motors for all-wheel drive, is not a hybrid. But if the truck has electrical energy storage to provide a second mode, which is electrical assists, then it is a hybrid Vehicle. These two power sources may be paired in series, meaning that the gas engine charges the batteries of an electric motor that powers the car, or in parallel, with both mechanisms driving the car directly. Hybrid Electric Vehicle (HEV) Consistent with the definition of hybrid above, the hybrid electric vehicle combines a gasoline engine with an electric motor. An alternate arrangement is a diesel engine and an electric motor (figure 1). All rights reserved by www.ijste.org 1137

Fig. 1: Components of a hybrid Vehicle that combines a pure gasoline with a pure EV. As shown in Figure 1, a HEV is formed by merging components from a pure electrical vehicle and a pure gasoline vehicle. The Electric Vehicle (EV) has an M/G which allows regenerative braking for an EV; the M/G installed in the HEV enables regenerative braking. For the HEV, the M/G is tucked directly behind the engine. In Honda hybrids, the M/G is connected directly to the engine. The transmission appears next in line. This arrangement has two torque producers; the M/G in motor mode, M-mode, and the gasoline engine. The battery and M/G are connected electrically. HEVs are a combination of electrical and mechanical components. Three main sources of electricity for hybrids are batteries, FCs, and capacitors. Each device has a low cell voltage, and, hence, requires many cells in series to obtain the voltage demanded by an HEV. Difference in the source of Energy can be explained as: 1) The FC provides high energy but low power. 2) The battery supplies both modest power and energy. 3) The capacitor supplies very large power but low energy. The components of an electrochemical cell include anode, cathode, and electrolyte (shown in fig2). The current flow both internal and external to the cell is used to describe the current loop. Fig. 2: An electrode, a circuit for a cell which is converting chemical energy to electrical energy. The motion of negative charges is clockwise and forms a closed loop through external wires and load and the electrolyte in the cell. A critical issue for both battery life and safety is the precision control of the Charge/Discharge cycle. Overcharging can be traced as a cause of fire and failure. Applications impose two boundaries or limitations on batteries. The first limit, which is dictated by battery life, is the minimum allowed State of Charge. As a result, not all the installed battery energy can be used. The battery feeds energy to other electrical equipment, which is usually the inverter. This equipment can use a broad range of input voltage, but cannot accept a low voltage. The second limit is the minimum voltage allowed from the battery. On the road, in the press and even at metals conferences it is becoming increasingly difficult to avoid hybrid vehicles - that is vehicles that draw their power from both an internal combustion engine and an electric motor. By synchronizing the engine and motor hybrids achieve levels of fuel efficiency far beyond that of conventional vehicles, and getting more miles to the gallon is very appealing to consumers faced with high fuel prices. They also produce fewer emissions, making them popular with politicians fighting air pollution. All rights reserved by www.ijste.org 1138

Fuel Efficiency Comparison Fig. 3: comparison between coventional and hybrid vehicles The relevance of hybrid vehicles to minor metals is in the new materials-recipe that hybrids require. Those metals used in hybrid engineering will see demand increase proportionally to the production rate of hybrid automobiles, a rate that in the last five years has boomed. II. OVERVIEW Developments in Hybrid Vehicles Hybrids are among the most intriguing technological trends to appear in the past decade. However, while their mass-production is a recent phenomenon, hybrid technology is not itself new. Like a recessive gene hiding in automobile DNA, electric drive systems have been around ever since engineers first moved carts out of stables and into garages. In the early days of automobiles, before the hegemon of gasoline (petrol) became unquestioned, steam, gasoline, electricity and even peanut oil all competed to be the power system of choice. The shear diversity of automobiles in those early days is telling. In 1900, 4,200 cars were sold in the USA of which 38% were electric, 40% steam and only 22% gasoline. Electric vehicles even held the world road speed record for three years between 1899 & 1902 - a speedy 66 miles per hour (106 km/h). Perhaps the world s first hybrid was built by Dr. Ferdinand Porsche who in 1899 built a vehicle that used a petrol engine to drive a generator that powered four electric motors. However, in 1909 the Model T Ford was launched and from then on gasoline was the unrivalled source of vehicle power. For decades little changed. Then in 1973 the oil crisis started causing gasoline prices to rise 50% in a year; suddenly fuel efficiency was an issue. Encouraged by government regulations by the late 1980s America s vehicle fleet was considerably more efficient and gradually the path was being prepared for hybrids. As early as 1989 Toyota was funding research into hybrid technologies and in 1992 they published their first Earth Charter, a manifesto for low emission vehicles. This ultimately led to the development of the Prius, which first emerged at the 1995 Tokyo Motor Show. Circumstances of US Auto Motives The first hybrid to be offered in the USA was the Honda Insight in late 1999, followed in 2000 by the Toyota Prius. In just five and a half years hybrid vehicles have made manufacturers and consumers alike sit up and take notice. High Gasoline Prices An important factor if not the most important factor, is the rising US gasoline price, reflecting higher crude oil prices. Since December 2001 average gasoline prices have more than doubled from $1.08 to $2.30 per gallon. With gasoline at $108 per s on an economic level the mainstream public respond to strongly. Are nt uy. The less conventional surged gallon and small, quirky designs, the early hybrid had a reputation of being cars for environmentalists. Today, however, with gasoline at $2.30 per gallon and packaged in conventional designs, hybrid vehicles appeal on an economic level the mainstream public respond to strongly. All rights reserved by www.ijste.org 1139

Fig. 4: US Gasoline Prices 2001-2005 High fuel costs make consumers acutely aware of a vehicle s fuel. Efficiency and in a recent survey 40% of consumers indicated that fuel efficiency would play a major part when deciding which new car to buy. The four most efficient vehicles on the market today are all hybrids. Capable Hybrid Technology Fig. 5: Early Hybrid Vehicles Both the computer programming and mechanical technology behind hybrid engines has come a long way in the last decade and continues to progress rapidly. Parallel to the gains in hybrid engines, rechargeable batteries have also improved considerably since the early 1990s and are now up to the rigorous demands of hybrid vehicles. Currently hybrids use nickel metal hydride batteries, and while there is an expectation that one-day lithium-ion batteries will be used instead, industry insiders, including one US supplier close to Toyota and Honda, say that the switch is unlikely before 2012. An Underdeveloped Diesel Market Another reason for the popularity of hybrids is that consumers in the US looking for low-cost vehicles do not have the option of diesels. Tight air quality regulations, which are set to get even tighter in 2007, have meant that today less than 1% of the US vehicle fleet is diesel powered. Diesel vehicles initially cost $1,000 to $3,000 more to buy, but like hybrids, they save money in the long run with their more efficient engines. Fuel Cells Vehicles (Fcvs) Are Not Yet Commercially Viable FCVs are electric cars that generate their power from the chemical-electric reaction of hydrogen and oxygen. Their only emission is water, earning them the title zero emission vehicles (ZEVs). To many people, fuel cell vehicles are the Holy Grail of automotive design, removing transport pollution at a stroke. However, FCVs currently lack supporting infrastructure, cost $800,000 each and are at least a decade away from commercialization. All rights reserved by www.ijste.org 1140

Toyota It always helps to have a powerful backer when you are the new show in town, fortunately for hybrids, they have Toyota. Measured by vehicle sales Toyota is the second largest vehicle manufacturer in the world, having overtaken Ford in 2003. But sales figure alone misses the point. In the financial year to end March 2005 Toyota made $11 billion profit and has currently has a market capitalization of just under $130 billion, making it by far the wealthiest vehicle manufacturer in the world. Although one General Motors Vice Chairman has dismissively referred to Toyota s financial commitment to hybrid vehicles, and the positive association it has gained as a result, as an advertising expense, Toyota has spent over $800 million so far on this project. Today s Hybrid Vehicles and Their Consumption Of Minor Metals As with all technologies, hybrids have numerous mechanical configurations. The three main varieties are: Soft- or Micro-hybrids These are constructed like conventional vehicles but have an engine programmed to shut down when the car is in stationary traffic, thus saving fuel. Soft-hybrids have Zero impact on cobalt consumption and are not included in the forecasts made later. Mild-hybrids These vehicles, as well as having stop-start engines, have an electric motor that aids acceleration. The motor s rechargeable battery can be charged either by the engine or the wheels acting as generators during driving or breaking respectively. Mild-hybrids include the Honda Accord, a car that uses up to 17% electric power. Full hybrids possess the abilities of mild-hybrids but can also be driven purely by the electric motor. Such a powerful system requires large motors and batteries to match. The Toyota Prius is a full hybrid and uses up to 46% electric power. From this list variation occur, including plug-in hybrids that are charged off the national electricity grid but this is not relevant here. Hybrid vehicles consume cobalt in the electric motor and generator and in the rechargeable battery. Motors and Generators Fig. 6: Hybrid Technology Chart. Hybrid 1kg (2.2 lbs.) of neodymium-iron-boron (NdFeB) vehicles [4]. Vehicles employ approximately magnets in their motors and generators, this is some 800g more than conventional vehicles. These magnets are extremely strong, relatively light and are approximately 5-10% cobalt. A hybrid vehicle will use approximately 75g of cobalt in its magnets. Batteries In 2004 98% of hybrid vehicle batteries were nickel metal hydride (NiMH) and made by just two companies: Panasonic EV Energy: part owned by Toyota and supplier of batteries for the Toyota Prius and Honda s Civic and Insight hybrids. All rights reserved by www.ijste.org 1141

Fuel Consumption Reduction Fig. 7: US Hybrid Market Forecast 2005 Hybrid systems can reduce fuel consumption and CO 2 emissions by up to 35%, equivalent to more than a 50% increase in fuel economy. The precise reduction varies with the sophistication of the hybrid system. The reduction can also be difficult to quantify if there is not a directly comparable non-hybrid vehicle. This second point is illustrated by the most comprehensive study to date, an October 2014 analysis done by the consultancy Vincentia, which compared 31 hybrids to the closest non-hybrid vehicle reduction ranged from 24% on the Lexus RX450h to 47% on the Lexus CT 200h. While conducting a detailed analysis of the possible bias for each hybrid vehicle comparison selected by Vincentia is beyond the scope of this report, it is clear that in some cases the non-hybrid vehicle has lower performance and fewer consumer features than the hybrid vehicle (such as the Honda Accord) and in other cases the non-hybrid vehicle has higher performance and features. Forecasts of Future Developments in Hybrid Vehicles Fig. 8: Fuel saving in various model On a global level the drive for more efficient vehicles can be boiled down to a single bottom-line issue: the price of oil. Unfortunately for car-drivers, but fortunately for hybrid vehicle sales, long-term oil prices are likely to remain relatively high. Hybrid vehicles are expected to continue their rapid growth to date. By 2010 the US market expected to purchase 800,000 to 1.4 million hybrid vehicles per year, approximately a 5 to % market. All rights reserved by www.ijste.org 1142

Fig. 9: Forecasts of Future Developments in Hybrid Vehicles Impacts of Learning and Implications for Future Hybrid Development The Toyota Prius hybrids have delivered about a 10% efficiency improvement with each new generation, while simultaneously reducing costs, increasing vehicle size, engine power, and electric motor power, and multiplying features (table 2 and figure 9). This was accomplished primarily by learning. Toyota built upon the best features of each design to improve the next design, with both better hardware and better integration and control of the various hybrid components. These improvements were delivered while reducing the price of the Prius relative to that of the Corolla LE Data on the cost reduction associated with each generation of the Prius is not directly available. Estimates of the cost reduction for each generation are calculated here based upon changes in the manufacturer s suggested retail price of the Prius relative to the price of the Corolla with the same trim package, and increases in the electric propulsion motor size. The EP A s indirect cost multipliers (IC M) from its 2017 2025 LDV CO2 rule were used to convert the price reductions to reductions in manufacturer cost. EP A s highest IC M value was used for the 2001 Prius (1.77) and its second-highest for the 2004 Prius (1.56), in recognition that this was new technology. Different Technologies in Hybrid Systems Fig. 10: Improvement for each generation Input Power-Split As its name implies, this system uses a planetary gear to distribute power between the engine, generator, traction motor, and drive train. It is the most sophisticated of all the currently available hybrid systems and excels in optimizing engine efficiency during city driving. It is also easily adaptable to plug-in operation. The downside is the cost associated with the requirement for two large electric motors and their associated power electronics. This system is used by Toyota and Ford for all of their hybrids. Toyota dominated the U.S. hybrid market with 66% of sales in 2014, and Ford was second with 14% of the market. Two-Motor Systems These are similar to the input power-split system in that part or all of the energy for the traction motor is provided from the engine through the generator, but they do not use a planetary gear system to transmit power. Two-motor systems offered in the past by All rights reserved by www.ijste.org 1143

GM, Chrysler, BMW, and Mercedes had similar, if not better, efficiency than the input power-split, but at higher cost. All have been discontinued. Honda recently introduced a two-motor system on the 2015 Accord, which captured 3% of the hybrid market in 2014. Parallel Hybrid with Two Clutches (P2) Uses a single electric motor and two clutches, one between the engine and the electric motor and the second between the motor and the drive train. This system is highly scalable, from modest electric motor power to motors capable of plug-in hybrid operation. Different variations of this system have been recently introduced by Nissan, Hyundai/Kia, VW/Audi/Porsche, Subaru, BMW, and Mercedes. Hyundai/Kia is by far the leading seller of P2 hybrids, with 8% of total 2014 hybrid sales. Honda has traditionally used a less efficient version of this system that does not have a clutch between the engine and the electric motor, which they call Integrated Motor Assist (IMA). This system was not discussed in this paper, as it offers significantly lower efficiency gains with only a modest reduction in cost relative to more advanced systems and only has 3% of the 2014 hybrid market. In fact, Honda is starting to replace their IMA system with a P2 hybrid system, beginning with the Japanese version of the 2015 Fit. Belt Alternator-Starter (BAS) BAS systems replace the conventional alternator with a higher power electric motor and a high-tension belt drive that can work in both directions, to provide power assist to the engine or to capture regenerative braking energy. The system is lower cost than hybrid systems with dedicated motors and minimizes packaging concerns by simply replacing the alternator. However, belt drives are not as efficient as the gear drives used in more advanced systems and the maximum power is limited by the belt. A 12v 24v BAS system is usually referred to as a micro-hybrid, and higher power BAS systems are usually referred to as mild hybrids. Mild Hybrids Mild hybrid is an undefined term loosely applied to hybrid systems that do not have all of the capability of full-function hybrids, such as the two-motor systems and the P2 hybrid, but have more functionality than stop-start systems or micro-hybrids. BAS systems and Honda s IMA system are examples of mild hybrid systems. New concepts using 48-volt hybrid systems are in development and often include a small, electric motor integrated into the turbocharger to eliminate turbo lag and allow additional engine downsizing. Micro-Hybrids In addition to stop-start, provides limited amounts of regenerative braking energy and some additional functions, such as providing energy to replace most of the alternator functions, and shutting the engine off and disconnecting it from the drivetrain during higher speed decelerations (commonly called sailing ). The system also provides faster engine restarts with less vibration than conventional starters. Stop-Start The most basic system, usually not classified as a real hybrid, which uses an improved battery and a higher-power starter motor to shut the engine off at idle and restart it when the brake pedal is released. Such systems are popular in Europe and are just starting to appear as standard equipment in the US. According to the 2014 EPA Fuel Economy Trends Report, 6% of 2014 models will be equipped with stop-start systems. III. CONCLUSION Hybrid gasoline-electric vehicles have come a long way from being a research concept and today they represent a bold statement about the future of vehicle engineering. Hybrids are the latest in a long line of pioneering automotive technologies to have reached economic maturity. High fuel prices, one of the principal drivers behind demand for hybrid vehicles, are expected to remain in place at least in the short term, and, according to the US Department of Energy, probably in the long term too to some extent. This will benefit the hybrid market, not least by neutralizing the hybrid price premium which has been a stumbling block to hybrids mass appeal in the past. Toyota believe hybrids are here to stay and have committed themselves to manufacturing hybrids on a cost parity with conventional vehicles. When this happens hybrid technology will become competitive and commonplace. Twenty first century vehicles will incorporate increasing amounts of hybrid technology and this will cause a profound influence on the cobalt landscape. Backed by the industry giants and caught by the popular imagination, hybrid vehicles are a taste of the future, today, and are on course to become a source of major new demand for cobalt. REFERENCES [1] Gianfranco, Electric and Hybrid Vehicles: POWER SOURCES, MODELS, SUSTAINABILITY, INFRASTRUCTURE AND THE MARKET, Pistoia Consultant, Rome, Italy, 2010 [2] Developments in hybrid vehicles and their potential influence on minor metals by Roland Chavasse, SFP Metals (UK) Ltd. Minor Metal Trade Association and Metal Pages: Minor Metals 2005, Lisbon, Portugal [3] Time magazine, 24/05/04, Make Vroom for the Hybrids [4] Economist.com, 02/12/04, Why the future is hybrid [5] NPTEL Electrical Engineering Introduction to Hybrid and Electric Vehicles, History of Electrical Vehicle [6] President Bush, speaking in Virginia, 16/05/05. All rights reserved by www.ijste.org 1144