Experimental determination of suitable ethanol gasoline blend for Spark ignition engine

Similar documents
Vivek Pandey 1, V.K. Gupta 2 1,2 Department of Mechanical Engineering, College of Technology, GBPUA&T, Pantnagar, India

PERFORMANCE AND EMISSION CHARACTERISTICS OF A VARIABLE COMPRESSION SI ENGINE USING ETHANOL- GASOLINE BLENDS AS FUEL

Effects of Ethanol-Gasoline blends on Performance and Emissions of Gasoline Engines

Experimental Investigation of Ethanol-Methanol- Gasoline Blend on Multi cylinder SI Engine using Catalytic Converter

Effect of Alcohol-Gasoline Blends and Compression Ratio on Performance of SI (Spark Ignition) Engines: A Review Virendra Singh yadav 1 D.S.

ijcrr Vol 04 issue 14 Category: Review Received on:14/06/12 Revised on:27/06/12 Accepted on:04/07/12

International Journal of Advanced Engineering Technology E-ISSN

EXHAUST EMISSIONS OF 4 STROKE SPARK IGNITION ENGINE WITH INDIRECT INJECTION SYSTEM USING GASOLINE-ETHANOL FUEL

EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST

Effects of ethanol unleaded gasoline blends on cyclic variability and emissions in an SI engine

International Journal of Advanced Engineering Technology E-ISSN

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 6, Issue 11, May 2017

Combustion and Emission Characteristics of Jatropha Blend as a Biodiesel for Compression Ignition Engine with Variation of Compression Ratio

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 ISSN

Performance and Emission Characteristics of MPFI Engine by Using Gasoline - Ethanol Blends

Emission and Combustion Characteristics of Si Engine Working Under Gasoline Blended with Ethanol Oxygenated Organic Compounds

The Effect Of Adding Ethanol To leaded Gasoline on The Performance of Spark Ignition Engine

Automotive Technology

EFFECT OF HYDRATED AND ANHYDROUS ETHANOL-GASOLINE BLENDS ON ENGINE PERFORMANCE

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 11 Nov p-issn:

Performance and Emission Characteristics of LPG-Fuelled Variable Compression Ratio SI Engine

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL

Research Article. Effect of exhaust gas recirculation on NOx emission of a annona methyl ester operated diesel engine

Investigation of Flame Characteristics of Ethanol-Gasoline Blends Combustion Using Constant Volume Chamber

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions

INFLUENCE OF DIETHYL ETHER BLEND IN SPARK IGNITION ENGINE PERFORMANCE AND EMISSIONS OPERATED WITH GASOLINE AND ETHANOL

Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark

Effect of hydrogen and oxygen addition as a lean mixture on emissions and performance characteristics of a two wheeler gasoline engine

Performance Enhancement & Emission Reduction of Single Cylinder S.I. Engine using Tri Fuels -An Experimental Investigation

EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL

Project Reference No.: 40S_B_MTECH_007

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HYDROGEN BLENDING ON THE CONCENTRATION OF POLLUTANTS EMITTED FROM A FOUR STROKE DIESEL ENGINE

Studies on Emission Control in S.I. Engine Using Organic Fuel Additives

Available online Journal of Scientific and Engineering Research, 2018, 5(9): Research Article

Experimental Investigation On Performance, Combustion Characteristics Of Diesel Engine By Using Cotton Seed Oil

Experimental Investigations on a Four Stoke Diesel Engine Operated by Jatropha Bio Diesel and its Blends with Diesel

INVESTIGATION OF PERFORMANCE AND EMISSION CHARACTERISTICS OF A COMPRESSION IGNITION ENGINE WITH OXYGENATED FUEL

Material Science Research India Vol. 7(1), (2010)

Effect of Varying Load on Performance and Emission of C.I. Engine Using WPO Diesel Blend

6340(Print), ISSN (Online) Volume 4, Issue 5, September - October (2013) IAEME AND TECHNOLOGY (IJMET)

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine

Analysis of Emission characteristics on Compression Ignition Engine using Dual Fuel Mode for Variable Speed

Experimental Analysis of Utilization of Heat Using Methanol - Diesel Blended Fuel in Four Stroke Single Cylinder Water Cooled Diesel Engine

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 3: Introduction to Pollutant Formation POLLUTANT FORMATION

Available online Journal of Scientific and Engineering Research, 2018, 5(8): Research Article

Performance and Emission Analysis of Diesel Engine using palm seed oil and diesel blend

INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE

PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF

Performance Analysis of 4-stroke SI Engine with HHO Generator by Morse Test

Properties and Use of Jatropha Curcas Ethyl Ester and Diesel Fuel Blends in Variable Compression Ignition Engine

Performance Characteristics of Ethanol Derived From Food Waste As A Fuel in Diesel Engine

Emission Reduction of Spark Ignition Genset with Ethanol Blended Gasoline Fuel

ABSTRACT I. INTRODUCTION II. TECHNICAL SPECIFICATIONS OF THE ENGINE III. MATERIAL & METHODS

EFFECT OF H 2 + O 2 GAS MIXTURE ADDITION ON EMISSONS AND PERFORMANCE OF AN SI ENGINE

Saud Bin Juwair, Taib Iskandar Mohamad, Ahmed Almaleki, Abdullah Alkudsi, Ibrahim Alshunaifi

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine

Experimental Investigation of Performance and Emissions of a Stratified Charge CNG Direct Injection Engine with Turbocharger

Rubber Seed Oil as an Alternative Fuel for CI Engine: Review

PERFORMANCE OF DIRECT INJECTION C.I. ENGINE USING KARANJA OIL AT DIFFERENT INJECTION PRESSURES

Performance, Combustion and Emission Characteristics of Corn oil blended with Diesel

GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN:

Performance and emission analysis of single cylinder SI engine using bioethanol-gasoline blend produced from Salvinia Molesta

Experimental investigations on the performance characteristic of diesel engine using n- butyl alcohols

Experimental investigation on constant-speed diesel engine fueled with. biofuel mixtures under the effect of fuel injection

Optimization of SFC Using Mathematical Model Based On RSM for SI Engine Fueled with Petrol-Ethanol Blend

Emission reduction in SI engine using ethanol gasoline blends on thermal barrier coated pistons

Study of Performance and Emission Characteristics of a Two Stroke Si Engine Operated with Gasoline Manifold Injectionand Carburetion

EFFECTS OF ETHANOL-DIESEL EMULSIONS ON THE PERFORMANCE, COMBUSTION AND EMISSION CHARACTERISTICS OF DI DIESEL ENGINE

Chapter 4 ANALYTICAL WORK: COMBUSTION MODELING

EFFECT OF EGR AND CYCLONIC SEPARATOR ON EMISSIONS IN DI DIESEL ENGINES

Effect of hydrogen and gasoline fuel blend on the performance of SI engine

Experimental Study on Performance and Emission of Diesel Engine using Sunflower Oil-Diesel Blends as Fuel

Potential of Large Output Power, High Thermal Efficiency, Near-zero NOx Emission, Supercharged, Lean-burn, Hydrogen-fuelled, Direct Injection Engines

ENVO DIESEL TEST ON AUTOMOTIVE ENGINE AN ANALYSIS OF ITS PERFORMANCE AND EMISSIONS RESULTS

Performance and Emission Characteristics of Direct Injection Diesel Engine Running On Canola Oil / Diesel Fuel Blend

[Kurrey*, 4.(10): October, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine

Performance and Emission Characteristics of a Kirloskar HA394 Diesel Engine Operated on Mahua Oil Methyl Ester

Investigation of Effect of Ethanol Blends on Performance Parameters of I.C. Engine

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

Ester (KOME)-Diesel blends as a Fuel

Performance Test of IC Engine Using Blends of Ethanol and Kerosene with Diesel

The Effect of Volume Ratio of Ethanol Directly Injected in a Gasoline Port Injection Spark Ignition Engine

Comparative Analysis of Jatropha-Methanol Mixture and Diesel on Direct Injection Diesel Engine

ANALYSIS OF EXHAUST GAS RECIRCULATION (EGR) SYSTEM

Module8:Engine Fuels and Their Effects on Emissions Lecture 36:Hydrocarbon Fuels and Quality Requirements FUELS AND EFFECTS ON ENGINE EMISSIONS

PERFORMANCE AND EMISSION ANALYSIS OF CI ENGINE FUELLED WITH THE BLENDS OF PALM OIL METHYL ESTERS AND DIESEL

The Fuel Consumption Study on E85 with Conventional EFI Vehicle

An Experimental Study on the Equivalence Ratio of Biodiesel and Diesel Fuel Blends in Small Diesel Engine

Experimental Investigation of Single Cylinder Diesel Engine with Sesame Oil and Ethanol Blends at Various Compression Ratio.

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL

Experimental Investigation of Performance and Emission Characteristics of Hybrid Fuel Engine

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online):

EXPERIMENTAL INVESTIGATION OF FOUR STROKE SINGLE CYLINDER DIESEL ENGINE WITH OXYGENATED FUEL ADDITIVES

Impact of Methanol Gasoline Fuel Blends on the Performance and Exhaust Emissions of a SI Engine

Investigation of Single Cylinder Diesel Engine Using Bio Diesel from Marine Algae

Conversion of 4-stroke Motorcycle SI Engine as Multi fueled Eco friendly two wheeler

Assistant Professor, Dept. of Mechanical Engg., Shri Ram College of Engineering & Management, Banmore, Gwalior (M.P) 2

We re Going Global ETHANOL

Transcription:

Experimental determination of suitable ethanol gasoline blend for Spark ignition engine Farha Tabassum Ansari 1, Abhishek Prakash Verma 2 1,2 ME IV Sem Student, Jabalpur engineering college Jabalpur Dr.Alok choube 3 3 Professor Department of Mechanical Engineering, Jabalpur engineering college, Jabalpur Abstract: - Ethanol produced from biomass has high octane number and good antiknock characteristic, less ozone depletion potential and global warming potential than the pure gasoline, therefore it can be used as a blended fuel with gasoline fuel in the S.I. engine. In this paper the experimental investigation of four stroke petrol engine is carried out to analyze the engine performance and emission characteristics. Engine performance and exhaust emission are determined using different blend ratios of ethanol with gasoline (E,,, E6, E8, and E1) to evaluate the most suitable blend. In this study the engine with compression ratio 1:1 is tested using pure gasoline and various blends by varying at constant engine rpm. Performance tests are conducted for total fuel consumption, brake specific fuel consumption, brake thermal efficiency and exhaust emissions. The exhaust emissions are analyzed for carbon monoxide (CO), and unburned hydrocarbons (HC). The results shows that blending of ethanol with gasoline increases fuel consumption, brake specific fuel consumption, brake thermal efficiencies, while the CO and HC concentration in the emissions of engine exhaust decreases considerably Keyword ethanol, gasoline, four stroke petrol engine. Introduction Petroleum reserve is limited in the world, and conventional use leads to its depletion, therefore replacement of gasoline by liquied fuel produced form renewable sources is a high priority in many countries worldwide. Ethanol can be produce from ligno-cellulosic material like wood, agricultural, forest residues and municipal waste[1] has potential to be valuable substitute for gasoline fuel, since Ethanol possesses characteristic, properties that have positive influence on engine performance as well as exhaust emissions. The engine shows better performance with reduction in hydrocarbons and carbon monoxide with use of ethanol with gasoline, although there are some drawback with use of pure ethanol, [2] phase stability is main concern when hydrous ethanol is used with petrol, the heating value of ethanol is lower than that of gasoline, however characteristic like auto-ignition temperature and flash point is higher than gasoline which make is easier and safe in transportation and storage[3]. Several additives (oxygenated organic compounds) such as methanol, ethanol, tertiary butyl alcohol and methyl tertiary butyl ether are used as fuel additives[4]. Although having these advantages, due to limitations in technology, economic and regional considerations alcohol fuel still cannot be used extensively. Since ethanol can be fermented and distilled from biomasses, it can be considered as renewable 1

energy under the environmental consideration, using ethanol blended with gasoline is better than methanol because of its renewability and less toxicity.[1] At the present time and instead of pure ethanol, a blend of ethanol and gasoline is a more attractive fuel with good anti-knock characteristics for SI Engines. Due to the high evaporation heat, high octane number and high flammability temperature, ethyl alcohol has positive influence on the engine performance and increases the compression ratio. The low Reid evaporation pressure enable to storage and transportation safely.[3] Literature Review: Effect of Ethanol on engine performance and Emissions Colorado[4] shows the experiment done during the open-loop control of ECU on fuel injection rate in the cold-start period, the fuel injection rate is roughly the same for all fuels (E through ) used. This made the percentage of excess air in the air/fuel mixture of E5, E1,, E3, and to be 2%, 4%, 9%, 14%, and 19%, respectively. For E5-E3, the engine can run smoothly. For, the air/fuel mixture in the engine was too thin so as to cause engine speed instability. As far as emissions are concerned, E5 and E1 performed almost indistinguishably from the gasoline (E), while e clearly decreased HC, CO and NO emissions. Therefore, in conclusion, the ethanol content in gasoline for best cold-start emissions was determined to be at least 2 per cent but no greater than 3 per cent. Lan-bin[5]. In this paper the effects of ethanol and DMC addition to unleaded gasoline on SI engine exhaust emissions at a constant engine load (3 N m) and at five different engine speeds were investigated The ratio of ethanol and DMC was taken (E5, E1,E15, D5, D1, D15). Compared to unleaded gasoline, E1 and D5 blended fuels produced the best results in engine emissions. Using oxygen containing additives increased fuel consumption. The HC emission of E1 and D5 are reduced about 24% and 35%, respectively, and the CO emission by about 61% and 65%, respectively. On the other hand, the CO2 emission of E1 and E5 increased by about 14.8% and 18%, respectively. The effects of unleaded gasoline (E) and unleaded gasoline ethanol blends (E5 and E85) on engine performance and pollutant emissions were investigated in a single cylinder, four stroke, spark-ignition engine at WOT and compression ratios of 1:1 and 11:1Torque with blended fuels (E5 and E85) were generally found to be higher than that of base gasoline (E) in all the speed range. The lower energy content of ethanol gasoline fuel caused some increment in brake specific fuel consumption of the engine depending on percentage of ethanol in the blend. A significant reduction in HC emissions was observed as a result of the leaning effect and additional fuel oxygen caused by the ethanol addition. But, HC emissions increased at higher compression ratio due to higher surface to volume ratio.[6] Ethanol was used as fuel at high compression ratio to improve performance and to reduce emissions in a small gasoline engine with low efficiency. Initially, the engine whose compression ratio was 6/1 was tested with gasoline, E25 (75% gasoline + 25% ethanol), E5, E75 and E1 fuels at a constant load and speed. It was determined from the experimental results that the most suitable fuel in terms of performance and emissions was E5. Then, the compression ratio was raised from 6/1 and 1/1. The engine was tested with E fuel at a compression ratio of 6/1 and with E5 fuel at a compression ratio of 1/1 at full load and various speeds without any knock. The cylinder pressures were recorded for each compression ratio and 2

fuel. The experimental results showed that engine power increased by about 29% when running with E5 fuel compared to the running with E fuel. Moreover, the specific fuel consumption, and CO, CO2, HC and NOx emissions were reduced by about 3%, 53%, 1%, 12% and 19%, respectively.[7] The effect of compression ratio on engine performance and exhaust emissions was examined [8] at stoichiometric air/fuel ratio, full load and minimum advanced timing for the best torque MBT in a single cylinder, four stroke, with variable compression ratio and spark ignition engine The fuels containing high ratios of ethanol; and E6 had important effects on the reduction exhaust emissions. The maximum decrease was obtained with and E6 fuels at 2 rpm engine speed. The average decreases were found to be 11% and 1.8% with and E6, respectively. The better decrease was obtained with HC compared with CO. The maximum decrease in HC emission was obtained using E6 as average of 16.45% at 5 rpm engine speeds. By using ethanol gasoline blend, the peroformance analysis of a spark-ignition engine was experimentally investigated. Sixty percent ethanol and 4% gasoline blend was exploited to test the performance, the fuel consumption, and the exhaust emissions. As a result of this study, it is seen that a new dual fuel system could be serviceable by making simple modifications on the carburetor and these modifications would not cause complications in the carburetor system.[9] Performance tests were conducted for equivalence air fuel ratio, fuel consumption, volumetric efficiency, brake thermal efficiency, brake power, engine torque and brake specific fuel consumption, while exhaust emissions were analyzed for carbon monoxide (CO), carbon dioxide (CO2) and unburned hydrocarbons (HC), using unleaded gasoline ethanol blends with different percentages of fuel at three-fourth throttle opening position and variable engine speed ranging from 1 to 4 rpm. The results showed that blending unleaded gasoline with ethanol increases the brake power, torque, volumetric and brake thermal efficiencies and fuel consumption, while it decreases the brake specific fuel consumption and equivalence air fuel ratio. The CO and HC emissions concentrations in the engine exhaust decrease, while the CO2 concentration increases. The 2 vol. % ethanol in fuel blend gave the best results for all measured parameters at all engine speeds.[1] Experimental investigations have been carried out to performance and emissions of single cylinder four-stroke spark ignition engine at full throttling position of engine and different load conditions is used to different fuels (Gasoline and LPG) at various compression ratios (4.67:1,5.49:1). The test result indicated that LPG fuel have closer performance to Gasoline fuel. However, the brake specific energy consumption shows an improvement with LPG as a fuel replacement. The concentration levels of CO, CO2 and unburnt HC recorded are found to be lower than the gasoline fueled engine.[11] Table 1 Property of gasoline and ethanol Fuel property Gasoline Ethanol Chemical formula C 8 -C 14 C 2 H 5 OH Latent heat (kj\kg) 223.2 725.4 Octane number 88-1 18.4 Boiling point ( o C) 27-225 78 Density (Kg/m 3 ) 765 785 Net lower heating value (MJ\kg) 43.5 2 3

Experimental setup and test procedure: The experimental setup consists of Single cylinder Four-stroke petrol engine the detail specification of engine is given in table 1 Table 2 : General specification of test engine Engine type Enfield, air cooled, water cooled, spark ignition engine Number of cylinder 1 Cylinder bore 7 mm Stroke 6 mm Rated speed 28 r.p.m Rated power 2.5 B.H.P Compression ratio 1:1 Exhaust gas analyzer AVL DIGAS Model no 444 Specification of AVL DiGas Table 2 Measured Quality Measurement range CO 1 % vol HC 2 ppm NOx 5 ppm Fig 1. Schematic diagram of experimental set up 1.engine 2. DC motor 3 control penal 4. Water rheostat 5. Exhaust gas analyzer 6.exhaust gas pipe 7. Engine base. 4

The engine is equipped with DC Machine and water rheostat in order to apply the required load A series of experiment was carried our using gasoline, ethanol and various blends, All the blends was tested under varying load condition. During each trial engine was started so that engine attains stable condition. Important parameter related to thermal performance of the engine such as fuel consumption, applied load, the ammeter and volt meter reading were measure and recorded. The engine emission parameter like CO, HC and Exhaust temperature was noted and recorded. Test cases examined In the experimental study, a single cylinder four stroke spark ignition engine was used. Specification of test engine are given in Table 2. The experiment was conducted at varying the engine load from no load, 44W, 88W, 132W, 176W, and 22 W. The test fuel were gasoline (E) and gasoline-ethanol blends,, E6, E8, E1, the number following E Indicate percentage of volumetric amount of ethanol (99.9% pure). The experiment was performed at 1:1 compression ratio and constant speed 28 r.p.m. Property of ethanol and gasoline are show in table 3., specific fuel consumption, energy consumption, thermal efficiency, exhaust temperature and pollutant emission was measured during experiment. Table 3 Properties of gasoline fuel blended with various percentages of ethanol (Average values) Sample code Result and discussion % ethanol %gasoline Flash point(c ) Effect on Total fuel consumption Auto ignition temp(c ) Octane number Specific gravity E 1-65 246 91,7474 2 8-2 279 94.765 4 6-13.5 294 97.7792 E6 6 4-1 345 1.7812 E8 8 2 5 362 14.7834 E1 1 125 365 129.789 Figure shows the effect of the ethanol fuel blending on the total fuel consumption (T.F.C). The T.F.C is s increased as the volume percentage of ethanol fuel is increased in the mixture. This is due to the lower heating value of ethanol compared with gasoline. 5

BSFC (kg\kw hr) Total fuel consumptin Kg/hr 2.5 2 1.5 1 E.5 No Load 44 88 132 176 22 E6 E8 E1 fig 1. Graph between versus total fuel consumption Effect on Brake specific fuel consumption The variation of BSFC with brake power for different percentage of Ethanol with the gasoline as shown in fig. The additive of Ethanol shows slightly higher BSFC compare to gasoline. This behavior is attributed to the LHV per unit mass of the Ethanol fuel, which is distinctly lower than that of the gasoline fuel. Therefore the amount of fuel introduced in to the engine cylinder for a given desired fuel energy input has to be greater with the Ethanol fuel. The BSFC decreases with the increasing loads. It is inversely proportional to the thermal efficiency of the engine. 4.5 4 3.5 3 2.5 2 1.5 1.5 No Load 44 88 132 176 22 E E6 E8 E1 fig 2 Graph between versus bsfc 6

Brake thernal efficiency Effect on Brake thermal efficiency The variation of BTE with brake power for different percentage of additives of Ethanol with the gasoline as shown in fig. The additive of Ethanol shows The BTE is higher than the gasoline. The BTE is higher for various additives because of improve combustion efficiency. The brake thermal efficiency is based on B.P and calorific value. of the engine. Brake thermal efficiency gradually increases with increase in percentage of additives. It is observed that brake thermal efficiency is low at low values of B.P and is increasing with increase of B.P for all additives of fuel. 18 16 14 12 1 8 6 4 2 No Load 44 88 132 176 22 E E6 E8 E1 fig3 Graph between versus BTE Effect on Carbon monoxide emission (co) emission It is a product of incomplete combustion due to insufficient amount of air in the air- fuel mixture. When Ethanol containing oxygen is mixed with gasoline, the combustion of the engine becomes better and therefore, CO emission is reduced. fig 1 show the Effect of the ethanol fuel blending on the HC and CO emissions. The concentration of HC and CO is decreased as the volume percentage of ethanol fuel is increased in the fuel mixture. This is due to the reduction in carbon atoms concentration in the blended fuel and the high molecular diffusivity and high flammability limits which improve mixing process and hence combustion efficiency. The stochiometric air fuel ratio of ethanol is about 2/3 that of gasoline, hence the required amount of air for complete combustion is lesser for ethanol. When the engine condition goes leaner, the combustion process is more complete and the concentration of CO emission gets lower. 7

HC ppm CO % 1 9 8 7 6 5 4 3 2 1 E E6 E8 E1 NO LOAD 44 88 132 176 22 fig 4 Graph between versus CO Effect on Hydrocarbon (HC) emission Rich air fuel ratio with insufficient oxygen prompts the incomplete combustion of fuel as a misfire produces the unburnt hydrocarbon. When ethanol is added to the blended fuel, it can provide more oxygen for the combustion process and leads to the so-called "leaning effect". This indicates that the engine tends to operate in leaner conditions, closer to stoichiometric burning as the ethanol content is increased. Its final result is that better combustion can be achieved therefore the concentration of HC emission decrease as the ethanol content increase. 25 2 15 E 1 5 NO LOAD 44 88 132 176 22 E6 E8 E1 fig 5 Graph between versus HC 8

Exhaust temp (c ) Effect on Exhaust temperature When ethanol percentage increase exhausts gas temperature decrease show in fig. Exhaust gas temperature is the function of combustion temperature and the temperature of the combustion is depends upon the heating value of the fuel. Heating value of the ethanol is less compared to the gasoline, therefore with the increase of ethanol percentage the combustion temperature decrease as result is exhaust gas temperature decrease. 8 7 6 5 4 3 2 1 NO LOAD 44 88 132 176 22 E E6 E8 E1 fig 6 Graph between versus exhaust gas temperature CONCLUSION Experiments have been conducted on single cylinder four stroke petrol engines with different percentage of ethanol as additive to gasoline. It is concluded that, the percentage of additive increases the emission characteristics improved.it is observed that the emission values of the HC and CO are decreased when compared with petrol. For the performance it may be concluded that calorific value of ethanol is less (27kJ/kg) as compare to petrol (448 kj/kg). Decrease in calorific value results in higher consumption of fuel for ethanol-gasoline blend as compare to petrol. The brake thermal efficiency increases with increase in percentage of additive. The E6 and gave the best result for all measured parameters at all engine loads Thus ethanol may be used as a additive for gasoline in future. Brake Thermal Efficiency, is increased as the volume percentage of ethanol fuel is increased in the mixture E6 have good thermal efficiency at higher load. As we increase the percentage of Ethanol in fuel Specific fuel consumption increases. This is due to the lower heating value of ethanol compared with gasoline, E6 gives better results as compared to E and. 9

References 1. Cellulosic Ethanol from Municipal Solid Waste: A Case Study of the Economic, Energy, and Greenhouse Gas Impacts in California,Environ. Sci. Technol. (29) 2. Zlata Muzikova, Milan Pospisil, Gustav Sebor, Volatility and phase stability of petrol blends with ethanol, Fuel 88 (29) 3. Fikret Yu ksel, Bedri Yuksel, The use of ethanol gasoline blend as a fuel in an SI engine, Renewable Energy 29 (24) 4. Ethanol blending policy in India demand and supply issues(211) 5. This is of special importance for India because the economy is facing substantial pressure from the United Nations framework convention on climate change (UNFCCC) to limit its carbon footprint. Thus there is pressure on India to look for alternative and environmentally benign sources that can fulfill its energy requirements in a sustainable manner. 6. Engine performance and pollutant emission of an SI engine using ethanol gasoline blended fuel(22) 7. Alcohol fuels production and potential, Colorado. Houghton-Alico D (1982) 8. The effect of adding dimethyl carbonate (DMC) and ethanol to unleaded gasoline on exhaust emission Lan-bin Wen, Chen-Ying Xin, Shyue-Cheng Yang Applied Energy 87 (21) 115 121) 9. The effects of ethanol unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine 1. Experimental determination of suitable ethanol gasoline blend rate at high compression ratio for gasoline engine M. Bahattin Celik(28) 11. Effect of ethanol gasoline blends on engine performance and exhaust emissions in different compression ratios. Huseyin Serdar Yucesu, Tolga Topgu, Can inar, Melih Okur(26) 12. The use of ethanol gasoline blend as a fuel in an SI engine Fikret Yu ksel _, Bedri Yuksel.(24) 13. Effect of ethanol unleaded gasoline blends on engine performance and exhaust emissionm. Al-Hasan(23) 14. Investigations on S.I. Engine Using Liquefied Petroleum Gas (LPG) As an Alternative Fuel. 1