PRESSURE OSCILLATION IN HYDRAULIC HITCH-SYSTEM DURING IMPLEMENT TRANSPORT

Similar documents
ENGINEERING FOR RURAL DEVELOPMENT Jelgava, SIMULATION OF PRESSURE OSCILLATION IN HYDRAULIC HITCH-SYSTEM

RHOMBUS BRIQUETTING MECHANISM MODELLING

Mechanism-hydraulic Co-simulation Research on the Test Bed. of Gun Recoil Mechanism

AUTOMOBILE FUEL CONSUMPTION CHANGES AS AFFECT OF LOAD

Fuzzy Logic Control of Clutch for Hybrid Vehicle

Proceedings of the World Congress on Engineering 2008 Vol II WCE 2008, July 2-4, 2008, London, U.K.

MODELING OF SUSPENSION SYSTEM OF A LIGHT TRACKED VEHICLE

Experimental Investigation of Effects of Shock Absorber Mounting Angle on Damping Characterstics

Evaluation of reed canary grass shredding and compacting properties

640. Investigation of movement of the off-road vehicles under roadless conditions

Design and Experimental Verification of Vibration Suppression Device on the Lift of Wheelchairaccessible

RADICAL REDUCTION OF CRANKSHAFT TORSIONAL VIBRATIONS РАДИКАЛЬНОЕ СНИЖЕНИЕ КРУТИЛЬНЫХ КОЛЕБАНИЙ КОЛЕНЧАТОГО ВАЛА

Optimization of Seat Displacement and Settling Time of Quarter Car Model Vehicle Dynamic System Subjected to Speed Bump

Steady State Handling

Abstract In this paper, we developed a lateral damper to improve the running safety of railway vehicles

THE STRESS VARIATION BY CHANGING THE SUPPORTING POINT LOCATION IN THE MOTOR VEHICLE CLUTCH ASSEMBLEY

iglide J - The fast and slow motion specialist

AN INTEGRATED ROLLOVER MITIGATION STRATEGY FOR MILITARY TRUCKS

EXPERIMENTAL INVESTIGATION IN ACCELERATION OF VEHICLES

Researches regarding a pressure pulse generator as a segment of model for a weighing in motion system

RESEARCH OF AIR FLOW DEBIT WITH NEW CONSTRUCTION INNER LINER

Evaluation of changes in traction properties of tyres on selected farming surfaces

Durability Analysis of Locking Parts in the Gauge - Adjustable Wheelset System

Research in hydraulic brake components and operational factors influencing the hysteresis losses

Test Rig Design for Measurement of Shock Absorber Characteristics

Control and Evaluation Methods for Multi-Mode Steering

MARINE FOUR-STROKE DIESEL ENGINE CRANKSHAFT MAIN BEARING OIL FILM LUBRICATION CHARACTERISTIC ANALYSIS

2009 International Conference on Artificial Intelligence and Computational Intelligence

CHAPTER 4: EXPERIMENTAL WORK 4-1

Special edition paper

machine design, Vol.6(2014) No.4, ISSN pp

Semi-Active Suspension for an Automobile

Available online at ScienceDirect. Procedia Engineering 137 (2016 ) GITSS2015

Preliminary Study on Quantitative Analysis of Steering System Using Hardware-in-the-Loop (HIL) Simulator

INVESTIGATION OF TRACTOR PERFORMANCE DURING PLOUGHING OPERATION

TESTING OF AUTOMOBILE VW GOLF OPERATING ON THREE DIFFERENT FUELS

Simulation Optimization Design on Vehicle Disk Brake. Pengfei Duan 1, a

The Application of Simulink for Vibration Simulation of Suspension Dual-mass System

BIODIESEL IMPACT ON DIESEL ENGINE HIGH PRESSURE PUMP PLUNGER PAIRS

Comfort Evaluation Criteria for Pitching Vibration Damping of Agricultural Tractors

Modeling and Vibration Analysis of a Drum type Washing Machine

STUDY OF ENERGETIC BALANCE OF REGENERATIVE ELECTRIC VEHICLE IN A CITY DRIVING CYCLE

Forced vibration frequency response for a permanent magnetic planetary gear

A Simple Method for Estimating the Driving Resistance of Rubber Conveyer Belts by Using a Self-traveling Roller

Design of Damping Base and Dynamic Analysis of Whole Vehicle Transportation based on Filtered White-Noise GongXue Zhang1,a and Ning Chen2,b,*

PULSE ROAD TEST FOR EVALUATING HANDLING CHARACTERISTICS OF A THREE-WHEELED MOTOR VEHICLE

Research in use of fuel conversion adapters in automobiles running on bioethanol and gasoline mixtures

ANALYSIS OF DYNAMIC CHARACTERISTICS OF ROLLING BEARINGS IN ROTOR SUPPORTS N. KIKOT S. DEGTIAREV M. LEONTIEV E. SNETKOVA

INTERCONNECTION POSSIBILITIES FOR THE WORKING VOLUMES OF THE ALTERNATING HYDRAULIC MOTORS

ENGINEERING FOR RURAL DEVELOPMENT Jelgava, ELECTRIC VEHICLE CHARGING CHARACTERISTICS

DEVELOPMENT AND EXPERIMENTAL RESEARCH OF THE CENTRAL PRESSURE CONTROL SYSTEM FOR AGRICULTURAL TRACTOR TYRES

Simulation and Analysis of Vehicle Suspension System for Different Road Profile

AN EXPERIMENTAL RESEARCH ON THE WEAR OF TRUCK TIRE ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ИЗНОСА ШИН ГРУЗОВОГО АВТОМОБИЛЯ

Laboratory investigation of the efficiency of a car hydromechanical transmission

Available online at ScienceDirect. Physics Procedia 67 (2015 )

FEASIBILITY STYDY OF CHAIN DRIVE IN WATER HYDRAULIC ROTARY JOINT

Active Suspensions For Tracked Vehicles

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

Physical Modelling of Mine Blast Impact on Armoured Vehicles

MATHEMATICAL DESCRIPTION OF TRACTOR SLIPPAGE WITH VARIABLE TIRE INFLATION PRESSURE

Design and experiment of hydraulic impact loading system for mine cable bolt

EFFECTIVENESS OF THE ACTIVE PNEUMATIC SUSPENSION OF THE OPERATOR S SEAT OF THE MOBILE MACHINE IN DEPEND OF THE VIBRATION REDUCTION STRATEGIES

HS CYCLIC CUM STATIC TRIAXIAL TEST SYSTEM

MARITIME AFTERNOON. Torben Ole Andersen. June 14, 2017 Aalborg University, Denmark

Design and Performance Analysis of ISD Suspension Based on New Mechanical Network Isolation Theory Jun Yang, Long Chen, Xiaofeng Yang & Yujie Shen

719. Diagnostic research of rotor systems with variable inertia moment

ENGINEERING FOR RURAL DEVELOPMENT Jelgava,

International Journal of Current Engineering and Technology E-ISSN , P-ISSN Available at

New Capacity Modulation Algorithm for Linear Compressor

Technical elements for minimising of vibration effects in special vehicles

Constructive Influences of the Energy Recovery System in the Vehicle Dampers

558. Dynamics of loadings acting on coupling device of accelerating auto-train

ACCURACY INCREASE OF POSITIONING OF PNEUMATIK DRIVES FOR MECHANICAL SYSTEMS. Yuri Osenin, Valentin Remen

Investigation of Semi-Active Hydro-Pneumatic Suspension for a Heavy Vehicle Based on Electro-Hydraulic Proportional Valve

MODEL AIDED DESIGN OF TUNED RUBBER TVD

Analysis and evaluation of a tyre model through test data obtained using the IMMa tyre test bench

OMICS Group International is an amalgamation of Open Access publications

DESIGN AND ANALYSIS OF PUSH ROD ROCKER ARM SUSPENSION USING MONO SPRING

INFLUENCE OF MASS CHANGES OF FLYING OBJECTS ON THEIR DYNAMIC FEATURES

MULTI-POLE MODELING AND INTELLIGENT SIMULATION OF CONTROL VALVES OF FLUID POWER SYSTEMS (PART 2)

Study on AADDS Plunger Pump Driving Bearing Properties

AMPLIFIED PIEZO ACTUATOR APA WITH VISCOELASTIC MATERIAL FOR MACHINE TOOL SEMI-ACTIVE DAMPING SYSTEM 1. INTRODUCTION

Chapter 2 Dynamic Analysis of a Heavy Vehicle Using Lumped Parameter Model

MEASUREMENT SYSTEM FOR INVESTIGATION OF TYRE-ROAD FRICTION

Available online at ScienceDirect. Procedia Engineering 150 (2016 )

RELIABILITY IMPROVEMENT OF ACCESSORY GEARBOX BEVEL DRIVES Kozharinov Egor* *CIAM

Research on vibration reduction of multiple parallel gear shafts with ISFD

Health Monitoring for Condition-Based Maintenance of a HMMWV using an Instrumented Diagnostic Cleat

Modeling of 17-DOF Tractor Semi- Trailer Vehicle

Using CompactRIO to Build a Virtual Driver of Hybrid Wheeled Vehicle Gabriel Kost 1,a, Andrzej Nierychlok 1,b*

Construction of a Hybrid Electrical Racing Kart as a Student Project

Design and Analysis of Hybrid Power Systems with Variable Inertia Flywheel

Development of a Nonlinear Shock Absorber Model for Low-Frequency NVH Applications

Compact Disc Harrow Rubin 12

COMPACT DISC HARROW HELIODOR 9

Redesign of Drive Shaft`s tripod Assembly, to improve the performance & reduce failure

A STUDY OF THE CENTRIFUGAL COMPRESSOR DISCHARGE PIPELINE CONSTRAINED OSCILLATION. KIRILL SOLODYANKIN*, JIŘÍ BĚHAL ČKD KOMPRESORY, a.s.

Optimization Design of the Structure of the Manual Swing-out Luggage Compartment Door of Passenger Cars

Prerequisites for Increasing the Axle Load on Railway Tracks in the Czech Republic M. Lidmila, L. Horníček, H. Krejčiříková, P.

A Brake Pad Wear Control Algorithm for Electronic Brake System

Transcription:

ISSN 1392-1134 Lietuvos žemės ūkio universiteto mokslo darbai 2010, 42 (2-3), 22 31 Research papers o Lithuanian University o Agriculture, 2010, vol 42, no 2-3, 22 31 PRESSURE OSCILLATION IN HYDRAULIC HITCH-SYSTEM DURING IMPLEMENT TRANSPORT SLĖGIO SVYRAVIMAI HIDRAULINIO KELTUVO SISTEMOJE TRANSPORTO REŽIME Janis Laceklis Bertmanis, Aivars Kakitis, Eriks Kronbergs, Edgars Repsa and Mareks Smits Latvia University o Agriculture, Institute o Mechanics, E-mail: Janis.Laceklis@llu.lv Gauta 2010-05-23, pateikta spaudai 2010-09-06 This paper presents results o pressure oscillation investigation in tractor Claas Ares ATX 557 hydraulic hitch-system, loaded with disc harrow, during the motion around artiicial roughness test road. During experiments oscillation at the dierent drive speed, tires pressure and hitch-system oscillation damping (turned on or o) were investigated. Tractor hydraulic hitch-system was equipped with pressure sensor and data processing sotware. Results o experiments present maximum pressure peak 188 bar in tractor hydraulic system, i not used hydraulic hitch-system oscillation damping system at driving speed 8 km h -1, and i used hydraulic hitch-system oscillation damping system pressure peak reduced to value 170 bar. Simulation o tractor movement with attached disc harrow over rough surace with Working Model sotware was used. Hitch-system cylinders were replaced as coupler with spring and damper characteristic in model. Dynamic orce on coupler was obtained as simulation result and depending on it hydraulic pressure in hitch-system cylinder had been calculated. Simulation results were evaluated on basis o experimental investigations. Reducing o hydraulic cylinder stiness value let to reduce pressure value to 168 bar at driving speed 8 km h -1 during simulation. Tractor hitch-system, pressure oscillation. Introduction During tractor movement, with attached to hitch-system working equipment (plough, harrow), over rough road suraces vertical oscillations o machine take place. These oscillations are a reason o pressure pulsations in hydraulic hitch-system and reduce the service lie o hydraulic system components, especially the lietime o hydraulic hoses. Pressure pulse reduction in tractor hitch-system is important or increasing o system components lietime. Pressure oscillations damping in the tractor 22

hydraulic hitch-system can reduce overall system oscillations and improve the driving control. Simulation o tractor hydraulic system oscillation enables determination o hydraulic system stiness and damping parameters or minimizing amplitude o pressure pulsations. Working Model sotware let to create dynamic model or tractor vertical oscillations and simulate movement with dierent speed and road roughness values. The main task o simulation experiment is to reduce the tractor Claas Area 557 ATX hitch-system hydraulic pressure pulse values changing the hydro cylinder stiness and damping parameters. Materials and methods For evaluation o Working Model simulation results preliminary experiments on tractor movement over artiicial roughness test road had been carried out. In experiment tractor Claas Area 557 ATX was used. The tractor with LEMKEN short disk harrow and LEMKEN rubber rings roller was itted [1, 2]. Using the Working Model sotware [3] is necessary to determinate the hydraulic system pressure in tractor (Class Ares 557 ATX) hydraulic hitch-system hydro cylinder depending on the attached equipment weight, road roughness and tractor speed. Thereore, in experiment the tractor hydraulic hitch-system was equipped with pressure oscillation sensor Wika Transmitter ECO-1. The sensor was chosen such that own oscillation requency was 10 times higher than requency o measured pressure changes [4]. For data acquisition and processing sotware oered by company Pico Technology was used [5]. Using Wika Transmitter ECO-1 and universal data collection and processing device PicoLog the hydraulic pressure oscillation in tractor hydraulic hitch-system was measured. In order to study the dynamic oscillation o tractor hydraulic hitch-system in experiments road with artiicial roughness was used (see Fig. 1). Road roughness was established according to rural conditions. Total road length was 24 meters which was divided into 12 equal parts by 2 meters each, respectively. Road roughness was constructed rom wood planks with dimensions 150 x 50 x 1000 mm. Planks are connected with steel angle shaped bars 40 x 40 x 3 mm by screw-bolts. Roughness columns were placed in two parallel rows with 1.8 m distance on asphalt road surace. Fig. 1. Artiicial roughness test road 1 pav. Dirbtiniai bandymo kelio nelygumai 23

Road roughness amplitude was constant value a = 0.05 m. Frequency o orced oscillations in dependence on tractor driving speed and road roughness step s = 2 m can be ound: v 2π ω =, (1) s where v tractor drive speed, m s -1 ; s road roughness step, m. In way o changing tractor hydraulic hitch-system oscillation damping position (switch on or o) and driving speed rom 3 14 km h -1 various hydraulic hitch-system oscillation characteristics are acquired, which may occur the pressure pulse in hydraulic system. The maximum pressure oscillation amplitude was observed at driving speed o 8 km h -1 and it reached 188 bar. For hydraulic hitch-system longer service lie it would be necessary to reduce the hydraulic pressure oscillation to a greater range and or this the Working Model simulation programme was used. In Working Model sotware dynamic model the same parameters o tractor and attached equipment [6] weight, road roughness and movement speed as in experimental investigation had been used. Oil volume stiness or tractor hydraulic system was calculated [7]. Simulation model (see Fig. 2) was used in the side-view. The parameters o hydraulic cylinder and tyres were entered two times larger in simulation model. Tractor wheelbase was l t = 2.564 m. As the tractor wheelbase does not coincide with road roughness step, the time delay t between roughness impact on ront wheels and rear wheels exist: l t =, (2) v where t time delay, s; l step dierence between tractor wheelbase and road roughness, m. l was calculated: l = lt s. (3) Function o road roughness surace in Working Model program was assured with actuators 4 and 9 (see Fig. 2). Actuator unctions o the ront and rear wheels was given in program by equation (4), where y 1 was the unction o ront wheel oscillations, but y 2 was or rear wheels. 24

y y 1 2 = b + i ( a sin( ω ( t + t)) < 0,0,( a sin( ω ( t + t)))) = b + i ( a sin( ω t) < 0,0,( a sin( ω t))) (4) where b initial length o actuator, m. Fig. 2. Tractor model in Working Model sotware: 1 tractor Class Ares 557 ATX, 2 tractor ront tyres (13.6R28), 3 ront weight, 4 ront actuator, 5 ront tyres (characterization by spring and damper), 6 road roughness, 7 ront tyres control units, 8 tractor rear tyres (16.9R38), 9 rear actuator, 10 rear tyres (characterization by spring and damper), 11 hydraulic cylinder (characterization by spring and damper), 12 rear tyres control units, 13 tractor hitch-system, 14 soil cultivator implements, 15 hitch-system control units 2 pav. Traktoriaus modelis: 1 traktorius Claas Ares 557 ATX, 2 traktoriaus priekinės padangos (13.6R28), 3 priekinis svoris, 4 priekinis vykdiklis, 5 priekinės padangos (elastingumo ir demperiavimo modulis), 6 kelio nelygumai, 7 priekinių padangų valdymo blokas, 8 traktoriaus užpakalinės padangos (16.9R38), 9 užpakalinis vykdiklis, 10 užpakalinės padangos (elastingumo ir demperiavimo modulis), 11 hidraulinis cilindras (elastingumo ir demperiavimo modulis), 12 užpakalinių padangų valdymo blokas, 13 traktoriaus keltuvas, 14 kultivatorius, 15 keltuvo valdymo blokas I the unction y = a sin( ω t) < 0, then the unction value was 0, but i y = a sin( ω t) > 0, then the unction value was y = a sin( ω t). Road roughness simulation was showed in Fig. 3. 25

Fig. 3. Road roughness: t oscillation time delay, s road roughness step, a road roughness amplitude 3 pav. Kelio nelygumai: t virpesių vėlinimo trukmė, s kelio nelygumų žingsnis, a kelio nelygumų amplitudė In the model hitch-system hydraulic cylinder 11 (Fig. 2) was created and described with spring and damper characteristic. The spring and damper was characterized by stiness and damping coeicients. Tractor hitch-system hydraulic cylinder parameters were changed with control button 12 (Fig. 2). Approximate spring stiness coeicient can be calculated rom ormula (5). F k =, (5) x where k spring stiness coeicient, N m -1 ; F orce, N; x displacement, m. The orce F value was obtained rom experiment results (F = 328564N). Displacement x was equal to the hitch-system hydraulic cylinder displacement at pressure pulse. It can be calculated [8] rom volume change V in hydraulic cylinder rom equation: 1 E V p V =, 0 (6) where E liquid modulus o elasticity, N m -2 ; V volume change in the size o the pressure changes, m 3 ; V 0 initial volume o liquid at atmospheric pressure, m 3 ; p pressure change, N m -2. Values o pressure changes was determinated rom experimental tests p = 57 10 5 N m -2. Oil modulus o elasticity E = 72 10 6 N m -2. Initial luid volume in hydraulic hitch-system cylinder at atmospheric pressure is calculated: 26

V 0 2 d h = π, (7) 4 where d hydraulic cylinder diameter, m; h hydraulic cylinder stroke, m. From tractor Class Ares hydraulic hitch-system cylinder determinate sizes d = 0.075 m and h = 0.23 m. Displacement x was calculate rom ormula (8). 4 V x =. (8) π 2 d The approximate stiness coeicient can be calculated ater the displacement x determination according ormula (5). Input constant parameters were given in Table 1. Table 1. Parameters o simulation. 1 lentelė. Modeliavimo parametrai. Road roughness step s, m Road roughness amplitude Tyre stiness coeicient k, N m -1 Tyre damping coeicient b, N s m -1 Hitch-system parameters a, m Front Rear Front Rear Stiness coeicient, N m -1 Damping coeicient, N s m -1 2 0.05 560000 640000 10000 24000 50947368 2500000 Force was measured when tractor model hydraulic hitch-system hydraulic cylinder oscillation was simulated with Working Model sotware. Corresponding pressure was calculated: Fu p =, (9) A where p pressure, Pa; F u hydraulic hitch-system hydro cylinder orce, N; A area o hydraulic cylinders, m 2. With constant spring stiness coeicient, reducing the damping coeicient, the orce o hydraulic hitch-system hydro cylinder decreases. Changing the damping coeicient values rom 4 6.5 N s m -1 pressure values similar to experimental values was obtained. Working Model tractor simulation model checking on the basis o experimental investigations let improve it coincidence with real machine aggregate. 27

Results and discussion In Fig. 4 average values o hydraulic system pressure at dierent motion speeds and tire pressure was described. Under way with tractor along artiicial roughness test road with air pressure in tires o 0.8 bar, what conirms to transportation regime o aggregate, and driving speed o 5 km h -1 (see Fig. 4) steerability o tractor was good and pressure in hydraulic hitch-system was in limits 130 150 bar. Increasing driving speed step by step rom 5 to 8 km h -1 pressure in hydraulic hitch-system increased and achieved 188 bar. The steerability o tractor became worse and it had been observed that ront wheels had draw away rom road surace. Increasing driving speed step by step rom 8 to 11 km h -1 pressure in hydraulic hitch-system had decreased to 148 158 bar and steerability o tractor has improved but exceeding driving speed over 13 km h -1 steerability had become worse. Fig. 4. Tractor hitch-system oscillation at dierent speed and at tire pressure 0.8 bar 4 pav. Traktorius hidraulinio keltuvo sistemos virpesiai esant skirtingiems greičiams ir slėgiui padangose 0,8 bar Using the Working Model sotware the tractor hydraulic hitch-system hydro cylinder (stiness and damping) parameters and driving speed rom 3-14 km h -1 was simulated. The experimentally obtained hydraulic hitch-system pressure values and the Working Model program simulation pressure values are shown in Fig. 5. The maximum pressure oscillation amplitude was observed at the speed 8 km h -1, and reaches 188 bar in experiments, but at the same speed reaches 182 bar in simulation results. Reducing o hydraulic cylinder 28

stiness value let to reduce pressure value to 168 bar at driving speed 8 km h -1 during simulation. Fig. 5. Pressure in tractor hydraulic hitch-system o hydraulic cylinder 5 pav. Slėgis traktoriaus hidraulinio keltuvo cilindre The dierences between experimental and simulation results are caused with some inconsistency or stiness o tyres in simulation model and can be eliminated. Thereore Working Model simulation or tractor hydraulic hitch-system can be recommended or investigation o possibility to reduce amplitude o pressure pulsations by changing parameters o hydraulic system. Conclusions 1. Oscillation o pressure can be reduced by exploitation o oscillation damper that can be established on instrument panel o tractor. I oscillation damper was not used, than at driving speed o 8 km h -1 pressure oscillation in hydraulic system reaches 188 bar but, when oscillation damper was used, pressure in hydraulic system decreases to 170 bar. 2. Working Model sotware let to create dynamic model or tractor vertical oscillations and simulate movement with dierent speed and road roughness values. 3. Tractor simulation model checking on the basis o experimental investigation results let improve it coincidence with real machine aggregate. 4. The maximum pressure oscillation amplitude was observed at the speed 8 km h -1, and reaches 188 bar in experiments, but at the same speed reaches 182 bar in simulation results. 29

5. Reducing o hydraulic cylinder stiness value let to reduce pressure value to 168 bar at driving speed 8 km h -1 during simulation. 6. Working Model simulation or tractor hydraulic hitch-system can be recommended or investigation o possibility to reduce amplitude o pressure pulsations by changing parameters o hydraulic system. Acknowledgement Paper becomes written by inancial support o European Structural Fund Support or Realization o Doctoral Studies in Latvia University o Agriculture realized by Project Department o Latvia University o Agriculture (contract no. 2009/0180/1DP/1.1.2.1.2/09/IPIA/VIAA/017). Reerences 1. LEMKEN GmbH & Co.KG [online]. Technical Data Compact Disc Harrow Heliodor, 2010 [cited March 25, 2010]. Available: http://lemken.com/appc/ content_manager/page.php?id=200741&dbc=d41c7cade764dc9bb388a723591 737a9 2. LEMKEN GmbH & Co.KG [online]. Technical Data Rubber rings Rullers, 2010 [cited March 25, 2010]. Available: http://lemken.com/appc/_upload /2009_27/Walzen_de.pd 3. MSC.Sotware Corporation. Working Model 2D sotware, User s Manual (2000). 4. Kaķītis A., Galiņš A., Leščevics P. (2008) Sensori un mērīšanas sistēmas. (Sensors and measuring systems) Jelgava, pp. 380-390. (in Latvian) 5. Kaķītis A. (2008) Neelektrisko lielumu elektriskā mērīšana un sensori: mācību līdzeklis. (Non-electric value electrical measuring and sensor: Study aid.) Jelgava, pp. 640-668. (in Latvian) 6. Company Claas KGaA mbh, Harsewinkel. Claas Areas 5543 Handbook (2007). 7. Башта Т.М. Объемные насосы и гидравличесткие двигатели гидросистем. (Volume Pumps and Hydraulic Motors o Hydraulic System.) Москва: Машиностроение, 1974. 606 с. УДК 62-82(075.8) 8. Яценко Н.Н., Прутчиков О.К. Плавность хода грузовых автомобилей. (The Release Motion o Trucks.) Москва: Машиностроение, 1968. 218с. Janis Laceklis Bertmanis, Aivars Kakitis, Eriks Kronbergs, Edgars Repsa and Mareks Smits SLĖGIO SVYRAVIMAI HIDRAULINIO KELTUVO SISTEMOJE TRANSPORTO REŽIME Anotacija Straipsnyje pateikti slėgio svyravimai traktoriaus Claas Ares ATX 557 hidraulinėje sistemoje jam važiuojant su diskiniu kultivatoriumi per nelygumus. 30

Bandymai buvo atliekami važiuojant įvairiais greičiais ir esant įvairioms oro slėgio vertėms traktoriaus padangose su svyravimų slopintuvu ir be jo. Hidraulinėje sistemoje buvo įrengtas slėgio jutiklis, bandymų duomenys apdorojami panaudojant specialią programą. Agregatui važiuojant 8 km/h greičiu be svyravimų slopintuvo didžiausia slėgio vertė siekė 188 bar, o įjungus svyravimų slopintuvą didžiausia slėgio vertė neviršijo 170 bar. Agregato judėjimo per nelygumus modeliavimas buvo atliekamas panaudojant eksperimentinių tyrimų rezultatus. Modeliavimo metu maksimalus slėgis hidraulinėje sistemoje siekė tik 168 bar dėl sumažinto hidraulinio cilindro elastingumo koeiciento. Traktoriaus hidraulinis keltuvas, slėgio svyravimai. Янис Лацеклис-Бертманис, Айварс Какитис, Ерикс Кронбергс, Едгарс Репса и Мерекс Смитс ИССЛЕДОВАНИЕ ПУЛЬСАЦИИ ДАВЛЕНИЯ В ГИДРОСИСТЕМЕ ТРАКТОРА В ТРАНСПОРТНОМ РЕЖИМЕ Аннотация В работе представлены результаты исследования колебаний давления в гидравлической системе трактора Claas Ares ATX 557 с дисковой бороной во время движения по искусственным неровностям. Эксперименты проводились на разных скоростях движения, с различным давлением воздуха в шинах и с применением системы гашения колебаний. Гидросистема трактора была оснащена датчиком давления, обработка данных проводилось с использованием специальной программы. При движении агрегата со скоростью 8 км/час без системы гашения колебаний максимальное давление в гидросистеме трактора достигало 188 бар. С применением системы гашения колебаний максимальное давление в гидросистеме трактора не превышало 170 бар. При моделировании движения трактора с дисковой бороной по неровностям была использована рабочая модель. Цилиндры Hitch-системы были заменены муфтами с пружиной и демпфером. Результаты моделирования были сопоставлены с результатами экспериментальных исследований. При моделировании снижение жесткости гидравлического цилиндра приводит к уменьшению величины давления до 168 бар при скорости движения 8 км / ч. Гидросистема трактора, пульсации давления. 31